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Precision physics
¥ CEPC will be a precision measurement machine! 

As a Higgs factory, measuring Higgs couplings 
precisely is a major goal. 

¥ Several talks at this workshop will cover precision 
measurements. 

¥ This talk: electroweak precision (S and T 
parameters), some Higgs physics, but also 
context: what could the measurements tell us 
about what lies beyond the Standard Model?
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Consider the diagrams in Fig. 1. WeÕve already observed that the one at left is problematic: itÕs a
renormalization of an external line, so we donÕt want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12 ... ( n ! 1)
! " factors in the amplitudes weÕre trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:
�

d4⇤

(2⇥)4

�1µ (2⇤µ + kµ
1 ) J (k2, . . . kj ) · J (kj +1 , . . . kn )

(⇤2 # m2)(( ⇤ + k1)2 # m2)
. (1)

Notice that this always contributes 0 to the loop integral: �1 · k1 = 0, and the bubble integral, linear in ⇤µ ,
can only be proportional to kµ

1 , because all dependence on the other momenta factors out of the integrand.
So, we can in fact dropevery diagram with only one gluon connected on one side of a bubble. ItÕs tempting

to try to inductively turn this into a procedure for generating shamplitudes only from other shamplitudes,
not from amplitudes, but the argument doesnÕt work. It would be nice to do something more systematic
than dropping terms by hand. Is there a nice procedure that makes use of this fact?

At least for the 4-point shamplitude, it means computing it directly from Feynman diagrams only involves
summing up nine diagrams (Fig. 2). We can eliminate four of these with a convenient gauge choice.

Four-point loops from Feynman diagrams

If we want to compute the + + ++ amplitude, we can make �i · �j = 0 simply by taking �i = µ ÷! i
! µ i " for all i .

In the + + + # case, we can make�i · �j = 0 by taking �i = ! 4 ÷! i
! 4 i " for i = 1 , 2, 3 and �4 = ! 4 ÷! 1

[4 1] . Thus, we can
discard all Feynman diagrams with 4-point (2-scalar 2-gluon) vertices. The remaining diagrams are boxes,
triangles, and the bubble with two particles on each side attached at 3-gluon vertices.
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The box diagram is:
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Different-spin pieces combine 
to cancel large corrections.  

“Stop” or “scalar top”: 
cancels the biggest correction. 
~10% tuned if mass ~ 700 GeV.

To contextualize the results, IÕll begin by focusing on one 
illustrative case for what the new physics could be: stops.



LHC: Towards Fine-Tuning?

Direct searches for the superpartners are so far coming up 
empty. But lots of still-uncharted stop territory.

stops gluinos



LHC Stop Prospects
Exhausting all possibilities at the LHC requires a systematic 
search of many different channels and kinds of physics, e.g.: 

Compressed stops (see e.g. Kilic/Tweedie; An/Wang; 
Macaluso/Park/Shih/Tweedie)

÷t

øb

øs

÷bR

÷bL

øt

øs

Figure 7: The leading diagrams for stop (left) and left-handed sbottom (right) LSP decay.
A right-handed sbottom decays similarly, without the mass insertion.

will involve only the O(1) top Yukawa coupling, and, in particular, it is very easy to make one
of the stops very light. Since other non-universal terms are suppressed by Yukawa couplings
and/or CKM factors, the remaining squarks are expected to be nearly degenerate. A similar
argument applies to down-type squarks, where the bottom squark can be made light. In
the charged slepton sector, the leading non-universal term comes from they⌧ suppressed
left/right mixing, implying a nearly degenerate spectrum, except at very large tan�. The
sneutrinos will be even more degenerate, since this left/right term is absent, and the leading
non-universality comes fromy2⌧ suppressed soft-mass corrections.

Thus, it is very natural for the stop or the sbottom to be the LSP. A stau (or tau
sneutrino) LSP, however, typically implies a nearly degenerate spectrum, and is somewhat
less natural in this context. Other squarks or sleptons are not likely to be the LSP.

Since the largest R-parity violating operator is in the quark sector, the most interesting
scenario is when the LSP is the stop or the sbottom. We consider the stop LSP case in
detail. The direct decay of the stop is given by the diagram in Fig. 7. The partial widths
�(÷t ! ødi

ødj ) are given by

�ij ⇠ m
˜t

8⇡
sin2 ✓

˜t |�
00
3ij |2 , (7.2)

where ✓
˜t is the stop mixing angle. To estimate the lifetime numerically, we use the renor-

malized quark masses at a scalemt ⇠ v ⇠ 174 GeV, which are approximately [36,37]:

mu ⇠ 1.2 MeV , mc ⇠ 600 MeV , mt ⇠ v ⇠ 174 GeV,

md ⇠ 3 MeV , ms ⇠ 50 MeV , mb ⇠ 2.8 GeV , (7.3)

Using these masses to compute the relevant Yukawa couplings, we Þnd a lifetime

⌧
˜t ⇠ (2 µm)

✓
10

tan �

◆
4

✓
300 GeV

m
˜t

◆✓
1

2 sin2 ✓
˜t

◆
. (7.4)

Thus no displaced vertices are expected except for very small values of tan� and a very light
LSP. The decay length of the stop LSP is shown in Fig. 8.

Note that in this case one does not expect a large number of top quarks in the Þnal state,
nor, of course, any missing energy. Roughly 90% of decays will go to bottom and strange
quarks, about 8% to bottom plus down, and a few percent to down plus strange. These
branching ratios are Þxed by the ßavor structure. Thus, most of the events will contain
b-quarks, and a generic signal for supersymmetry will be an overall increase in the number
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R-parity violating stops:

Decay to hidden sector (e.g. stealth SUSY): 
(Fan/Krall/Reece/É to appear)

Natural SUSY?
Stealth SUSY gives us a new set of simplified models to 
consider for how a natural stop signal could arise:STOPS IN STEALTH SUSY

Some notes on the SHu Hd model

Matthew Reece

Department of Physics, Harvard University, Cambridge, MA 02138, USA

August 18, 2013
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Figure 1: Stop decay.

One step in this project is to understand bounds on squark/ higgsino/ singlet and gluino/ squark/ higgsino/ singlet
simplified models. The first part of this step is to understand the mass spectrum and decays for just higgsinos and
the singlino/ singlet fields. Among the questions we want to answer are:

¥ What are the branching ratios for H̃ 0
1 " S̃ + Z and H̃ 0

1 " S̃ + h? (Presumably ! is suppressed)?

¥ Does the charged Higgsino decay as H̃ ± " W ± ! H̃ 0
1 , or does it prefer to decay to S̃ + W ± ? The former is phase-

space suppressed and the latter is suppressed by a small coupling. How small does the coupling have to be
for these to be comparable decay widths?

¥ Then there’s the analogous question about the heavier neutral Higgsino H̃ 0
2 .

1

In stealth SUSY models, the signal of stops might be tops + 
extra jets (possibly with weak bosons). Also 1st, 2nd gen 
squarks: many-jet events, possibly with weak bosons.

(off shell?)

(Limits already exist by recasting: J. Fan, R. Krall, D. Pinner, MR, J. Ruderman, work in progress)

It’s important to look for these scenarios at the LHC to make 
sure we’re not overlooking an important signal. 
!

Higgsinos may also be in the decay chain for tree-level 
naturalness.

Despite our best efforts, gaps can and likely will remain 
in LHC direct search coverage.



Indirect Observables
The same physics that is relevant for naturalnessÑcouplings 
to the Higgs bosonÑcan enter in loops to produce 
modiÞcations of Standard Model electroweak observables.

S parameter:

T parameter:

Higgs decays:

S
!

!
4sW cW v2

"
h  " i hW i

µ ! B µ !

! T
!

2↵
v2

" #
#h†Dµh

#
#2

chgg h  hGa
µ ! Gaµ ! + ch"" h  hFµ! F µ !



Stops: T Parameter
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Figure 1 . Loop diagrams contributing to the T parameter operator
!
h  D µ h

" 2
when the left-handed

stop/sbottom doublet ÷Q3 and the right-handed stop ÷tR = (÷uc
3)  are integrated out.

The Xt dependent part of the correction depends on the subtlety in the use of our e! ective oblique
Lagrangian eq. 2.3 that we mentioned above: the strict relation between S and the coe" cient of
h†W iµ⌫�ihBµ⌫ applies only if we first rewrite all operators in a minimal basis [39, 46]. The third

loop diagram of Fig. 2 generates di! erent operators like i@⌫Bµ⌫h
†

$
Dµh which may be rewritten using

integration by parts and equations of motion and also contribute to S. Note that a similar diagram
with a bubble topology connecting a gauge boson on one side and two Higgs bosons on the other
(which can be obtained by removing one of the vector bosons from the left most diagram in Fig. 2)
cannot be sensitive to the di↵erence in momenta of the Higgs bosons, and so never generates the
operators in question. The fact that integrating out heavy particles often generates operators that are
not present in the minimal basis was also recently emphasized in ref. [47, 48].
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Figure 2 . Loop diagrams contributing to the S parameter. The two diagrams at left generate the usual
operator h  W iµ ! ! i hB µ ! when the left-handed stop/sbottom doublet ÷Q3 and the right-handed stop ÷tR = (÷uc

3) 

are integrated out. The diagram at right generates the operators i " ! Bµ ! h 
$

D µ h and iD ! W i
µ ! h  ! i

$
D µ h, which

also contribute to S after being rewritten in terms of the minimal basis of dimension-six operators.

