Workshop on Physics at the CEPC @ IHEP

Probing $H\gamma\gamma$ and $HZ\gamma$ anomalous couplings at e^+e^- colliders

Qing-Hong Cao Peking University

August 10, 2015

In collaboration with Hao-Ran Wang and Ya Zhang arXiv:1503.05060

Higgs Discovery: A Great Success of Anomalous Couplings

Rare can tell more!

HZA/HAA and New Physics

Higgs rare decay is sensitive to NP

HZA and HAA are correlated in MSSM-like models,

Carena, Low and Wagner, 1206.1082, Cao, Wu, Yang, 1301.4641; Belanger, Bizouard, Chalons, 1402.3422,

but they could be independent to each other.

Azatov, Contino, Di Iura and Galloway, 1308.2676

It is important to measure both the HZA and HAA anomalous couplings separately.

$H\gamma\gamma$ and $HZ\gamma$ couplings in the SM

HZA/HAA couplings in the SM

Loose

Higgs Precision at a High Luminosity LHC

L	300 fb^{-1}		3000 fb^{-1}		
Scenario	2	1	2	1	
γγ	6%	12%	4%	8%	
WW	6%	11%	4%	7%	
ZZ	7%	11%	4%	7%	
bb	11%	14%	5%	7%	
$\tau \tau$	8%	14%	5%	8%	
$Z\gamma$	62%	62%	20%	24%	
$\mu\mu$	40%	42%	14%	20%	

ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \int \text{Ldt}=300 \text{ fb}^{-1}; \int \text{Ldt}=3000 \text{ fb}^{-1}$

 $\gamma \gamma$ (comb.)

Effective Field Theory

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_{i} \left(c_i \mathcal{O}_i + h.c. \right) + O\left(\frac{1}{\Lambda^3}\right)$$

linearly realized symmetry breaking $\mathcal{O}_{WW} = (\phi^{\dagger}\phi) W^{I}_{\mu\nu} W^{I\mu\nu}$ $\mathcal{O}_{BB} = (\phi^{\dagger}\phi) B_{\mu\nu} B^{\mu\nu}$ $\mathcal{O}_{BW} = (\phi^{\dagger}\tau^{I}\phi) B_{\mu\nu} W^{I\mu\nu}$ $\begin{cases} \text{Tightly bounded} \\ \mathcal{O}_{\phi\phi} = (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) \end{cases}$

 $\mathcal{L} = \frac{v}{\Lambda^2} \left(\mathcal{F}_{Z\gamma} H Z_{\mu\nu} A^{\mu\nu} + \mathcal{F}_{\gamma\gamma} H A_{\mu\nu} A^{\mu\nu} \right)$

Degenerate scenario

What if we only observe a lone Higgs at the LHC eventually

$$\begin{split} \Gamma(H \to Z\gamma) &= \frac{m_H^3}{8\pi v^2} \left(1 - \frac{m_Z^2}{m_H^2} \right)^3 \left| \mathcal{F}_{Z\gamma}^{\rm SM} + \frac{v^2}{\Lambda^2} \mathcal{F}_{Z\gamma} \right|^2 \\ \Gamma(H \to \gamma\gamma) &= \frac{m_H^3}{16\pi v^2} \left| \mathcal{F}_{\gamma\gamma}^{\rm SM} + \frac{v^2}{\Lambda^2} \mathcal{F}_{\gamma\gamma} \right|^2, \end{split}$$

$$\mathcal{F}^{\mathrm{SM}}_{Z\gamma}\sim 0.007, \ \ \mathcal{F}^{\mathrm{SM}}_{\gamma\gamma}\simeq -0.004$$

with $\Gamma(H \to Z\gamma) \simeq \Gamma_{\rm SM}(H \to Z\gamma)$

$$\frac{v^{-}}{\Lambda^{2}} \mathcal{F}_{Z\gamma} \sim -2 \mathcal{F}_{Z\gamma}^{SM}$$
$$\frac{v^{2}}{\Lambda^{2}} \mathcal{F}_{Z\gamma} \sim 0$$

Degeneracy in H decay (It cannot be resolved at HL-LHC)

$H\gamma$ Production at e+e-colliders

The Interference between the anomalous couplings and the SM amplitudes can help resolving the degeneracy.

The SM cross-section is tiny

Ajouadi, *et al* NPB 491, 68 (1997)

The cross section of NP operators

 $\sigma_{\rm t} = \sigma_{\rm SM} + \left[\sigma_{\rm IN}^{(1)}\mathcal{F}_{Z\gamma} + \sigma_{\rm IN}^{(2)}\mathcal{F}_{\gamma\gamma}\right] \left(\frac{2\text{TeV}}{\Lambda}\right)^2 + \left[\sigma_{\rm NP}^{(1)}\mathcal{F}_{Z\gamma}^2 + \sigma_{\rm NP}^{(2)}\mathcal{F}_{\gamma\gamma}^2 + \sigma_{\rm NP}^{(3)}\mathcal{F}_{Z\gamma}\mathcal{F}_{\gamma\gamma}\right] \left(\frac{2\text{TeV}}{\Lambda}\right)^4$

We first consider one parameter at a time and both later.

