CEPC Higgs Physics

Shao-Feng Ge

(gesf02@gmail.com)

Max-Planck-Institut für Kernphysik, Heidelberg, Germany

2014-8-10

On Behalf of the Higgs Working Group

LHC Discovery @ 2012 Higgs Boson (125GeV) - God Particle?

(Nobel 2013)

HEP at a New Historical Turning Point posing : New Opportunities + New Questions + New Challenges

Hong-Jian He's talk on Feb.28 2015

Higgs discovery is not just about *H* particle

Force Mediators

- Gauge Forces Spin-1 Gauge Bosons
- Gravity Spin-2 Graviton (?)
- New Force Spin-0 Higgs Boson
- Deep understanding of Mass Generation
 - Symmetries Hierarchy & Mixing (Flavor Symmetries?)
 - Discrete v.s. Continuous
 - Full v.s. Residual [1104.0602, 1108.0964, 1308.6522]
 - Higgs Self-Interaction Forces h³ & h⁴ (concerns spontaneous EWSB and providing masses to all particles).
- **True Self-Interactions** Exactly the Sample Quantum #
 - 🥌 Spin
 - Charge
- Both Yukawa & Self-Interaction forces associated with spin-0 Higgs were Never Seen Before. Needs to be directly tested.

Current Status

- LEP/Tevatron/LHC have good tests only on gauge forces.
- **Higgs Yukawa Force is Flavor-Dependent** + **Huge Hierarchy**.
 - LHC has limited sensitivity to Yukawa couplings of htt, hbb, $h\tau\tau$ @ the order of $15\% \sim 30\%$.
 - LHC cannot probe other Yukawa Couplings!
- **Higgs Self-Interaction** is also difficult @ LHC **Run-I**.

Shao-Feng Ge (MPIK); CEPC Workshop @ IHEP, 2015-8-10

Standard Model is Incomplete!

Mass Generation

- Yukawa force is Flavor-Dependent & Hierarchically Unnatural
- Higgs mass itself is Radiatively Unnatural
- Vacuum Stability
- Seutrino Oscillation
- Dark Matter
- Matter-Antimatter Asymmetry
- Vacuum Energy & Inflation

Shao-Feng Ge (MPIK); CEPC Workshop @ IHEP, 2015-8-10

CEPC Higgs Physics

135

Beyond SM?

- NO particle beyond SM discovered @ LHC yet!
- New Physics @ Higher Energy?
- Even within SM, we are strongly motivated to quantitatively test Yukawa and Higgs Self-Interaction Forces!
- Precision Measurement + Discovery Machine:
 - LEP + LHC
 - Go beyond!
 - ✓ CEPC (ee, 250 GeV)
 - **SppC** (pp, 50-100 TeV)

Higgs Factory @ 250 GeV

- Solution **SM-like** \rightarrow **Precision test is possible**!
- Solution **CEPC** produces h(125) via $e^+e^- \rightarrow Zh, \nu\nu h, e^+e^-h$
- \checkmark Indirect Probe to New Physics. 5/ab with 2 detectors in 10y \rightarrow 10^{6} Higgs

Shao-Feng Ge (MPIK); CEPC Workshop @ IHEP, 2015-8-10

Production & Background Processes

Large Statistics – 10⁶ Higgs

Process	Cross section Nevents in 5 ab				
Higgs bos	on production, cross se	ection in fb			
$e^+e^- \rightarrow ZH$	212	$1.06 imes 10^6$			
$e^+e^- \rightarrow \nu \bar{\nu} H$	6.72	$3.36 imes 10^4$			
$e^+e^- \to e^+e^- H$	0.63	$3.15 imes 10^3$			
Total	219	$1.10 imes 10^6$			

Clean Background

Background processes, cross section in pb							
$e^+e^- \rightarrow e^+e^-$ (Bhabha)	25.1	$1.3 imes 10^8$					
$e^+e^- \rightarrow qq$	50.2	$2.5 imes 10^8$					
$e^+e^- ightarrow \mu\mu$ (or $ au au$)	4.40	$2.2 imes 10^7$					
$e^+e^- \to WW$	15.4	$7.7 imes 10^7$					
$e^+e^- \rightarrow ZZ$	1.03	$5.2 imes 10^6$					
$e^+e^- \to eeZ$	4.73	$2.4 imes 10^7$					
$e^+e^- \to e\nu W$	5.14	$2.6 imes 10^7$					

Seasy for Simulation [Loop Calculation]

Polarization

$e^+e^- ightarrow Zh$

- Secoil Mass Distribution: $m_{rec}^2 \equiv (\sqrt{s} E_{ff})^2 p_{ff}^2$
 - Cross Section: $\sigma(\mathsf{Zh}) \Rightarrow \Gamma(\mathsf{h} \to \mathsf{ZZ})$
 - 🥃 Higgs Mass: m_h
 - 🥑 Higgs Width: Γ_h
 - Branching Ratios: Model-Independent
 - Invisible Decay

Shao-Feng Ge (MPIK); CEPC Workshop @ IHEP, 2015-8-10

CEPC Higgs Physics

Combination of Various Channels

${\it I}$ $\sigma({\rm Zh})$ [0.51%]

Z decay mode	$\Delta M_H ({\rm MeV})$	$\Delta\sigma(ZH)/\sigma(ZH)$	$\Delta g(HZZ)/g(HZZ)$
ee	13	2.1%	
$\mu\mu$	6.6	0.9%	
$ee + \mu\mu$	5.9	0.8%	0.4%
qq		0.65%	0.32%
$ee+\mu\mu+qq$		0.51%	0.25%