Notice that the S parameter contribution from loops of stops and sbottoms is small and, for small
Xt, negative. The T parameter contribution is numerically somewhat larger and positive. In both
cases, the dominant contribution is due to the left-handed stops and sbottoms, with their right-handed
counterparts entering through mixing e! ects. As a result, we expect that precision measurements of
the T parameter can set interesting constraints on left-handed stops. (For a recent study of existing
constraints, see ref. [49].)
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A Higgs quartic coupling! These are the same 
diagrams that lift the Higgs mass in the MSSM, except 
that we are reading off subleading momentum 
dependence: D! 2/mstop2 ~ mZ2/mstop2. 

allowed. In particular, for non-zero X t , the region around|m2
÷t 1

! m2
÷t 2

| " 0 may not be obtainable from
the diagonalization of a Hermitian stop mass matrix [32].

The sbottom sector has a similar mass matrix withmt replaced by mb, m ÷d3
replacing m÷u 3 , and

the appropriately modiÞed D-terms. Generally we can neglect mixing in the sbottom sector because
mb # mt . The mass of the left-handed sbottomm2

÷b1
could be written in terms of the stop physical

masses and mixing angle as

m2
÷b1

= cos2 ✓÷t m
2
÷t 1

+ sin 2 ✓÷t m
2
÷t 2

! m2
t ! m2

W cos(2�). (2.2)

In the higgsino sector, there are two neutral Majorana fermions and one charged Dirac fermion,
with masses approximately equal toµ. The splittings originate from dimension Þve operators when
the bino and wino are integrated out, and are of orderm2

Z /M 1,2. We will ignore these splittings and
treat all higgsino masses as equal toµ for the purpose of calculating loop e↵ects.

2.2 Electroweak Precision: Oblique Corrections

The familiar S and T oblique parameters [33, 34] (see also [35Ð37]) correspond, in an e↵ective operator
language (reviewed in ref. [38, 39]), to adding to the Lagrangian

L oblique = S
✓

↵

4 sin✓W cos✓W v2

◆
h†W iµ ⌫�i hBµ⌫ ! T

✓
2↵
v2

◆ ��h†Dµ h
��2 . (2.3)

Hereh is the Standard Model Higgs doublet andv $ 246 GeV; in the MSSM context it may be thought
of as the doublet that remains after integrating out the linear combination of Hu and Hd that does not
obtain a VEV. The often-discussedU parameter corresponds to a dimension-8 operator,

�
h†W iµ ⌫h

�2
,

and we can safely neglect it. In equatingS and T with coe�cients in L oblique , we must Þrst rewrite
the Lagrangian (using equations of motion and integration by parts) in terms of a minimal basis of

operators [40]. Other operators like i@⌫Bµ⌫h†
$

D µ h will contribute to the S parameter if we leave the
result in terms of an overcomplete basis. We will see some examples below in which a straightforward
diagrammatic calculation leads to operators not present in the minimal basis.

Integrating out any SU(2) L multiplet containing states that are split by electroweak symmetry
breakingÑfor instance, the left-handed doublet of stops and sbottomsÑwill produce a contribution
to S. The masses must additionally be split by custodial symmetry-violating e↵ects to contribute to
T. In the case of the stop and sbottom sector we have both, andT is numerically dominant [41]. The
diagrams leading to aT-parameter are shown in Fig.1. There are terms proportional to y4

t , to y2
t X 2

t ,
and to X 4

t . These diagrams are very familiar from the loop corrections to the Higgs quartic coupling
that can lift the MSSM Higgs mass above theZ -mass [42Ð45]. The only di↵erence forT is that we
extract momentum-dependent terms to obtain the dimension-six operator. The result is:

T $
m4

t

16⇡ sin2 ✓W m2
W m2

÷Q 3

+ O

 
m2

t X 2
t

4⇡m2
÷Q 3

m2
÷u 3

!
. (2.4)

The diagrams generating theS-parameter are shown in Fig.2. Notice that in order for the Þrst
diagram to contribute, it is important that the SU(2) L structure of the coupling is

⇣
h á ÷Q3

⌘⇣
h† á ÷Q†

3

⌘

rather than ( h†h)( ÷Q†
3

÷Q3), as the latter would lead to a zero SU(2)L trace around the loop. As a result,
the F -term potential contributes % y2

t and the SU(2)L D-term potential contributes % g2, but there
is no U(1)Y D-term contribution % g02. The leading correction is

S $ !
1

6⇡
m2

t

m2
÷Q 3

+ O

 
m2

t X 2
t

4⇡m2
÷Q 3

m2
÷u 3

!
. (2.5)

Ð 4 Ð



The S Parameter
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$
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D µ h, which

also contribute to S after being rewritten in terms of the minimal basis of dimension-six operators.

Notice that the S parameter contribution from loops of stops and sbottoms is small and, for small
Xt, negative. The T parameter contribution is numerically somewhat larger and positive. In both
cases, the dominant contribution is due to the left-handed stops and sbottoms, with their right-handed
counterparts entering through mixing e! ects. As a result, we expect that precision measurements of
the T parameter can set interesting constraints on left-handed stops. (For a recent study of existing
constraints, see ref. [49].)

– 5 –

The diagram on the right, at Þrst glance, doesnÕt seem to 
generate the right operator. In fact, it generates

i@⌫Bµ⌫h
†

$
Dµh

But if we work with a minimal basis of operators, equations of 
motion turn this into a linear combination including the S 
parameter.



Why Focus on S, T ?

parameter space, it depends on a combinationAt µ tan ! /m 4

˜t , and so results in a weaker constraint on
At when tan! is small. This has interesting implications for the heavy Higgs bosons of the 2HDM,
H 0, A0, and H ±, which should not be too heavy [17, 70] and may have interesting e↵ects of their own
on precision observables [58, 71]. As we will discuss in Sec. 7.1, it could be the main sensitive probe
to the Òblind spotÓ region.

Charginos and neutralinos have relatively small e↵ects on the observables we have mentioned so
far. This is largely because they have dominantly vectorlike masses and sensitivity to SU(2)L breaking
through the Higgs is a small e↵ect. On the other hand, integrating out higgsinos or winos will always
generate the triple gauge coupling operatorcW W W g"ijk W i

µ ! W j !
" W k" µ . Unfortunately, the coe�cient

generated by integrating out an SU(2)L multiplet is small [ 72]:

cW W W =
g2

2880#2

!

rep R, mass M

(! 1)F T(R)
M 2

, (2.20)

where T(R) is the Dynkin index of the representation and the sum is over Weyl fermions for which
F = 1 and complex scalars for whichF = 0. (That the e ↵ect of a complex scalar and that of a Weyl
fermion cancel for equal masses is a result of a supersymmetric Ward identity [73].) Expected bounds
from the ILC are expressed in terms of dimensionless coe�cients $# and $Z , which are both equal
to 6m2

W cW W W . The ILC can bound the coe�cient at 1%to be |$#,Z | "< 6 # 10! 4 with 500 fb! 1 at
$

s = 500 TeV or half that with 1 ab ! 1 at
$

s = 800 GeV [23, 74]. Even for the bound assuming
higher energy and luminosity, this does not probe wino or higgsino (or left-handed stop) masses above
100 GeV.

Similarly, any particles with SU(2) L quantum numbers contribute above threshold to the run-
ning of gauge couplings. At future very high energy protonÐproton colliders this might be detected
with precision Drell-Yan measurements [75]. At an e+e! collider it would be di�cult, but if the
collider attains high luminosities at energies near 1 TeV it may be possible to probe running. There
is also a Òbelow-threshold running e↵ectÓ arising from the operatorcJJ D µ W i

µ ! D$ W i $! , which has
coe�cient [72]

cJJ = !
g2

960#2

!

rep R, mass M

aF
T(R)
M 2

, (2.21)

where aF = 4 for Weyl fermions and 1 for complex scalars. By the equation of motion,Dµ W iµ ! =
! gJi ! , where J i ! is the SU(2)L current, so this operator is a currentÐcurrent interaction that may be
thought of as a power-law (p2/M 2) running of the gauge coupling below the scaleM . In the usual QED
calculation of vacuum polarization, one obtains an expression like

"
1

0

dx x(1 ! x) log(M 2 ! p2x(1 ! x))
and expands for! p2 % M 2 to obtain logarithmic running. This operator is simply the corresponding
result if we expand for M 2 % p2. Again, it will be di �cult to obtain interesting constraints from this
operator simply because the number in the denominator is so large.

2.7 Comments on the Use of E↵ective Field Theory

In the remainder of the paper we will use formulas forS, T, and Rb originating in refs. [41, 52] and
presented in AppendixA. These include complete loop functions based on the original Peskin-Takeuchi
deÞnitions ofS and T in terms of gauge boson vacuum polarizations, allowing for arbitrary stop-sector
mixing. In particular, nontrivial functions of ratios like mt X t /m 2

ũ 3
, if expanded in powers of the Higgs

VEV, may e↵ectively come from operators of dimension higher than 6 in an EFT treatment. In
this sense, the full loop functions include e↵ects of higher order than the operator analysis we have

Ð 10 Ð

Any SU(2)L-charged particles, coupling to the Higgs or not, 
contribute at one loop to two other dimension-6 operators:
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with precision Drell-Yan measurements [75]. At an e+e! collider it would be di" cult, but if the
collider attains high luminosities at energies near 1 TeV it may be possible to probe running. There
is also a Òbelow-threshold running e! ectÓ arising from the operatorcJJ D µ W i

µ ! D$ W i $! , which has
coe" cient [72]

cJJ = !
g2

960#2

!

rep R, mass M

aF
T(R)
M 2

, (2.21)

where aF = 4 for Weyl fermions and 1 for complex scalars. By the equation of motion,Dµ W iµ ! =
! gJi ! , where J i ! is the SU(2)L current, so this operator is a currentÐcurrent interaction that may be
thought of as a power-law (p2/M 2) running of the gauge coupling below the scaleM . In the usual QED
calculation of vacuum polarization, one obtains an expression like

"
1

0

dx x(1 ! x) log(M 2 ! p2x(1 ! x))
and expands for! p2 % M 2 to obtain logarithmic running. This operator is simply the corresponding
result if we expand for M 2 % p2. Again, it will be di " cult to obtain interesting constraints from this
operator simply because the number in the denominator is so large.