Collider simulations

Collider simulations

Optimal cuts are needed to suppress the huge SM backgrounds.

Collider simulations

SM backgrounds

$$E_{\gamma} = \frac{s - m_H^2}{2\sqrt{s}}$$

Cut on the recoil mass $\Delta M = |M_R - m_H| \le 5 \,\, {\rm GeV}$

Discovery Potential

050

La (CaV)

$\mathcal{L} = 1000 \text{ fb}^{-1}$ **350 500 1000**

\sqrt{s} (GeV)		200	500	000	1000
B	selection cuts $(\times 10^5)$	7.169	4.229	2.450	0.708
	$\Delta M cut$	7640	3993	2104	475
$\mathcal{S}_{ ext{SM}}$	selection cuts	58	21	33	12
$ee ightarrow h\gamma, h ightarrow bar{b}$	$\Delta M cut$	58	21	33	12
$\mathcal{S}_{ m SM}/\sqrt{\mathcal{B}}$		0.664	0.33	0.72	0.55
$egin{array}{c} S_{Z\gamma} \ (ee ightarrow h\gamma) \end{array}$		794	808	940	853
$\mathcal{S}_{Z\gamma}$	selection cuts	451	482	569	341
$ee \rightarrow h\gamma, h \rightarrow b\bar{b}$	$\Delta M cut$	451	482	569	341
$\mathcal{S}_{Z\gamma}/\sqrt{\mathcal{B}}$		5.2	7.6	12.4	15.6
$egin{array}{c} S_{\gamma\gamma} \ (ee ightarrow h\gamma) \end{array}$		1234	1284	1951	2082
$\mathcal{S}_{\gamma\gamma}$	selection cuts	701	754	1180	834
$ee \to h\gamma, h \to b\bar{b}$	$\rightarrow h\gamma, h \rightarrow b\bar{b}$ $\Delta M \ cut$		754	1180	834
$S_{\gamma\gamma}/\sqrt{\mathcal{B}}$		8.0	11.9	26.3	38.2

It is hard to measure the SM channel.

$\sigma(e^+e^- \to H\gamma)$ and $\Gamma(H \to Z\gamma)$

$$R_{Z\gamma} \equiv \frac{\Gamma(H \to Z\gamma)}{\Gamma_{\rm SM}(H \to Z\gamma)}$$

$$R_{\sigma} \equiv \frac{\sigma(e^+e^- \to H\gamma)}{\sigma_{\rm SM}(e^+e^- \to H\gamma)}$$

$$\mathcal{F}_{Z\gamma} \text{ only } \mathcal{F}_{\gamma\gamma} = 0$$

At CEPC (250GeV & 200fb⁻¹) For $\Lambda = 2 \text{TeV}$ $-0.027 < f_{Z\gamma} \frac{v^2}{\Lambda^2} < 0.015$ 95% bound $\mathcal{F}_{Z\gamma}^{SM} \sim 0.007$

$\sigma(e^+e^- \to H\gamma) \text{ and } \Gamma(H \to \gamma\gamma)$ $\mathcal{L} = 1000 \text{ fb}^{-1}$

$$egin{aligned} R_{\gamma\gamma} &\equiv rac{\Gamma(H o \gamma\gamma)}{\Gamma_{
m SM}(H o \gamma\gamma)} \ & \mathcal{F}_{\gamma\gamma} \ {
m only} \ & \mathcal{F}_{Z\gamma} &= 0 \end{aligned}$$

No Loose — Exclusion on HZA/HAA

The degeneracy in $\Gamma(H \rightarrow \gamma \gamma)$ can be easily resolved at CEPC (250GeV), but ~400GeV is needed for $\Gamma(H \rightarrow Z\gamma)$

Exclusion on the NP scale $c_i \sim 1$ $c_i \sim 1$ Bound on Λ (95% CL)

Both $H\gamma\gamma$ and $HZ\gamma$ present simultaneously

Red-shaded: LHC allowed $H\gamma\gamma$

Black-Dashed: 5σ Discovery contour of $e^+e^- \rightarrow H\gamma$

Summary

The $H\gamma$ production can be used to probe the NP hidden in the Higgs boson rare decay.

The degeneracy in Higgs rare decays, which cannot be tested at the HL-LHC, could be fully excluded at a high energy e+e- collider.

Thank You!