

100 TeV pp Collider

Ratio of partonic luminosities at 100 and 14 TeV pp colliders

For particles as heavy as ~ 10 TeV in either of these channels, the rate is increased by a factor larger than one million

 $\frac{M_2}{M_1} \sim \frac{\sqrt{s_2}}{\sqrt{s_1}}$

Scaling relation [W.Barletta, et.al.'14; B. Richter'14] : assuming the reach is obtained by the same # of signal events,

$$L_{1p}\hat{\sigma}_{1p}L_1 = L_{2p}\hat{\sigma}_{2p}L_2$$

With an integrated luminosity

$$L_2 \sim rac{s_2}{s_1} L_1 ~~$$
 => potential mass reach

Probe new particles + new phenomena, in accessible to the LHC, at high mass scales

Note: based on # counting of signal events. The kinematics is ignored.

Z' Benchmark Scenarios

[CEPC-SppC preCDR, '15]

	χ	ψ	η	LR	B-L	SSM	
D	$2\sqrt{10}$	$2\sqrt{6}$	$2\sqrt{15}$	$\sqrt{5/3}$	1	1	
$\hat{\epsilon}^q_L$	-1	1	-2	-0.109	1/6	$ \begin{array}{c} \hat{\epsilon}^u_L \\ \hat{\epsilon}^d_L \end{array} $	$\frac{\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W}{-\frac{1}{2} + \frac{1}{3} \sin^2 \theta_W}$
$\hat{\epsilon}^u_R$	1	-1	2	0.656		$\hat{\epsilon}_R^u$	$-\frac{2}{3}\sin^2\theta_W$
$\hat{\epsilon}^d_R$	-3	-1	-1	-0.874		$\hat{\epsilon}_R^d$	$\frac{1}{3}\sin^2\theta_W$
$\hat{\epsilon}_L^l$	3	1	1	0.327	-1/2	$\hat{\epsilon}^{\nu}_L$ $\hat{\epsilon}^e_L$	$\frac{\frac{1}{2}}{-\frac{1}{2}+\sin^2\theta_W}$
$\hat{\epsilon}^e_R$	1	-1	2	-0.438		$\hat{\epsilon}^e_R$	$\sin^2 \theta_W$
\hat{Q}_u	2	-2	4	0.765	0	$-\frac{1}{2}$	
\hat{Q}_d	-2	-2	1	-0.765	0		_

Either E6-GUT motivated, or simply a sequential Z'

$$-L_{NC} = eJ^{\mu}_{em}A_{\mu} + g_1J^{\mu}_1Z^0_{1\mu} + g_2J^{\mu}_2Z^0_{2\mu},$$

$$J^{\mu}_{\alpha} = \sum_{i} \bar{f}_{i} \gamma^{\mu} [\epsilon^{\alpha i}_{L} P_{L} + \epsilon^{\alpha i}_{R} P_{R}] f_{i}.$$

All Z' nontrivially couple with leptons, with an electroweak coupling

Z' Search via Dilepton Resonance

- Generic: if a new particle is produced in the s-channel at hadron colliders => decays into a pair of hadronic jets
- Simple: if its leptonic decay is suppressed, probably the simplest way for its resonance search
- 🗵 Typical: many leptophobic scenarios, e.g., coloron
- Long history been searched more than three decades: SPS, Tevatron, LHC

[F. Yu'13]

Coloron: massive gauge bosons from SU(3)XSU(3) breaking, leptophobic flavor universal color-octet

$$\mathcal{L} \supset g_s \tan \theta \bar{q} \gamma^{\mu} T^a G_{\mu}^{\prime a} q$$

9

☑ 3/ab at LHC: mass reach to ~6 TeV and ~6.5 TeV for discovery and exclusion for tan_theta = 0.5, respectively.

I5/ab at 100 TeV: moves the discovery reach to ~35 TeV and the exclusion reach to ~40 TeV for tan_theta = 0.5

A naive gain factor expected for mass reach at an 100 TeV pp collider, with proper luminosity

$$M_2 \sim \frac{\sqrt{s_2}}{\sqrt{s_1}} M_1 \sim 7M_1$$

- W, Z, h, t produced via new particles of such a high mass scale are highly boosted
 - Image: Fermionic top partners -> top + Z, h; bottom + W
 - heavy Higgs bosons in 2HDM -> top + top, bottom
- Systematic study on their boosted kinematics at 100 TeV and its detector response are important for new particle search

🛛 A multi-variate method:

- 🗵 a non-linear combination of analysis cuts, with their correlation incorporated
- optimize the efficiencies of the cuts