2.7 Comments on the Use of E ! ective Field Theory

In the remainder of the paper we will use formulas forS, T, and Rb originating in refs. [41, 52] and
presented in AppendixA. These include complete loop functions based on the original Peskin-Takeuchi
deÞnitions ofS and T in terms of gauge boson vacuum polarizations, allowing for arbitrary stop-sector
mixing. In particular, nontrivial functions of ratios like mt X t /m 2

ũ 3
, if expanded in powers of the Higgs

VEV, may e! ectively come from operators of dimension higher than 6 in an EFT treatment. In
this sense, the full loop functions include e! ects of higher order than the operator analysis we have
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parameter space, it depends on a combination Atµ tan ! /m4

˜t , and so results in a weaker constraint on
At when tan ! is small. This has interesting implications for the heavy Higgs bosons of the 2HDM,
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(�1)F T (R)

M2

, (2.20)

where T (R) is the Dynkin index of the representation and the sum is over Weyl fermions for which
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cW W W g! ijk W i
µ ! W j !

" W k" µ

cJJ D µ W i
µ ! D" W i "!

Unfortunately, their perturbative coefÞcients are very small. 
(Could be lucky to have many new degrees of freedom?)

cU
�
h†�ihW iµ⌫

�2
The U parameter is dimension 8:

ÒW parameterÓ

ÒTGCÓ
�� = �Z
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Figure 4 . Loop diagrams contributing to the correction to the Higgs coupling to gluons, via the operator
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to gluons, via diagrams like those of Fig. 4. The leading order contribution could be computed easily
via the low energy Higgs theorem [60, 61]
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, stop contribution to hgg coupling (2.13)

where we neglect D -terms. The low-energy theorem essentially upgrades the log(M threshold ) terms
that appear when integrating out a heavy mass threshold to field-dependent terms, viewing M threshold

as a function of a variable higgs VEV. The resulting expression is valid for m÷t 1, 2 $> mh / 2, which we
will assume is always true. A loop of light stops will also generate a smaller contribution to the Higgs
diphoton coupling, which is anti-correlated to r ÷t

G

r ÷t
! !

c÷t
h!!

cSM
h!!

=
A !

÷t

(A !
W + A !

t )
SM " # 0.28r ÷t

G , (2.14)

using A !
W " 8.33 and A !

t " # 1.84, the amplitudes of h % !! in the SM, valid for mh = 125 GeV.
One could see that the more natural the stop parameter space is, the larger the modification is [58].
Except for the special case of colorless stop, the strongest limit on the stop always comes from the
measurement of hgg coupling.

Corrections to ! (h % Z ! ) play a similar role as those for ! (h % !! ), but we find that they are nu-
merically less important. Similarly, corrections to the Higgs coupling to Z bosons play a subdominant
role because they compete with the large tree-level coupling.

2.5 Wavefunction Renormalization

Recently ref. [62] has emphasized that any new physics which couples to the Higgs will induce a wave-
function renormalization of the Higgs boson, arising from the dimension-six kinetic term " µ |h|2 " µ |h|2

(also see [63, 64]). This is an interesting observation, because it opens up the possibility of probing
naturalness even in scenarios where the quadratic divergence in the Higgs mass is canceled by particles
without Standard Model quantum numbers, which are otherwise hard to probe. We have generalized
the calculation of this correction from ref. [63] to allow for mixing between the two stops. We write
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Familiar low-energy theorem: beta function coefÞcients 
times X @ logM

@ log v Similar result for photons (except SM 
contribution dominated by W loop)



Electroweak Fit

CEPC ELECTROWEAK OBLIQUE PARAMETER FIT 105

4.2 CEPC Electroweak Oblique Parameter Fit

Based on the latest estimates of the experimental capabilities of CEPC, we estimate the
precision that can be obtained in a fit of the electroweak parameters S and T [19, 20].
These parameters describe the gauge boson self-energies and are very sensitive to physics
beyond the SM, especially when the new physics addresses the Higgs sector. Thus, one
expects them to be affected in almost any TeV scale scenario. Table 4.5 presents the as-
sumed experimental uncertainties that enter into the fit. The numbers in boldface represent
measurements performed by CEPC. Other improvements between the current uncertain-
ties and those that will be available when CEPC runs will result from LHC measurements
of the top quark, lattice QCD calculations, and perturbative Standard Model calculations.
A thorough discussion of the prospects for these improvements and the rationale behind
the choices made in the table may be found in Ref. [21]. Readers seeking a more general
review of the status of electroweak precision should consult Ref. [22].

Present data CEPC fit
↵s(M2

Z) 0.1185 ± 0.0006 [23] ± 1.0 ⇥ 10

�4 [24]
�↵(5)

had(M
2
Z) (276.5 ± 0.8) ⇥ 10

�4 [25] ± 4.7 ⇥ 10

�5 [26]
mZ [GeV] 91.1875 ± 0.0021 [27] ± 0.0005

mt [GeV] (pole) 173.34 ± 0.76exp [28] ± 0.5th [26] ± 0.2exp± 0.5th [29, 30]
mh [GeV] 125.14 ± 0.24 [26] < ± 0.1 [26]
mW [GeV] 80.385 ± 0.015exp [23]± 0.004th [31] (± 3exp ± 1th ) ⇥ 10

�3 [31]
sin

2 ✓!
e! (23153 ± 16) ⇥ 10

�5 [27] (± 2.3exp ± 1.5th ) ⇥ 10

�5 [32]
�Z [GeV] 2.4952 ± 0.0023 [27] (± 5exp ± 0.8th ) ⇥ 10

�4 [33]
Rb ⌘ �b/�had 0.21629 ± 0.00066 [27] ± 1.7 ⇥ 10

�4

R! ⌘ �had/�! 20.767 ± 0.025 [27] ± 0.007

Table 4.5 Inputs to the electroweak fit of the oblique parameters S and T . The oblique parameters and
the first five observables in the table float freely in the fit, and determine the values of the remaining five.
We find that Rb and R! have minimal effect on the fit of oblique parameters. We quote the precisions of
current and CEPC measurements as well as the current central values. Theory uncertainties are provided
only when they are nonnegligible and are not already incorporated in the quoted experimental uncertainty.
Boldface numbers represent measurements that will be performed at CEPC.

We have included sin

2 ✓!
e! as an observable in the fit, although it will itself result from

a fit of several other parameters, including A0,b
FB , A ! , and A0,!

FB . A detailed assessment of
each of these individual inputs has not yet been performed for CEPC, so we include only
the estimated precision that can be achieved on the combination sin

2 ✓!
e! . Similarly, other

observables like �had will ultimately play a role in CEPC precision tests, but we omit them
until future experimental studies provide precise uncertainty estimates.

We have performed a fit to the oblique parameters S and T under the assumption that
U = 0. Given that a weakly-coupled Higgs boson has been discovered, S and T result
from dimension six operators,

OS ⌘ h†W µ" hBµ" , (4.4)

OT ⌘
��h†Dµh

��2
, (4.5)

Numbers in boldface: major CEPC inputs to the electroweak 
precision Þt.
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whereas U would arise from a dimension eight operator [34]. This provides a strong
theoretical prior that U ! S, T and justifies our focus on only two oblique parameters.
The fit presented here is a profile likelihood: the free parameters are varied to maximize
the likelihood for given S and T . This differs from marginalizing, when various values of
the free parameters are integrated with respect to some prior probability distribution. The
profile likelihood gives slightly more conservative bounds.

The result of the fit for S and T is depicted in Fig. 4.1. For ease of comparison of the
bounds, we have artificially displaced the input central values to agree with the predicted
values so that S = T = 0 will be the best-fit point. Both 68% C.L. and 95% C.L.
uncertainty contours are presented (i.e., ! �2

= 2.30 and 6.18). Relative to the current
electroweak precision results (dominated by LEP and the SLC together with the improved
measurement of mW from hadron colliders), the results of CEPC will shrink the error bars
on S and T by a factor of about 3.

-!"# -!"$ !"! !"$ !"#
-!"#

-!"$

!"!

!"$

!"#

S

T

%&'()*+,'-. /0)1 S -23 T 45&067' 8-*-9')'*:

Current (95%)
Current (68%)
CEPC (95%)
CEPC (68%)

Figure 4.1 CEPC constraints on the oblique parameters S and T , compared to the current constraints.

CEPC �Z(mZ) [GeV] mt [GeV]
Improved Error (±1

exp

± 0.8
th

) " 10�4 (±0.0001) ±0.03
exp

± 0.1
th

Table 4.6 Potential improvements for CEPC measurements. The Z width measurement (and the Z mass)
may be improved by better energy calibration. A precise top mass measurement requires a scan of the tt̄
threshold, and thus a larger collision energy than current CEPC plans.

