		Conclusion

Probing $Zb\bar{b}$ couplings at the CEPC

Jiayin Gu

CFHEP, IHEP, CAS

Workshop on Physics at the CEPC August 11, 2015

based on current work with Stefania Gori and Lian-Tao Wang

Jiayin Gu Probing $Zb\overline{b}$ couplings at the CEPC CFHEP, IHEP, CAS

Introduction

Current constraints

Constraints from CEPC

Comparison with ILC, FCC-ee

Conclusion

Introduction		
Overview		

- ▶ Hadron colliders: directly search for heavy new particles.
- Lepton colliders: probe new physics indirectly by measuring couplings and parameters very precisely.
- What a future e^+e^- collider (such as the CEPC) can do
 - Higgs precision measurement ($\sim 240 \text{ GeV}$)
 - Electroweak precision measurements (Z-pole)
 - and more...
- (Future) electroweak precision measurements
 - Oblique corrections (S and T parameters) (see e.g. 1411.1054 by Fan, Reece, Wang)
 - Non-oblique corrections, e.g. the Zbb coupling.

What is the $Zb\bar{b}$ coupling(s)? (theory side)

• The $Zb\bar{b}$ couplings correspond to the following term in the Lagrangian

$$\mathcal{L} \supset \frac{g}{c_W} Z_\mu (g_{Lb} \bar{b}_L \gamma^\mu b_L + g_{Rb} \bar{b}_R \gamma^\mu b_R) , \qquad (1)$$

where we parameterize the possible modifications in terms of δg_{Lb} and δg_{Rb} as

$$g_{Lb} = g_{Lb}^{SM} + \delta g_{Lb}, \quad g_{Rb} = g_{Rb}^{SM} + \delta g_{Rb}, \qquad (2)$$

and the SM values are

$$g_{Lb}^{SM} = -1/2 + s_W^2/3 \simeq -0.42, \quad g_{Rb}^{SM} = s_W^2/3 \simeq 0.077.$$
 (3)

Jiayin Gu

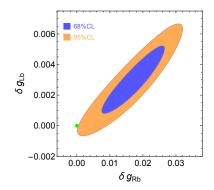
What is the $Zb\bar{b}$ coupling(s)? (experiment side)

- Three measurements are directly related to the $Zb\bar{b}$ couplings,
 - ▶ R_b , the ratio of the $Z \rightarrow b\bar{b}$ partial width to the inclusive hadronic width,
 - A_{FB}^{b} , the forward-backward asymmetry of the bottom quark (LEP),
 - \mathcal{A}_b , the bottom quark asymmetry measured with beam polarization (SLC).
- At tree level, R_b , A_{FB}^b and A_b can be written as

$$R_{b} = \frac{g_{Lb}^{2} + g_{Rb}^{2}}{\sum_{q} (g_{L}^{2} + g_{R}^{2})}, \qquad (4)$$

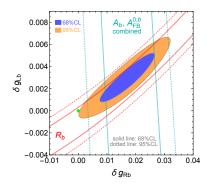
$$\mathcal{A}_{b} = \frac{g_{Lb}^{2} - g_{Rb}^{2}}{g_{Lb}^{2} + g_{Rb}^{2}}, \quad \mathcal{A}_{FB}^{b} = \frac{3}{4}\mathcal{A}_{e}\mathcal{A}_{b} = \frac{3}{4}\frac{g_{Le}^{2} - g_{Re}^{2}}{g_{Le}^{2} + g_{Re}^{2}}\frac{g_{Lb}^{2} - g_{Rb}^{2}}{g_{Lb}^{2} + g_{Rb}^{2}}.$$
 (5)

Jiayin Gu


Introduction			Conclusion
Why is Z	$b\bar{b}$ interesting?		

- > Theory side: many new physics models predict a sizable correction to the $Zb\bar{b}$ couplings.
 - (t_L, b_L) are in the same EW doublet and new physics that couples to the top quark usually also affects the $Zb_L\overline{b}_L$ coupling.
- Experiment side: $\sim 2.5 \sigma$ discrepancy between the LEP A_{FB}^{b} measurement and its SM prediction (requires a sizable modification to the $Zb_R\bar{b}_R$ coupling).

	measured value	SM prediction
R_b	0.21629 ± 0.00066	0.21578 ± 0.00011
A_{FB}^{b}	0.0992 ± 0.0016	0.1032 ± 0.0004
$\dot{\mathcal{A}}_{b}^{D}$	0.923 ± 0.020	0.93463 ± 0.00004


Table: From the most recent Gfitter paper (1407.3792).

Current constraints on the $Zb\bar{b}$ coupling

Global fit with EW precision data (similar to what Gfitter did).

Current constraints on the $Zb\bar{b}$ coupling

▶ Individual constraints from *R_b* and *A^b_{FB}*, *A_b* combined, setting other parameters to best fit values.

