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Higgs Discovery:  
A Great Success of Anomalous Couplings

H
t t

γ

γ

g

g

H
t W±

γ

γ

g

g

Rare can tell more!



HZA/HAA and New Physics
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Higgs rare decay is sensitive to NP

HZA and HAA are correlated in MSSM-like models, 

         but they could be independent to each other.

It is important to measure both the HZA and HAA     
         anomalous couplings separately.
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Higgs Precision at a High Luminosity LHC

25

at the detector object level. These are obtained from full
simulations corresponding to current and/or upgraded AT-
LAS detector components assuming values for the number
of pile-up events per bunch crossing ranging from 40 to 200.
The theoretical uncertainties are assumed to be similar to
those used in recent analysis of the Run1 data but some of
the experimental systematic uncertainties are re-evaluated
taking into account, e.g., the expected improved background
estimates due to an increased number of events in data con-
trol regions.

Signal strength

Both experiments study expectations for the experimentally
most significant SM Higgs boson decay modes H ! gg ,
H ! ZZ ! 4`, H ! WW ! 2`2n , H ! tt , and H ! bb
but also include analyses of additional sub-modes as well
as rare decays to Zg , µµ , and invisible final states. Fig. 30
shows two examples for expected mass signals based on AT-
LAS simulations of SM Higgs boson decays to two photons
(after a VBF selection) and two muons, respectively.

The expected relative uncertainties on the signal strength
for CMS and ATLAS are shown in Table 4 and Fig. 31, in-
dicating that for the most sensitive channels, experimental
uncertainty around 5% should be reachable with 3000 fb�1.

Fig. 30 Projected (a) diphoton mass distribution for the SM Higgs
boson signal and background processes after VBF selection and (b)
background-subtracted dimuon mass distribution based on ATLAS
simulations assuming an integrated luminosity of 3000 fb�1 [130].

Combining different final states and again assuming SM branch-
ing ratios, projections on the sensitivity to individual Higgs
boson production can be obtained; the corresponding AT-
LAS results are summarised in Table 5. For 3000 fb�1, the
expected experimental uncertainties on the signal strength
range from about 4% for the dominant ggF production to
about 10% for the rare tt̄H production mode. Fig. 31 and
Table 5 also indicate the contribution of current theoretical
uncertainties, showing that reducing them further will be im-

Table 4 Relative uncertainty on the determination of the signal
strength expected for the CMS experiment for integrated luminosities
of 300 fb�1 and 3000 fb�1 [129] and the two uncertainty scenarios
described in the text.

L 300 fb�1 3000 fb�1

Scenario 2 1 2 1
gg 6% 12% 4% 8%

WW 6% 11% 4% 7%
ZZ 7% 11% 4% 7%
bb 11% 14% 5% 7%
tt 8% 14% 5% 8%
Zg 62% 62% 20% 24%
µµ 40% 42% 14% 20%

µ/µ∆
0 0.2 0.4

(comb.)

(VBF-like)

(comb.)

(incl.)

(comb.)

(comb.)

(comb.)

ATLAS Simulation Preliminary

 = 14 TeV:s -1Ldt=300 fb∫ ; -1Ldt=3000 fb∫
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Fig. 31 Relative uncertainty on the signal strength determination ex-
pected for the ATLAS experiment [128]. assuming a SM Higgs boson
with a mass of 125 GeV and 300 fb�1 and 3000 fb�1 of 14 TeV data.
The uncertainty pertains to the number of events passing the experi-
mental selection, not to the particular Higgs boson process targeted.
The hashed areas indicate the increase of the estimated error due to
current theory systematic uncertainties.
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HAA is expected to  
reach 5% accuracy 
 while HZA to 20%.



Effective Field Theory
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Degenerate scenario
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       Production at e+e- collidersH�
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The Interference between the anomalous couplings 
and the SM amplitudes can help resolving the degeneracy.



The SM cross-section is tiny

(b)

e−

e+

Z

γ

H
(e)

NP

e−

e+

γ

H

νe W

(c) (d)

e−

e+

e−
γ

H

νe
W

e−

e+

γ/Z

γ

H

W

(a)

e−

e+

γ/Z

γ

H

t

Ajouadi, et al  
NPB 491, 68  

(1997) 



The cross section of NP operators

We first consider one parameter at a time and both later.



Collider simulations
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Collider simulations

Optimal cuts are needed to suppress the huge SM backgrounds.

L = 1000 fb�1



Collider simulations

s =250 GeV
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Discovery Potential

It is hard to measure the SM channel. 

L = 1000 fb�1



and �(e+e� ! H�) �(H ! Z�)
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and �(e+e� ! H�) �(H ! ��)
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No Loose — Exclusion on HZA/HAA 

The degeneracy in                    can be easily resolved 
at CEPC (250GeV), but ~400GeV is needed for 
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Exclusion on the NP scale
ci ⇠ 1
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Both         and          present simultaneously 
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Summary
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The degeneracy in 
Higgs rare decays, 
which cannot be 
tested at the HL-LHC, 
could be fully 
excluded at a high 
energy e+e- collider.
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The         production can be used to probe the NP 
hidden in the Higgs boson rare decay.  
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Thank You!