It is possible that the current baseline plan for CEPC can be improved upon by high-
er luminosity runs, better calibration, or higher beam energy. Table 4.6 lists possible
improvements. The Z width measurement will require a high-precision calibration of the
beam energy, which is made possible at circular colliders by the technique of resonant spin
depolarization [27]. The same technique could also improve mZ ’s precision. We consid-

Even with conservative estimates, CEPC will provide a 
substantial improvement over existing data.
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Figure 4.4 First row: allowedT (left) andS (right) at 95% C.L. as a function of error bar of one observable
(normalized with respect to its current value) with the precisions of all the other observables in the Þt Þxed
at current values. Second row: contours of allowedT at 95% C.L. in the(�mt, �mZ) plane for�mW = 5
MeV (left) and 1 MeV (right). Again the precisions of all other observables in the Þt Þxed at current values.
Last row: left plot: contours of allowedS at 95% C.L. in the(�mt, �mZ) plane for� sin2 ✓`

e↵

= 10�5 (left)
; right plot: allowedT at 95% C.L. as a function of the error bar of�↵(5)

had

normalized to its current value
Þxing�mW = 1 MeV, �mt = 20 MeV and�mZ = 0.1 MeV. (From ref. [21].)

changing the error bar of only one or two observables at each step. For this section, we
will consider two limits withS = 0 or T = 0 and consider only the bound onT or S.

Among all electroweak observables,mW is the one that is most sensitive to theT
parameter andsin2 ! !

e! is the one most sensitive to theS parameter. This is demonstrated
by the plots in the Þrst row of Fig.4.4, where we presented the dependence ofT setting
S = 0 (left panel) andS settingT = 0 (right panel) on four observables:mW , sin2 ! !

e! , ! Z

andmt. Keeping the other observables with the current precisions, the allowedT at 95%
C.L. will decrease by a factor of 3 if themW error bar is reduced from the current value
15 MeV to 3 MeV, the CEPC projection, while the allowedS at 95% C.L. will decrease

If we only improved one input to Þt at a time, hit limits:

W mass is priority for measuring T. 
sin2𝜃W is priority for measuring S



Role of Top and Z Mass 
for T Parameter

S= 0

! W !solid"

sin2 qeff !Dashed"

Gz !Dotted"

! " !Dot-Dashed"

0.2 0.4 0.6 0.8 1.
-0.08

-0.06

-0.04

-0.02

0.

0.02

0.04

0.06

0.08

d

dnow

T

T ! 0

! W !solid"

sin2 "eff !Dashed"

#z !Dotted"

! " !Dot$Dashed"

0.2 0.4 0.6 0.8 1.
$ 0.08

$ 0.06

$ 0.04

$ 0.02

0.

0.02

0.04

0.06

0.08

%

%now

S

T ! 0.03
T ! 0.025

T ! 0.023

"mW ! 5 MeV, S ! 0

0.01 0.1 1.0

0.1

1.0

2.0

"mt !GeV"

"m
z

!M
eV

"

T ! 0.025

T ! 0.012

T ! 0.0085

T ! 0.0082

"mW ! 1 MeV, S ! 0

0.01 0.1 1.0

0.1

1.0

2.0

"mt !GeV"

"m
z

!M
eV

"

S= 0.02

S= 0.0166

dsin2qeff = 10-5, T = 0

0.01 0.1 1.0

0.1

1.0

2.0

d! " !GeV"

d!
#

!M
eV

"

! ! W " 1 MeV, ! ! " " 20MeV

! ! Z " 0.1MeV, S " 0

0.2 0.4 0.6 0.8 1.
# 0.01

# 0.0075

# 0.005

# 0.0025

0.

0.0025

0.005

0.0075

0.01

! H$%hadLê! now

T

Figure 5 . First row: allowed T (left) and S (right) at 2 ! C.L. as a function of error bar of one observable
(normalized with respect to its current value) with the precisions of all the other observables in the Þt Þxed
at current values. Second row: contours of allowed T at 2 ! C.L. in the ( "mt , "mZ ) plane for "mW = 5 MeV
(left) and 1 MeV (right). Again the precisions of all other observables in the Þt Þxed at current values. Last
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e! = 10 ! 5 (left) ; right plot:
allowed T at 2! C.L. as a function of the error bar of ! $ (5)

had normalized to its current value Þxing "mW = 1
MeV, "mt = 20 MeV and "mZ = 0.1 MeV.
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At left: 5 MeV error on W mass. At right: 1 MeV error. 
Top/Z masses play much larger role once W error is very 
small. If error stuck at 5 MeV, limited improvement.
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Again, all the ingredients help, but Þrst must achieve 
sufÞcient precision on crucial numbers like mW and sin2𝜃W.



A Wish List

• Measure mW to better than 5 MeV (now 15 MeV) and 
sin2𝜃W to better than 2×10-5 (now 16×10-5)

• Measure mZ to 500 keV precision (now 2 MeV)

¥ Measure mt to 100 MeV precision (now ~0.8 GeV*) 

¥ Have precise enough theory to make use of these 
results: at least 3-loop calculations (Ayres FreitasÕs talk)

Of course, we want the best measurements possible of 
many quantities. But here are reasonable goals to probe 
loops of ~TeV particles. CEPC will deliver what’s in bold.
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er the possibility that this width and mass can be measured to an experimental precision
comparable to the theoretical uncertainty of about 0.1 MeV. The top mass improvement
requires a significant experimental effort. It will either rely on input from another collider
like the ILC with higher beam energy, or a significant boost in the CEPC energy to scan
the top pair production threshold. Such an energy upgrade would significantly improve
the ultimate bound attained on the T parameter. We show the result of such improvements
in Fig. 4.2. The figure illustrates first the effect of improving ! Z together with mZ (which
improves the bounds on S and T comparably), and then the effect of additionally improv-
ing the top mass (which constrains T somewhat more strongly than S). From this plot
it is apparent that upgrades to the initial CEPC plan potentially offer significant physics
benefits and deserve further consideration.

! !"!# ! !"!$ !"!! !"!$ !"!#
! !"!#

! !"!$

!"!!

!"!$

!"!#

!

"

%&'()*+,'-. /0)1 ! -23 " 45&067' 8-*-9')'*:

!"#! $%&'()*' !+, "#
-./012'3 Γ! !+, "#

-./012'3 Γ! 4! " !+, "#

Figure 4.2 CEPC constraints on the oblique parameters S and T , for the baseline scenario and two
possible improvements. At left we show the current bound, the CEPC baseline, and one improved scenario.
At right we zoom in and show the CEPC baseline and two different improved scenarios. Notice that the
axes of this plot have zoomed in by a factor of 5 compared to those of Fig. 4.1. For clarity we show only
68% C.L. (! ! 2 = 2 .30) constraints.

Table 4.7 summarize the physics reach by quoting the 68% C.L. bound on S assuming
that T is zero, and vice versa. These are one-parameter fits (corresponding to " ! 2 = 1 ).

Parameter Current CEPC baseline Improved " Z (and mZ) Also improved mt

S 3.6 ! 10! 2 9.3 ! 10! 3 9.3 ! 10! 3 7.1 ! 10! 3

T 3.1 ! 10! 2 9.0 ! 10! 3 6.7 ! 10! 3 4.6 ! 10! 3

Table 4.7 Current and CEPC projected one-parameter bounds on S and T (in each case, assuming that
the other is zero).

4.2.1 The Precision Challenge for Theorists

The estimates of CEPC prospects above assumed an improvement in theoretical uncer-
tainties relative to the current status. Theory uncertainties quoted for mW , sin2 " !

e! , and
! Z in the “CEPC fit” column of Table 4.5 are based on the size of estimated four-loop
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whereasU would arise from a dimension eight operator [34]. This provides a strong
theoretical prior thatU ! S, T and justiÞes our focus on only two oblique parameters.
The Þt presented here is a proÞle likelihood: the free parameters are varied to maximize
the likelihood for givenS andT. This differs from marginalizing, when various values of
the free parameters are integrated with respect to some prior probability distribution. The
proÞle likelihood gives slightly more conservative bounds.

The result of the Þt forS andT is depicted in Fig.4.1. For ease of comparison of the
bounds, we have artiÞcially displaced the input central values to agree with the predicted
values so thatS = T = 0 will be the best-Þt point. Both 68% C.L. and 95% C.L.
uncertainty contours are presented (i.e.,! ! 2 = 2.30 and6.18). Relative to the current
electroweak precision results (dominated by LEP and the SLC together with the improved
measurement ofmW from hadron colliders), the results of CEPC will shrink the error bars
onS andT by a factor of about 3.

Figure 4.1 CEPC constraints on the oblique parametersS andT, compared to the current constraints.

CEPC ! Z (mZ ) [GeV] mt [GeV]

Improved Error (± 1exp ± 0.8th ) " 10! 4 (± 0.0001) ± 0.03exp ± 0.1th

Table 4.6 Potential improvements for CEPC measurements. TheZ width measurement (and theZ mass)
may be improved by better energy calibration. A precise top mass measurement requires a scan of thetøt
threshold, and thus a larger collision energy than current CEPC plans.