Top Jets

[J. Hajer, TL, Y.-Y. Li, F.-H. Shiu, arXiv:1504.07617]

(b) $1000\,{\rm GeV} < p_T^j < 1500\,{\rm GeV}$

(b) $1000 \,\text{GeV} < p_T^j < 1500 \,\text{GeV}$

12

- Hadronic top-jet tagger: b secondary vertex and jet mass information, also veto hard lepton.
- Leptonic top-jet tagger: b secondary vertex and lepton information, as well as jet mass requirement

Top Jets

[J. Hajer, TL, Y.-Y. Li, F.-H. Shiu, arXiv:1504.07617]

Hadronic top-jet tagger: most likely faked by b- and h-jets

Leptonic top-jet tagger: low fake rates, due to hard lepton requirement

Z and Higgs jets

[C.-R. Cheng, J. Hajer, TL, I. Low, H. Zhang, preliminary]

- Main variables: bottom likeliness of the constituents;
 - Z-tagger: most likely faked by W hadronic jets
 - h-tagger: most likely faked by hadronic top-jets
- Not fully optimized: jet-substructure might help, but it may suffer from detector resolution

One Application: Fermionic Top Partner

One can use this to search for fermionic top partners and to probe the quadratic divergence cancellation in Higgs mass, via the measurement of Tth and TThh couplings.

F

[C.-R. Cheng, J. Hajer, TL, I. Low, H. Zhang, in progress]

- Extensively exist in NP
 - Singlet: SM + S
 - 🗵 Doublet: 2HDM, MSSM
 - 🗵 Triplet: Type II see-saw, L-R model
 - 🗵 Mixture: 2HDM + S, NMSSM
- Couple with heavy fermions strongly in many scenarios
- The MSSM Higgs sector (no CP-violation): H, A, Hc
 - Two free parameters (in additional to the SM ones) at tree-level: tan_beta, mA/mHc
 - Project sensitivity on a plane of mA/mHc tan_beta

MSSM Higgs Bosons @ 14 TeV

[A. Djouadi et. al.'15]

To probe up to O(1) TeV, new strategies are needed for both moderate and low tan_beta regions

MSSM Higgs Bosons @ 14 TeV

- A potential to exclude mA/mH up to 1 TeV via bbH/A -> bbtt, with tt decaying semi-leptonically, using 3/ab of data.
- Combine with bbH/A -> bbtt, tbHc->tbtb can push the exclusion limit up to ~2 TeV

Kinematics - Heavy Higgs Resonance

[J. Hajer, TL, Y.-Y. Li, F.-H. Shiu, arXiv:1504.07617]

Kinematics - Particles Accompanying Higgs Production

[J. Hajer, TL, Y.-Y. Li, F.-H. Shiu, arXiv:1504.07617]

(a) *b*-quarks accompanying Higgs production

(b) $\Delta \eta$ between the two accompanying *b*-quarks

The b-quarks accompanying Higgs production tend to be forward and backward => large delta eta

Bottom Fusion Pair BDT

☑ Large eta requirement: suppress DY process background.

☑ b secondary vertex: suppress non-b jets.

Kinematic features of (the resonance + the accompanying products)

- Example 1: bbH/A -> bbtt: two hard top jets (one hadronic, one leptonic) with Higgs reconstruction + two b jets with large delta eta
- Example 2: bt Hc -> btbt: one hard leptonic top jet and one hard b jet with Higgs reconstruction + two additional b jets with large delta eta

Model-independent Exclusion Limits

[J. Hajer, TL, Y.-Y. Li, F.-H. Shiu, arXiv:1504.07617]

- The constraints are weaker at 100TeV.
- As mass increases, the constraints become stronger.

 $\left[\begin{array}{c} \mathbf{q} \end{array} \right]$

MSSM Higgs Bosons @ 100 TeV pp

MSSM Higgs Bosons @ 100 TeV pp

Strategy: Three- and Four-Top Channels

26

Strategy: Three- and Four-Top Channels

[N. Craig, J. Hajer, TL, Y.-Y. Li, H. Zhang, preliminary]

- A 100 TeV pp collider such as SppC will provide us great opportunities for searching for new particles, in accessible to the LHC, at high mass scales
- The involved kinematics could be highly non-trivial. More realistic simulation of, e.g., detector response, needs to be done in the future.
- New particles can provide a handle to explore new physics and new fundamental rules involved. The 100 TeV machine will continue to play a crucial role in this regard, if it does discover any.

Strategy: Three- and Four-Top Channels