	Current constraints		Conclusion
Discrepan	icy?		

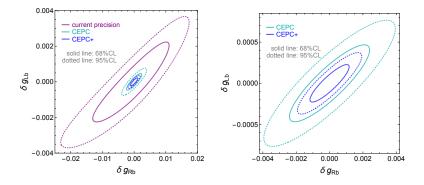
- ▶ SM predictions are just outside 95% CL. Simultaneous modifications in both g_{Lb} and g_{Rb} are preferred.
- Statistical fluctuation? Systematic error? New physics?
- Possible new physics: the Beautiful Mirror Model (hep-ph/0109097, Choudhury, Tait, Wagner)
- Can only be resolved by the next e^+e^- collider!

		Constraints from CEPC	Conclusion
Constrain	ts from CEPC		

- Circular Electron Position Collider
- ▶ Reference: the preliminary conceptual design report (preCDR).
- ▶ Large statistics (~ 10^{10} Z events or at least ~ 2×10^9 Z events, compared with ~ 2×10^7 Z events at LEP).
- We assume there will be no longitudinal beam polarization (but it could be a potential option).
- We consider 2 scenarios:
 - CEPC with conservative estimations (assuming ~ 2 × 10⁹ Zs as in the preCDR);
 - CEPC+ with more optimistic estimations (assuming $\sim 10^{10}$ Zs and the systematic uncertainties are reduced by half).
- We consider both the case that the results are SM-like and the one that the LEP A_{FB}^{b} discrepancy stays.

		Constraints from CEPC	Conclusion
Key obser	vables		

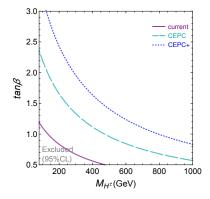
- ▶ Which observables are most important for the improvement of the *Zbb* coupling constraints?
- $\blacktriangleright R_b, A^b_{FB}, (\text{no } \mathcal{A}_b).$
- Leptonic asymmetry observables, A'_{FB} , $A_l(\mathcal{P}_{\tau})$,
 - assuming lepton universality, $e \ \mu \ au \ o \ I$,
 - needed as an independent determination of the effective weak mixing angle,
 - $\blacktriangleright A^b_{FB} = \frac{3}{4} \mathcal{A}_e \mathcal{A}_b \; .$
- *R_l*, the ratio of the total hadronic Z decay width to the Z decay width to one lepton species,
 - is sensitive to the coupling combination $g_{Lb}^2 + g_{Rb}^2$,
 - relies more on the model assumption,
 - has relatively conservative estimation at CEPC?


Input values

	Precision $(1\sigma \text{ uncertainty})$			
Observable	LEP	CEPC	CEPC+	
R _b	0.00066	0.00017	0.00008	
R _l	0.025	0.007	0.003	
A^b_{FB}	0.0016	0.00015	0.00007	
A_{FB}^{l}	0.0010	0.00014	0.00007	
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.0033	0.0006	0.0003	
# of <i>Z</i> s	$\sim 2 \times 10^7$	$\sim 2 \times 10^9$	$\sim 10^{10}$	

Table: The numbers highlighted with color cyan are our own estimations.

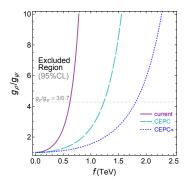
- Systematic uncertainties dominate.
- Other observables are less important (updated to CEPC values but not shown here).
- We have checked that the theoretical uncertainties have little impact on the Zbb coupling constraints, assuming the relevant loop corrections will be calculated with one more order in the future.


Assuming the results are SM-like

What constraints can we set on new physics models?

 A bad case: Natrual SUSY (loop correction from stop and Higgsino), less constraining than current LHC bounds (see e.g. 1412.3107 by Fan, Reece, Wang).

Two Higgs-doublet model

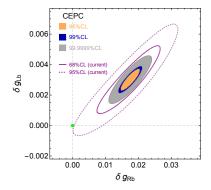


- Type II 2HDM
- Most constraining in the region with small tan β, where the loop contribution involving the charged Higgs dominates.

Small
$$\tan \beta \rightarrow$$
 large $H^{\pm} \bar{b}_L t_R$ coupling \rightarrow large δg_{Lb} .