It is possible that the current baseline plan for CEPC can be improved upon by high-
er luminosity runs, better calibration, or higher beam energy. Table4.6 lists possible
improvements. TheZ width measurement will require a high-precision calibration of the
beam energy, which is made possible at circular colliders by the technique of resonant spin
depolarization [27]. The same technique could also improvemZ Õs precision. We consid-

Improving the Z width 
measurement requires a 
better energy calibration. 
Improving the top mass 
measurement requires an 
e+e- collider threshold 
scan. (Beyond CEPC 
energy plans.)
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er the possibility that this width and mass can be measured to an experimental precision
comparable to the theoretical uncertainty of about 0.1 MeV. The top mass improvement
requires a signiÞcant experimental effort. It will either rely on input from another collider
like the ILC with higher beam energy, or a signiÞcant boost in the CEPC energy to scan
the top pair production threshold. Such an energy upgrade would signiÞcantly improve
the ultimate bound attained on theT parameter. We show the result of such improvements
in Fig. 4.2. The Þgure illustrates Þrst the effect of improving! Z together withmZ (which
improves the bounds onS andT comparably), and then the effect of additionally improv-
ing the top mass (which constrainsT somewhat more strongly thanS). From this plot
it is apparent that upgrades to the initial CEPC plan potentially offer signiÞcant physics
beneÞts and deserve further consideration.
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possible improvements. At left we show the current bound, the CEPC baseline, and one improved scenario.
At right we zoom in and show the CEPC baseline and two different improved scenarios. Notice that the
axes of this plot have zoomed in by a factor of 5 compared to those of Fig.4.1. For clarity we show only
68% C.L. (! ! 2 = 2 .30) constraints.

Table4.7summarize the physics reach by quoting the 68% C.L. bound onS assuming
thatT is zero, and vice versa. These are one-parameter Þts (corresponding to" ! 2 = 1).

Parameter Current CEPC baselineImproved" Z (andmZ ) Also improvedmt

S 3.6 ! 10! 2 9.3 ! 10! 3 9.3 ! 10! 3 7.1 ! 10! 3

T 3.1 ! 10! 2 9.0 ! 10! 3 6.7 ! 10! 3 4.6 ! 10! 3

Table 4.7 Current and CEPC projected one-parameter bounds onS andT (in each case, assuming that
the other is zero).

4.2.1 The Precision Challenge for Theorists

The estimates of CEPC prospects above assumed an improvement in theoretical uncer-
tainties relative to the current status. Theory uncertainties quoted formW , sin2 " !

e! , and
! Z in the ÒCEPC ÞtÓ column of Table4.5 are based on the size of estimated four-loop

Results at " 𝜒2 =1
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the top pair production threshold. Such an energy upgrade would signiÞcantly improve
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ing the top mass (which constrainsT somewhat more strongly thanS). From this plot
it is apparent that upgrades to the initial CEPC plan potentially offer signiÞcant physics
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Table4.7summarize the physics reach by quoting the 68% C.L. bound onS assuming
thatT is zero, and vice versa. These are one-parameter Þts (corresponding to" ! 2 = 1).

Parameter Current CEPC baselineImproved" Z (andmZ ) Also improvedmt

S 3.6 ! 10! 2 9.3 ! 10! 3 9.3 ! 10! 3 7.1 ! 10! 3

T 3.1 ! 10! 2 9.0 ! 10! 3 6.7 ! 10! 3 4.6 ! 10! 3

Table 4.7 Current and CEPC projected one-parameter bounds onS andT (in each case, assuming that
the other is zero).

4.2.1 The Precision Challenge for Theorists

The estimates of CEPC prospects above assumed an improvement in theoretical uncer-
tainties relative to the current status. Theory uncertainties quoted formW , sin2 " !

e! , and
! Z in the ÒCEPC ÞtÓ column of Table4.5 are based on the size of estimated four-loop

The CEPC would provide 
order-of-magnitude 
improvement over the 
current results from LEP, 
Tevatron, and LHC.
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Figure 4.6 Loop diagrams contributing to theT parameter operator
!
h  Dµh

"2
when the left-handed

stop/sbottom doublet÷Q3 and the right-handed stop÷tR = (÷uc
3)  are integrated out.

Again, the right-handed stops contribute only via mixing effects.
Loops of stops and higgsinos modify other observables that will be measured as part of

the CEPC electroweak precision programme, such as theZ partial decay width tobquarks
(Rb), but these turn out to give weak constraints. The coupling of Higgs bosons to pho-
tons and gluons are also modiÞed by loops of stops, and these give important constraints
summarized in the Higgs section of the CDR. In Fig.4.7 we show the expected reach of
CEPC electroweak precision constraints on theS andT parameter and of CEPC Higgs
coupling measurements on stop masses. The two measurements are comparably strong
and will probe stop masses near the TeV scale.
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Figure 4.7 CEPC electroweak precision constraints on stops. Here we present the unmixed case,X t = 0 .
The horizontal and vertical axes gives the mass of the left- and right-handed stops. The region to the left of
the orange lines will be excluded by CEPC constraints on theS andT parameters. The solid, dashed, and
dotted orange lines correspond to the three scenarios from Fig.4.2. The region below and to the left of the
purple curve is expected to be excluded by CEPC measurements of Higgs boson branching ratios. We see
that electroweak precision tests and Higgs precision measurements are complementary and have comparable
strength. Dashed blue lines display contours of Þne-tuning, which will be probed at the few percent level.

No mixing: 

Similar mass reach via 
T-parameter and Higgs 
couplings. Pushes 
tuning to the few % 
level. 

Definitively close LHC 
loopholes (hidden, 
stealthy, compressed 
stops).
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Figure 7 . Projected constraints in the stop mass plane from a one-parameter Þt to the Higgs data from future
experiments. The purple shaded region along the diagonal is excluded because the smallest|X t | consistent
with the data at 2 ! is larger than the maximum |X t | compatible with the mass eigenvalues, as explained in
detail in ref. [ 32]. The blue shaded region requires tuning X t to a part in 10 to Þt the data. The dot-dashed
red contours quantify Þne-tuning in the Higgs mass from the quadratic sensitivity to stop soft terms.

a one-parameter Þt to all projected! and ! ! Br measurements, which slightly improves the reach.
SpeciÞcally, the approach taken in Ref. [32] was based on bounds that allowed other parameters to
ßoat, whereas here we extract stronger bounds by assuming that stops are the only contribution to
the new physics. We also provide, for the Þrst time, an estimate of the reach of CEPC. The combined
ILC 250, 500, and 1000 GeV runs would have a very similar reach to CEPC.

From this plot we see that any future Higgs factory would mostly or entirely rule out regions of
10% Þne tuning, but will leave gaps with 5% Þne tuning. These gaps occur due to the blind spot
discussed above. As we have noted above, measurements ofb " s" can help to constrain the blind
spot region. However, bounds fromb " s" depend not only on the stop mass matrix but also onµ
and tan #. To provide a perspective on the implications of these bounds for Þne-tuning, we should
assess the tree-level tuning arising fromµ and from mA .

The precise measurement of Higgs couplings to fermions is sensitive to the mass scale of the heavy
Higgs bosonsA0, H 0, H ± that are present in the MSSM and its extensions. Mixing among the Higgs
bosons will always modify the coupling of the light Higgs to fermions at orderm2

h /m 2
A . (We will

collectively denote the masses of all of these particles asmA , although there may be some splitting
betweenH 0 and A0.) The coe! cient is somewhat model dependent. We can estimate the bound on
these couplings by focusing on$b, which is well-measured and approximately equal to

$b #
ySUSY

hbb

ySM
hbb

$ 1 + 2
m2

h

m2
A

(7.3)

at large tan # in models where the dominant new quartic coupling beyond the MSSM arises from
nondecouplingD-terms [58, 71, 83]. Models with new quartics arising from F -terms have a somewhat
di" erent structure, but would yield a similar bound on mA up to order-one factors (especially since
tan # in theories like the NMSSM cannot be very large). Doing a one-parameter Þt with only$b

Ð 17 Ð

The purple region can be 
excluded for any mixing angle. 
(Because large mixing forces 
the mass eigenvalues away 
from the diagonal.)  

Blue region is excluded unless 
mixing angle is tuned by a 
factor of 10.

(also see J. Fan, MR arXiv:1401.7671)
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Figure 5 . Regions in the stop physical mass plane that are/will be excluded at 2 ! by EWPT with oblique
corrections (left column), Rb at FCC-ee (mid column) and Higgs couplings (right column) for di ! erent choices

of X t /
!

m2
÷t 1

+ m2
÷t 2

: 0 (Þrst row), 0.6 (2nd row), 1.0 (3rd row) and 1.4 (last row). We chose the mass eigenstate

with m÷t 1
to be mostly left-handed while the mass eigenstate with m÷t 2

to be mostly right-handed. For non-zero
choices ofX t , there are regions along the diagonal line which cannot be attained by diagonalizing a Hermitian
mass matrix [32]. Also notice that the vacuum instability bound constrains X t /
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EWPT and Stop Mixing



ÒBlind SpotÓ for Stops

Notice that one should not use the results of! g from the seven-parameter Þts which allow all Higgs
couplings to vary freely [26], as this will underestimate the exclusion. In the particular scenario we
are considering, the variations of the Higgs couplings are much more constrained. For the ILC, we
used the numbers of the ILC 500 scenario with the machine running at 250 GeV and 500 GeV with
luminosities of 1150 fb! 1 and 1600 fb! 1 and the 1000 scenario with the machine running at 1 TeV in
addition to the 500 case with a luminosity of 2500 fb! 1. For FCC-ee, the number assumes the machine
running at 240 GeV and 350 GeV with luminosities of 104 fb! 1 and 2600 fb! 1. From Fig. 5, one could
see that the FCC-ee scenario is the most sensitive case. Again at the special pointX t !

!
m2

÷t 1
+ m2

÷t 2
,

r ÷t
G " 0 from Eq. 2.13 and the bound vanishes.

The strongest limit on the stop parameters comes from the measurement ofhgg coupling. This is
due to a combination of the large size of the correction and the high precision of the measurements of
this coupling at the Higgs factories.

6 The Light Stop Blind Spot

It is apparent from Fig. 5 that in the case X 2
t " m2

÷t 1
+ m2

÷t 2
, all of the precision loop observables we

consider have a signiÞcantly poorer reach than for other choices ofX t . This is a Òblind spotÓ for
precision tests of light stops. In calling this choice ofX t a blind spot, we follow the terminology of
ref. [82], which coined the term for regions of neutralino parameter space that evade direct detection
experiments. The analogy is a close one: the neutralino blind spots exist when the lightest neutralino
has a vanishing tree-level coupling to the Higgs boson. The underlying reason for the blind spot in
stop detection is that the lightest stop mass eigenstate has a vanishing tree-level coupling to the Higgs
boson. In this case, the heavy stop can still contribute to precision observables, but its contributions
are relatively small due to the larger mass suppression. (While this draft was being Þnalized, the blind
spot region of parameter space was independently pointed out in ref. [65].)

To understand where the blind spot occurs, we can integrate out the heavy stop mass eigenstate
÷th to determine an e! ective quartic coupling of the light stop ÷tl to the Higgs boson:

+

÷tl ÷t l

h h

y2
t ÷t l

÷th

÷t l

h h

yt X t yt X t (6.1)

This leads to an e! ective coupling:
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÷t h

# m2
÷t l

#

|Hu |2
$
$÷tl

$
$2

. (6.2)

This leads to the Òblind spotÓ mixing for which the coupling of the light stop to the Higgs boson
vanishes:

X "
t =

%
m2

÷t h
# m2

÷t l

&1/ 2
. (6.3)

This is also apparent from Eq. 2.15. Alternatively, one could Þnd this critical mixing by evaluating
the light stop mass eigenvalue and solving the equation" logm÷t l

/ " logv = 0 for X t .
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The light stop mass eigenstate may be decoupled from the 
Higgs at tree level, at a certain critical mixing angle:
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÷t h
# m2

÷t l

&1/ 2
. (6.3)

This is also apparent from Eq. 2.15. Alternatively, one could Þnd this critical mixing by evaluating
the light stop mass eigenvalue and solving the equation" logm÷t l

/ " logv = 0 for X t .
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If the light stop is decoupled 
from the Higgs, itÕs irrelevant for 
naturalness! Then itÕs the heavy 
stop that matters.Figure 8 . Regions in the physical stop mass plane that precision measurements are sensitive to, with contours

of tunings, at future e+ e! colliders (left: ILC; middle: CEPC; right: FCC-ee). Top row: bounds on stops with
no mixing, X t = 0. Dashed vertical lines: 2 ! bounds on stop masses fromS and T (mostly T ); solid lines: 2!
bounds on stop masses from Higgs coupling constraints. Blue dashed contours are the stop contributions to
the Higgs mass tuning. Lower row: bounds on stops in the blind spot X 2

t = m2
÷t 1

+ m2
÷t 2

. There are no Higgs
measurement constraints. For CEPC with possible improvements (purple dash-dotted line in the middle) or
FCC-ee (orange solid line), EWPT is only sensitive to a small region. The green dashed lines are the exclusion
contours from b ! s" for the choice µ = 200 GeV and a few di! erent values of tan #. Each of these contours
is also labeled with corresponding tunings " µ and " A . There is also a region along the diagonal line which
cannot be attained by diagonalizing a Hermitian mass matrix [ 32].

7.2 Implications for Folded Stops

EWPT could be the most sensitive experimental probe in some hidden natural SUSY scenarios such as
Òfolded SUSYÓ [28]. In folded SUSY, the folded stops only carry electroweak charges and some beyond
SM color charge but no QCD charge. The most promising direct collider signal isW + photons which
dominates for the ÒsquirkoniumÓ (the bound state of the folded squarks) near the ground state [84, 85].
It is a very challenging experimental signature. Among the Higgs coupling measurements, folded stops
could only modify the HiggsÐphoton coupling, the HiggsÐphotonÐZ coupling, and (at a subleading
level) the HiggsÐZ ÐZ coupling. Yet the HiggsÐphoton coupling measurements, even at futuree+ e!

colliders, have very limited sensitivities. Even FCC-ee Higgs measurements could only probe folded
stops up to 400 GeV, as illustrated in Fig.9 (which updates the result in [32] to include CEPC). Notice
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b ! s!Green:
Purple: CEPC EWPT



Folded SUSY
In folded SUSY, stops have no QCD color (makes life 
difÞcult at LHC). But still have electroweak interactions.  

Measuring Higgs decays to photons and the T parameter 
can help constrain folded SUSY stops.
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Figure 9 . Projected constraints in the folded stop mass plane from a one-parameter Þt to the HiggsÐphotonÐ
photon couplings from future experiments. Directly analogous to Fig. 7. Results from the ILC 250/500/1000
would be similar to CEPC; lower-energy ILC measurements provide even weaker constraints. These constraints
are subdominant to the constraints on left-handed folded stops arising from T-parameter measurements, which
are the same as those for ordinary stops in the left-hand column of Fig. 5.

that we have also taken into account of a precise determination of! (h ! !! )/ ! (h ! ZZ ) at HL-LHC.
It has been demonstrated that combing this with Higgs measurements at futuree+ e! colliders could
result in a signiÞcant improvement of sensitivity to HiggsÐphotonÐphoton coupling [86, 87].

On the other hand, the reach of the electroweak precision we derived in this article (the left
column of Fig. 5) applies to folded stops as well as the usual stops. Except for the blind spot in the
parameter space, future EWPT could probe left-handed folded stops, via their correction to theT
parameter, up to 600 GeV (e.g. at the ILC) or even 1 TeV (e.g. at FCC-ee). CEPCÕs preliminary
plans fall close to the ILC reach, but conceivable upgrades could achieve similar reach to FCC-ee.
These EWPT constraints would surpass the Higgsstrahlung constraints on folded SUSY estimated in
ref. [65]. Improved measurements of theW mass, then, may be one of the most promising routes
to obtaining stronger experimental constraints on folded SUSY. Therefore, with the help of future
electroweak precision measurements, we can test the Þne tuning of folded SUSY at the few percent
level.
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The T-parameter bounds 
previously shown for stops are 
exactly  the same for folded stops!  

Another way the CEPC has exciting 
potential for uncolored naturalness!

Higgs
to 𝛾𝛾



Another Example: WÕ
There has been a lot of discussion, e.g. at the Summer 
Institute last week and the TeV workshop over the 
weekend, of a possible 2 TeV resonance based on hints in 
LHC Run 1. 

Consider a W’ boson that decays to WZ or Wh. It could be 
part of an SU(2)L triplet with a Z’. Or it could be an SU(2)L 
singlet that has hypercharge 1, as in SU(2) R models. In the 
latter case, it decays through the operator:

LetÕs see how the EWPT effect of such a state compares to 
CEPC reach.

igh W !µ (h áDµ h) + h .c.



WÕ and CEPC

In unitary gauge, this looks like
gh g
2

W !µ Wµ
!
v + h0"2

WeÕre thinking about:

Where the ÒdotÓ is the SU(2)L invariant a áb ! ! !" a! b"

ThereÕs a mass mixing between the W and the W’ controlled 
by the same coupling that gives a diboson decay. This 
shifts the W mass but not  the Z mass. In other words,

diboson decay coupling ⟷T-parameter

igh W !µ (h áDµ h) + h .c.



WÕ and CEPC
You can integrate out the WÕ at tree level and read off:

(see de Blas, del Aguila, and Perez-Victoria 1005.3998 and also Hisano, Nagata, 
and Omura 1506.03931 in the context of the recent excess)

! mW = !
g2

h mW v2

4m2
W !

" ! 27 MeV
! gh

0.3

" 2
#

2 TeV
mW !

$ 2

So CEPCÕs 3 MeV measurement of the W mass can 
probe this effect (at 2 sigma) up to WÕ masses of 4 TeV 
(for gh = 0.3) or at Þxed WÕ mass of 2 TeV down to 
couplings gh = 0.15.



Other Precision Physics
Rare Z decays: Standard Model predicts

102 ELECTROWEAK PRECISION PHYSICS AT THE CEPC

We take as our deÞnition of the number of neutrinosN! = ! inv / ! ! , i.e. the ratio of the
invisible width to the Standard Model expectation for the partial width to a single neutrino
species.

Using the input from the SM model, we can rewrite equation (4.1) as the following:

N! =
! "

! !

! "
12! R"

M 2
Z " 0

had

! R" ! 3

#

. (4.2)

As shown in equation (4.2), the precision ofN! depends on the lepton partial widthR"

measurement, theZ mass measurement, and the hadronic cross section of theZ boson on
its mass peak (" 0

had). The precision of" 0
had gives the largest impact toN! measurement,

and it is very sensitive to the precision of the luminosity. Therefore the precise luminosity
measurement is the key to determineN! .

Precise measurements ofN! have been made by LEP collaborations [8], and they ob-
tained a precision of 0.27% using this indirect method. The main systematics of theN!

measurement is coming from the uncertainty in the luminosity measurement (0.14%) and
the theory uncertainty in the predicted cross section of the small angle Bhabha process
(0.11%).