Jiayin Gu

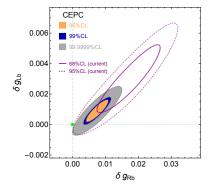
Minimal composite Higgs models (with custodial protection)

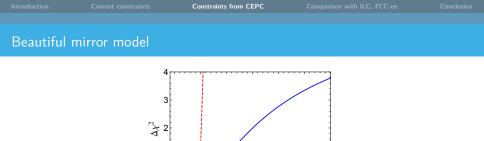


- ► Large correction to $Zb_L\bar{b}_L$ unless protected by an O(4) symmetry $(SU(2)_L \otimes SU(2)_R + P_{LR})$.
- Several P_{LR} breaking effects in realistic models.
- Contribution from fermion loops:

$$rac{\delta g_{Lb}}{g_{Lb}^{\mathrm{SM}}} \simeq rac{y_t^2}{16\pi^2} rac{v^2}{f^2} \log\left(rac{m_
ho^2}{m_4^2}
ight)$$

- ► CEPC Higgs measurement could constrain $f \gtrsim 2.8$ TeV (95%CL).
- ► $Zb\bar{b}$ strongly model dependent (can be useful for model discrimination).


Assuming new physics modifies Zbb


- If the LEP A^b_{FB} discrepancy does come from new physics, how well can we discriminate it from SM?
- Assuming true values coincide with current central values ($\delta g_{Lb}^0 = 0.0030$, $\delta g_{Rb}^0 = 0.0176$).
- SM is easily ruled out with > 99.9999% CL.

Jiayin Gu

Assuming new physics modifies Zbb

- The true values probably do not exactly equal the current central values due to statistical fluctuation!
- Assuming δg⁰_{Lb} and δg⁰_{Rb} are closer to 0 while still being consistent with the current measurements within 68%CL.
- Choose $\delta g_{Lb}^0 = 0.0009$ and $\delta g_{Rb}^0 = 0.0075$.
- SM is still ruled out with 99.9999% CL.

CEPC

 $M_I({\rm TeV})$ Bottom partners, and an exotic quark with charge -4/3.

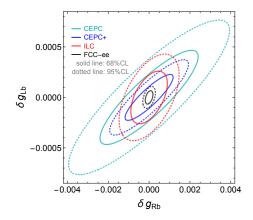
2.0 2.5 3.0 3.5 4.0

1.0 1.5

1

0

- ▶ To explain the LEP A_{FB}^b discrepancy without violating constraints on T parameter, the new quarks can not be too heavy.
- \blacktriangleright Current LHC bound ~ 912 GeV, expected to reach 2 to 2.5 TeV at LHC-14.
- Modification to $Hb\bar{b}$ coupling (~ 4%) can be probed at the Higgs factory.


Jiayin Gu

Comparison with ILC, FCC-ee

- References
 - The International Linear Collider Technical Design Report Volume 2: Physics (arXiv:1306.6352)
 - First Look at the Physics Case of TLEP (arXiv:1308.6176)
- Key differences
 - \blacktriangleright statistics: $\sim 10^9~\textit{Z}\text{s}$ for ILC, $\sim 10^{12}~\textit{Z}\text{s}$ for FCC-ee,
 - systematic uncertainties,
 - (longitudinal) beam polarization: A_b can be directly measured.
- How good could longitudinal beam polarization been implemented at circular colliders?

Observable	ILC	FCC-ee
R_b	0.00014	0.000060
R_l	0.007	0.0010
\mathcal{A}_{b}	0.001	0.00021
A_{LR}	0.0001	0.000021

Results, assuming data is SM like

▶ beam polarization $\rightarrow A_b$ well measured $\rightarrow \delta g_{Rb}$ better constrained, correlation reduced.

			Conclusion
Conclusior	1		

- We estimated the constraints on the Zbb couplings that can be obtained at the CEPC.
- The measurements of the $Zb\bar{b}$ couplings at CEPC can
 - > rule out SM, if the LEP A_{FB}^{b} discrepancy does come from new physic;
 - provide strong constraints on new physics, if the results are SM-like;
 - be complementary to the constraints from oblique corrections, Higgs precision measurements, direct searches at hadron colliders and results from B-factories;
 - help discriminate different models.
- Our results are preliminary but can hopefully serve as a guidance for the future prospectives of Zbb coupling constraints.
- Our results could further motivate the construction of CEPC.

		Conclusion

Thank you!

Jiayin Gu Probing $Zb\overline{b}$ couplings at the CEPC CFHEP, IHEP, CAS

		Conclusion

backup slides

Jiayin Gu Probing $Zb\overline{b}$ couplings at the CEPC CFHEP, IHEP, CAS

		Conclusion

g_{Rb} flip sigr

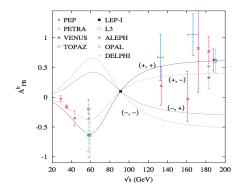
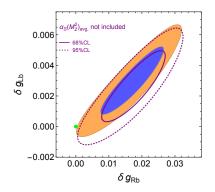
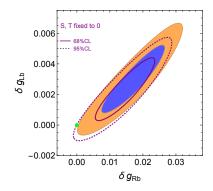



Figure: from hep-ph/0109097


Including $\alpha_{\mathcal{S}}(M_Z^2)_{\text{avg.}}$

 $lpha_{\rm S}({\it M}_{\rm Z}^2)_{\rm avg.}=0.1185\pm0.0005~~{\rm (world~average~w/o~EWPT~result)}$.