The precision of 0.1% inN! measurement with the indirect method can be achieved in
CEPC measurement, which improves the current precision by a factor of three. BeneÞtting
from the recent development of luminosity detector technology, the uncertainty due to
luminosity can be reduced to 0.05%. The uncertainty from the small angle Bhabha process
can be reduced to 0.05% due to recent progress in studying this process[9].

Direct Method Using e+ e! ! ! ø!" Events The most precise directN! measurements
at LEP were carried out by the L3 and DELPHI collaborations [10, 11]. By combining
the direct measurements at LEP, the current experimental result isN! = 2.92 ± 0.05.
The statistical uncertainty ofN! in the previous measurement is 1.7%. The main sys-
tematic uncertainty from the L3 measurement includes the uncertainty in single photon
trigger efÞciency (0.6%), and photon identiÞcation efÞciency (0.3%), and the uncertainty
in identifying the converted photons (0.5%).

A precision of 0.2% can be achieved for the direct measurement ofN! at CEPC, and it
will improve the current precision by a factor of 10. Due to the excellent performance of
the CEPC inner tracker, the uncertainty due to converted photonsÕ selection efÞciency is
expected to be negligible. The granularity of the CEPC EM calorimeter is expected to be
10 to 100 times better than the detectors at LEP. Therefore photons can be identiÞed with
high purity with loose EM shower shape based selection. The uncertainty of the photon
efÞciency can be reduced to less than 0.05%.

4.1.1.7 Rare Z Decays

CEPC may have the opportunity to probe rareZ decays, including exclusive processes
like Z " J/ # $ or Z " " $. These processes are predicted to have small branching
ratios in the Standard Model [12, 13]. For example, [13]

Br(Z 0 " J/ # $) # 8 $ 10! 8

Br(Z 0 " " (nS) $) # 1.0 $ 10! 7. (4.3)

Given these expectations, CEPCÕs sample of order109 to 1010 Z bosons could allow the
branching ratio to these decays to be measured to better than 10% statistical accuracy. The

(Grossman, Koenig, Neubert 
1501.06569; see also Huang, 
Petriello 1411.5924)

No current collider has had a large enough Z sample to 
see them. The CEPC, with 1010 Z bosons, can explore a 
new frontier of the SM. 

CEPC could also search for flavor-violating processes like 
Z to electron + muon. Probe of high-scale ßavor violation 
beyond the Standard Model!



Conclusions
The LHC has great potential to study colored particles, but 
it can miss light uncolored particles or even colored 
particles that decay in ways that mimic backgrounds. 

CEPC can exhaustively probe particles that interact with 
Higgs bosons, whether or not the LHC can see them. 

Both Higgs decays and EWPT on or near the Z-pole can 
help in this task. Example: the T-parameter could be the 
strongest constraint on folded stops. 

We have exciting times ahead!



Backup



Higgs-Z Interplay
IÕve shown you results from Þts of Higgs properties, and 
results from Z-pole (and near-Z-pole) physics. But these are 
not really independent. For instance, the S parameter 
operator

h  ! i hW i
µ ! B µ !

will affect the Higgs decay rate to two neutral gauge bosons 
(photons or Z bosons)Ñthough other operators do too. 

In the end, we should perform a global Þt all the data together, 
including all the electroweak operators. Use all the information. 
As Nathaniel Craig mentioned, angular observables in Higgs 
properties can also enhance the physics reach.



Other Colliders
Present data LHC14 ILC/GigaZ

! s (M 2
Z ) 0.1185± 0.0006 [34] ± 0.0006 ± 1.0 ! 10! 4 [35]

! ! (5)
had (M 2

Z ) (276.5 ± 0.8) ! 10! 4 [36] ± 4.7 ! 10! 5 [23] ± 4.7 ! 10! 5 [23]

mZ [GeV] 91.1875± 0.0021 [27] ± 0.0021 [23] ± 0.0021 [23]

mt [GeV] (pole) 173.34 ± 0.76exp [37] ± 0.5th [23] ± 0.6exp ± 0.25th [23] ± 0.03exp ± 0.1th [23]

mh [GeV] 125.14 ± 0.24 [23] < ± 0.1 [23] < ± 0.1 [23]

mW [GeV] 80.385 ± 0.015exp [34]± 0.004th [24] (± 8exp ± 4th ) ! 10! 3 [23, 24] (± 5exp ± 1th ) ! 10! 3 [23, 38]

sin2 " !
e! (23153 ± 16) ! 10! 5 [27] ± 16 ! 10! 5 (± 1.3exp ± 1.5th ) ! 10! 5 [20, 38]

" Z [GeV] 2.4952± 0.0023 [27] ± 0.0023 ± 0.001 [39]

Table 1 . The precisions of observables in the simpliÞed electroweak Þt where we neglect non-oblique corrections
and parametrize the new physics contributions to electroweak observables in S and T . The Þrst Þve observables
in the table and S, T are free in the Þt while the remaining three are determined by the free ones. We quote the
precisions of current, high luminosity LHC and ILC measurements as well as the current central values. Entries
that do not display a theory uncertainty either incorporate it into the experimental error bar or have a small
enough theoretical uncertainty that it can be neglected. At the ILC, the non-negligible theory uncertainties
of the derived observablesmW , sin2 ! !

eft and ! Z come from unknown four-loop contributions assuming that in
the future, the electroweak three-loop correction will be computed. In Sec. 4, we will explain in details the
origins of all the numbers we used.

TLEP- Z TLEP- W TLEP- t

! s (M 2
Z ) ± 1.0 ! 10! 4 [35] ± 1.0 ! 10! 4 [35] ± 1.0 ! 10! 4 [35]

! ! (5)
had (M 2

Z ) ± 4.7 ! 10! 5 ± 4.7 ! 10! 5 ± 4.7 ! 10! 5

mZ [GeV] ± 0.0001exp [2] ± 0.0001exp [2] ± 0.0001exp [2]

mt [GeV] (pole) ± 0.6exp ± 0.25th [23] ± 0.6exp ± 0.25th [23] ± 0.02exp ± 0.1th [2, 23]

mh [GeV] < ± 0.1 < ± 0.1 < ± 0.1

mW [GeV] (± 8exp ± 1th ) ! 10! 3 [23, 38] (± 1.2exp ± 1th ) ! 10! 3 [20, 38] (± 1.2exp ± 1th ) ! 10! 3 [20, 38]

sin2 " !
e! (± 0.3exp ± 1.5th ) ! 10! 5 [20, 38] (± 0.3exp ± 1.5th ) ! 10! 5 [20, 38] (± 0.3exp ± 1.5th ) ! 10! 5 [20, 38]

" Z [GeV] (± 1exp ± 0.8th ) ! 10! 4 [2, 26] (± 1exp ± 0.8th ) ! 10! 4 [2, 26] (± 1exp ± 0.8th ) ! 10! 4 [2, 26]

Table 2 . The precisions of electroweak observables in the simpliÞed electroweak Þt at TLEP. We consider
three scenarios: TLEP-Z : Z pole measurement (including measurements with polarized beams); TLEP-W :
Z pole measurement plus scan ofW W threshold; TLEP- t: Z pole measurement, W threshold scan and top
threshold scan. The TLEP experimental precisions are taken from either [ 2] and [20], where we always chose
the more conservative numbers. Entries that do not display a theory uncertainty either incorporate it into the
experimental uncertainty or have a small enough theoretical uncertainty that it can be neglected. Theoretical
uncertainties may matter for mZ at TLEP, but we lack a detailed estimate and have not incorporated them.
Similar to ILC, the non-negligible theory uncertainties of the derived observables mW , sin2 ! !

eft and ! Z come
from unknown four-loop contributions assuming that in the future, the electroweak three-loop correction will
be computed. In Sec.4, we will explain in details the origins of all the numbers we used.

We will present the Þrst estimate of the reach for new physics of the electroweak program at CEPC
based on the talk in [41]. The precisions of the electroweak observables used in the simpliÞed Þt are
summarized in Table. 3.2 The W mass precision is based on the direct measurement in

!
s = 240

GeV running with 100 fb! 1 integrated luminosity. The precisions of Z mass and weak mixing angle

2The summary table in the talk [ 41] quotes an achievable precision for sin 2 " !
e! of 0.01%, but based on the earlier

slides and personal communication with Zhijun Liang we expect that 0.02% is a reasonably optimistic choice.
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Figure 1 . Left: 68% C.L. contours of S and T for di ! erent experiments using the simpliÞed Þt as described
in Tables 1 and 2. Right: a magniÞed view of 68% C.L. contours of S and T for ILC and TLEP. We set the
best Þt point to be S = T = 0, which corresponds to the current SM values. Our results are in approximate
agreement with the current Þt from ref. [ 33, 40], current/LHC14/ILC results by the GÞtter group [ 23], the
TLEP result from a talk by Satoshi Mishima [ 21]. The contours of TLEP- Z and TLEP- W almost overlap on
top of each other.

are estimated for an energy scan on and around theZ pole with (100 ! 1000) fb! 1 luminosity on the
Z pole and 10 fb! 1 for 6 energy points close to theZ pole. The weak mixing angle is derived from
the forward-backward asymmetry AF B of the b quark, which is determined from Þts to the di! erential
cross-section distribution d! /d cos" " 1 + cos 2" + 8 / 3AF B cos" . We will also present estimates of
Higgs couplings precisions in Table6 of Section6.

CEPC

#s(M 2
Z ) ± 1.0 # 10! 4 [35]

" #(5)
had (M 2

Z ) ± 4.7 # 10! 5

mZ [GeV] ± (0.0005! 0.001) [41]

mt [GeV] (pole) ± 0.6exp ± 0.25th [23]

mh [GeV] < ± 0.1

mW [GeV] (± (3 ! 5)exp ± 1th ) # 10! 3 [24, 38, 41]

sin2 " !
e! (± (4.6 ! 5.1)exp ± 1.5th ) # 10! 5 [25, 38, 41]

#Z [GeV] (± (5 ! 10)exp ± 0.8th ) # 10! 4 [26, 41]

Table 3 . The precisions of electroweak observables in the simpliÞed electroweak Þt at CEPC. The experimental
uncertainties are mostly taken from [ 41]. Entries that do not display a theory uncertainty either incorporate it
into the experimental error bar or have a small enough theoretical uncertainty that it can be neglected. Similar
to ILC and TLEP, the non-negligible theory uncertainties of the derived observables mW , sin2 ! !

eft and " Z come
from unknown four-loop contributions assuming that in the future, the electroweak three-loop correction will
be computed. For " Z , we assumed that it has the same experimental uncertainty as mZ .
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Figure 2 . 68% C.L. contours of S and T for CEPC using the simpliÞed Þt with inputs in Table 3. For
comparison, we also show the ILC allowed region (red dashed line) derived in Sec2.We set the best Þt point
to be S = T = 0, which corresponds to the current SM values. The dotted purple contour is derived with the
numbers at the higher ends of the estimated ranges in Table 3 while the solid purple contour is derived with
those at the lower ends.

We also performed a proÞle likelihood Þt and present the allowed (S, T) region for CEPC at 68%
C.L. in Fig. 2. For comparison, we put the ILC result in the same plot. For the more optimistic
evaluation in which all precisions take the lower end values of the estimated ranges in Table3, the
ILC and CEPC have similar sensitivities to new physics. For the more pessimistic evaluation based
on precisions at the higher ends of the estimated ranges, the CEPC allows largerS mostly because of
the worse precision of sin2 ! !

e! compared to ILC.

3.1 Hypothetical Improvements of CEPC EWPT

In this section, we will consider possible improvements of electroweak observable precisions at CEPC
and study how they a! ect the CEPCÕs sensitivity to new physics. There are four potential improve-
ments of electroweak observables:mt , mW , sin2 ! !

e! and " Z (together with mZ ), which are listed in
Table 4.

The top quark mass gives the largest parametric uncertainties on the derived SM observables in
the global Þt (more details could be found in Sec.4.2.2) and thus improving its precision might improve
the Þt. In the Þt for CEPC above, we assumed the precision of the top mass after the HL-LHC running.
A top threshold scan is not included in the current CEPC plan, so CEPC itself cannot improve the
precision of mt . However, a top threshold scan is part of the ILC plan. The possibility exists if the
ILC program with the top threshold scan is implemented before or at the same time of CEPC, the
input value of mt precision for the CEPC electroweak Þt could be improved by a factor of! 10. The
precision of the W mass could be slightly improved by aW W threshold scan to 2 MeV [41]. Finally,
the uncertainty of sin2 ! !

e! in the current CEPC plan is still dominated by the statistical uncertainty,
which is 0.02% while the systematic uncertainty is 0.01%. If the luminosity of the o! -peak Z running
could be increased by a factor 4 to 40 fb! 1 (at each energy), the overall uncertainty of sin2 ! !

e! could be
reduced down to 0.01%, which is 2.3" 10! 5. Another possible way to reduce the uncertainty of sin2 ! !

e!

down to 0.01% is to use polarized electron/positron beams, which would require more infrastructure.
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Figure 4 . 68% C.L. contours of S and T for ILC (red dashed), the optimistic case of current CEPC plan
(named as the CEPC baseline in the Þgure; purple solid), the optimistic CEPC plan with sin 2 ! W (green solid)
or ! Z (green dashed) improved, both sin2 ! W and ! Z improved (blue dotted), and three observables sin2 ! W ,
! Z and mt improved (blue solid).

4.1 Nuisance Parameters

4.1.1 The Top Mass mt

Recently, the Þrst combination of Tevatron and LHC top mass measurements reported a result of
173.34 ± 0.76 GeV, with the error bar combining statistical and systematic uncertainties [37]. New
results continue to appear, with a recent CMS combination reporting 172.38± 0.10 (stat.) ± 0.65 (syst.)
GeV [42] and a D0 analysis Þnding 174.98± 0.76 GeV [43]. These results have similar error bars but
fairly di ! erent central values, which may be a statistical ßuke or may in part reßect ambiguities in
deÞning what we mean by the top mass (see [44] and Appendix C of [45]). This suggests that we
proceed with some caution in assigning an uncertainty to the top mass in any precision Þt.

The relevant physics issues have been reviewed recently in refs. [46Ð48]. At the LHC, kinematic
measurements are expected to reach a precision of 0.5 or 0.6 GeV on the top mass, but theoretical
uncertainty remains in understanding how the measured mass relates to well-deÞned schemes like the
MS mass. Other observables like the total cross section are easier to relate to a choice of perturbative
scheme, but will have larger uncertainties. The top mass is a very active area of research, in part for
its importance in questions of vacuum stability in the Standard Model (see, for example, refs. [49Ð
52]). As a result, we can expect continued progress in understanding how to make the best use of
the LHCÕs large sample of top quark data to produce more accurate mass determinations. For a
sampling of recent ideas in this direction, see [53Ð56]. We will follow ref. [ 23] in assuming that the
LHC will achieve a measured precision of 0.6 GeV and that further experimental and theoretical e! ort
will reduce the theoretical uncertainty on the meaning of this number to 0.25 GeV. We will also use
their estimate of the current theoretical uncertainty as 0.5 GeV, although we suspect this is overly
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uncertainties also receive corrections at orderO(! 2! s), O(!! 2
s), O(! 3) and O(!! 3

s) beyond the
leading mt terms. The unknown Þnal state QCD correction at orderO(! 5

s) will also contribute.
The total theory error adds up to about 0.5 MeV. Once the bosonic two-loop and the complete
three-loop results are known, the theory error will be reduced to about 0.08 MeV. Notice that
similar to mZ , ! Z also has theoretical uncertainties from initial state radiation, fermion-pair
radiation and line-shape parametrization, which we do not include under the assumption that
they will be accurately computed in the future.

In our Þts, we assumed that by the time when futuree+ e! colliders are built, complete three-loop
electroweak corrections have been computed and the theory uncertainties originate from the four-loop
and higher-order corrections.

Current mt mZ mh ! s " ! (5)
had (M 2

Z )

"mW [MeV] 4.6 2.6 0.1 0.4 1.5

" sin2 #!
e! (10! 5) 2.4 1.5 0.1 0.2 2.8

" ! Z [MeV] 0.2 0.2 0.004 0.30 0.08

ILC mt mZ mh ! s " ! (5)
had (M 2

Z )

"mW [MeV] 0.2 2.6 0.05 0.06 0.9

" sin2 #!
e! (10! 5) 0.09 1.5 0.04 0.03 1.6

" ! Z [MeV] 0.007 0.2 0.002 0.05 0.04

TLEP- Z (W ) mt mZ mh ! s " ! (5)
had (M 2

Z )

"mW [MeV] 3.6 0.1 0.05 0.06 0.9

" sin2 #!
e! (10! 5) 1.9 0.07 0.04 0.03 1.6

" ! Z [MeV] 0.1 0.01 0.002 0.05 0.04

TLEP- t mt mZ mh ! s " ! (5)
had (M 2

Z )

"mW [MeV] 0.1 0.1 0.05 0.06 0.9

" sin2 #!
e! (10! 5) 0.06 0.07 0.04 0.03 1.6

" ! Z [MeV] 0.004 0.01 0.002 0.05 0.04

CEPC mt mZ mh ! s " ! (5)
had (M 2

Z )

"mW [MeV] 3.6 0.6-1.3 0.05 0.06 0.9

" sin2 #!
e! (10! 5) 1.9 0.4-0.7 0.04 0.03 1.6

" ! Z [MeV] 0.1 0.05-0.1 0.002 0.05 0.04

Table 5 . Parametric errors from each free parameter in the Þt for current, ILC, TLEP- Z (TLEP- W ), TLEP- t
and CEPC scenarios.

We list the breakdown of parametric uncertainties for current and future experimental scenarios
in Table 5. It is clear that currently the top and Z boson masses are the dominant contributions to
the parametric uncertainties. ILC can measuremt precisely, and Z mass remains as the dominant
uncertainty. When both are measured very precisely at TLEP-t, the dominant source of the parametric
uncertainty is " ! (5)

had (M 2
Z ). In Sec. 5, we will examine how improvement of each observableÕs precision

a#ects the sensitivity to new physics.

5 To Do List for a Successful Electroweak Program

So far we have studied the reach of futuree+ e! colliders for new physics parametrized byS and T,
based on estimated precisions of electroweak observables in the literature. In this section, we want to
answer slightly di#erent questions: what are the most important observables whose precisions need to
be improved to achieve the best sensitivity of EWPT? What levels of precision are desirable for these
observables? The answers are already contained in the simpliÞed Þts for di#erent experiments but we
want to make it clearer by decomposing the Þt into three steps and changing the error bar of only one
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