		Conclusion

fixing S & T to zero

$S, T, \delta g_{Lb}, \delta g_{Rb}$

	S	Т	δg_{Lb}	δg_{Rb}
S	-0.047 ± 0.097			
Т	0.91	0.015 ± 0.077		
δg_{Lb}	-0.34	-0.23	0.0030 ± 0.0015	
δg_{Rb}	-0.40	-0.30	0.91	0.0176 ± 0.0063

Jiayin Gu

		Conclusion

			Precision		
Observable	Current	CEPC	CEPC+	ILC	FCC-ee
R _b	0.00066	0.00017	0.00008	0.00014	0.000060
	(0.00050)	(0.00016)	(80000.0)		(0.000060)
R _I	0.025	0.007	0.003	0.007?	0.0010
	(0.007)	(0.006)	(0.003)	(0.007?)	(0.0010)
A ^b _{FB}	0.0016	0.00015	0.00007		
10	(0.0007)	(0.00014)	(0.00007)		
A ^l _{FB}	0.0010	0.00014	0.00007		
	(0.0003)	(0.0001)	(0.00005)		
$\mathcal{A}_{l}(\mathcal{P}_{\tau})$	0.0033	0.0006	0.0003		
	(0.0015)	(0.0005)	(0.0003)		
\mathcal{A}_b	0.020			0.001	0.00021
	$(\sim 0.014?)$				(0.00015)
A _{LR}	0.0022			0.0001	0.000021
	(0.0011)			(0.0001)	(0.000015)
# of Zs	$\sim 2 \times 10^7$	$\sim 2 \times 10^9$	$\sim 10^{10}$	$\sim 10^9$	$\sim 10^{12}$

Jiayin Gu

results in tables

	δg_{Lb}	δg_{Rb}	ρ	$\delta g_{Lb} \ (\delta g_{Rb} = 0)$	$\delta g_{Rb} \ (\delta g_{Lb} = 0)$
current	0.0015	0.0079	0.91	0.00061	0.0032
CEPC	0.00031	0.0016	0.87	0.00015	0.00079
CEPC+	0.00015	0.00078	0.88	0.000072	0.00037
ILC	0.00017	0.00059	0.53	0.00015	0.00050
FCC-ee	0.000044	0.00012	0.42	0.000040	0.00011

Jiayin Gu

			Conclusion
Beautiful	mirror model		

$$\Psi_{L,R} = \begin{pmatrix} B \\ X \end{pmatrix} \sim (3, 2, -5/6),$$
(6)

$$\hat{B}_{L,R} \sim (3, 1, -1/3),$$
 (7)

$$-\mathcal{L} \supset M_1 \bar{\Psi}_L \Psi_R + M_2 \bar{\hat{B}}_L \hat{B}_R + y_1 \bar{Q}_L H b_R + y_L \bar{Q}_L H \hat{B}_R + y_R \bar{\Psi}_L \tilde{H} b_R + \text{h.c.}, \quad (8)$$

$$\delta g_{Lb} \approx \frac{Y_L^2}{2M_2^2}, \qquad \delta g_{Rb} \approx \frac{Y_R^2}{2M_1^2}.$$
 (9)

$$T \approx \frac{3}{16\pi^2 \alpha v^2} \left[\frac{16}{3} \delta g_{Rb}^2 M_1^2 + 4\delta g_{Lb}^2 M_2^2 - 4\delta g_{Lb} \frac{M_2^2 m_{\rm top}^2}{M_2^2 - m_{\rm top}^2} \log\left(\frac{M_2^2}{m_{\rm top}^2}\right) \right].$$
(10)

		Conclusion

Beautiful mirror model

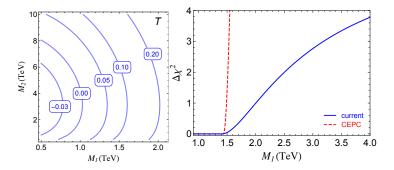
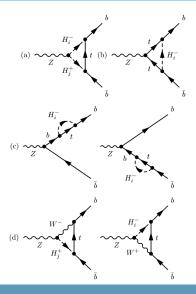
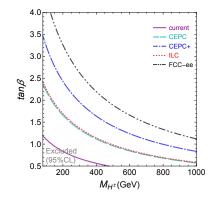
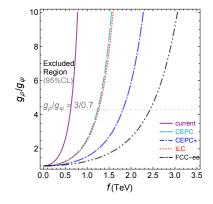



Figure: Left: δg_{Lb} and δg_{Rb} fixed to best fit value.


2HDM, diagrams


Jiayin Gu

		Conclusion

2HDM

Composite Higgs