\checkmark h \rightarrow bb [0.28%], cc [2.2%], gg [1.6%]

Channel		$H \to b b$	$H \to cc$	$H \to gg$
$\mu\mu H$	signal	11067	561	1808
	background	467	746	1838
	$\Delta(\sigma\times \mathrm{BR})/\sigma\times \mathrm{BR}$	0.9%	12.6%	3.8%
eeH	signal	11033	544	1914
	background	732	1369	3137
	$\Delta(\sigma\times \mathrm{BR})/\sigma\times \mathrm{BR}$	1.1%	14.6%	5.6%
$\nu\nu H$	$\Delta(\sigma\times {\rm BR})/\sigma\times {\rm BR}$	0.45%	3.2%	2.8%
qqH	$\Delta(\sigma\times \mathrm{BR})/\sigma\times \mathrm{BR}$	0.4%	3.0%	2.6%
Combined	$\Delta(\sigma\times {\rm BR})/\sigma\times {\rm BR}$	0.28%	2.2%	1.6%

Combination of Various Channels

Channel	Precision	Comment
$Z \to \mu \mu, H \to WW^* \to \ell \nu q q, \ell \ell \nu \nu$	4.9%	CEPC Full Simulation
$Z \to ee, H \to WW^* \to \ell \nu q q, \; \ell \ell \nu \nu$	7.0%	Estimated
$Z \rightarrow \nu \nu, H \rightarrow WW^* \rightarrow qqqq$	2.3%	Extrapolated from ILC result
$Z \to qq, H \to WW^* \to \ell \nu qq$	2.2%	Extrapolated from ILC result
Combined	1.5%	

\checkmark h \rightarrow ZZ [4.3%]

Channel	Precision	Comment
$\sigma(Z(\nu\nu)H + \nu\nu H) \times \mathrm{BR}(H \to ZZ)$	6.9%	CEPC Fast Simulation
$BR(H \rightarrow ZZ^*)$	4.3%	Extrapolation from FCC-ee [29]

 \blacksquare h $\rightarrow au au$ [1.2%]

 \checkmark h $\rightarrow \gamma \gamma$ [9.0%]

🥌 h $ightarrow \mu\mu$ [17%]

• $h \rightarrow \text{invisible } [0.14\%]$

Extracting the Physics Potential

Soupling:

$$rac{g_{hii}}{g_{hii}^{
m sm}}\equiv oldsymbol{\kappa_i}\equiv 1+oldsymbol{\delta\kappa_i}\,.$$

Section:

$$rac{\delta\sigma(Zh)}{\sigma(Zh)}\simeq 2\delta\kappa_{\mathbf{Z}}\,,\qquad rac{\delta\sigma(
uar{
u}h)}{\sigma(
uar{
u}h)}\simeq 2\delta\kappa_{\mathbf{W}}\,.$$

Solution Decay Width:

$$\frac{\Gamma_{hii}}{\Gamma_{hii}^{\rm sm}} = \kappa_{\rm i}^2 \,, \qquad \frac{\Gamma_{\rm inv}}{\Gamma_{\rm tot}^{\rm sm}} = {\rm Br}({\rm inv}) \equiv \frac{\delta \kappa_{\rm inv}}{\delta \kappa_{\rm inv}} \,.$$

Stranching Ratio:

$$\mathsf{Br}_i \equiv \frac{\Gamma_i}{\Gamma_{tot}} \simeq \mathsf{Br}_i^{\mathrm{sm}} \left(1 + \sum_j \mathsf{A}_{ij} \delta \kappa_j \right) \,, \qquad \mathsf{Br}_{\mathrm{inv}} \simeq \delta \kappa_{\mathrm{inv}} \,,$$

with coefficients,

$$\mathbf{A}_{\mathbf{ij}} = 2(\delta_{\mathbf{ij}} - \mathbf{Br}^{\mathrm{sm}}_{\mathbf{j}}), \quad \mathbf{A}_{\mathbf{i},\mathbf{inv}} = -1, \quad \mathbf{A}_{\mathbf{inv},\mathbf{i}} = 0, \quad \mathbf{A}_{\mathbf{inv},\mathbf{inv}} = 1.$$

Inputs: Event Rate \rightarrow Cross Section & BR

	ΔΝ	/I _h	Γ _h	$\sigma(Z$	(h)	$\sigma(\nu\nu h) imes { m Br}(h -$		$\rightarrow bb)$		
-	5.9 N	/leV 2	2.8%	0.51	۱%	-	2	.8%		
		Deca	ay Mod	e	$\sigma(Z$	$(H) \times B_1$	r	Br		
	_	$h \rightarrow$	bb		().28%		0.57%		
		h ightarrow	СС			2.2%		2.3%		
		h ightarrow	gg			1.6%		1.7%		
		h ightarrow	au au			1.2%		1.3%		
		h ightarrow	h ightarrow WW			1.5%		1.6%		
		h ightarrow	ZZ			4.3%		4.3%		
		h ightarrow	$\gamma\gamma$			9.0%		9.0%		
		h ightarrow	$\mu\mu$			17%		17%		
		h ightarrow	invisit	ole		_		0.14%		
$Br(b\bar{b})$	$\operatorname{Br}(c\bar{c})$	Br(gg) Br(τ	7) B	Br(W	N) Br(Z	Z)]	$Br(\gamma\gamma)$	$\operatorname{Br}(\mu\bar{\mu})$	Br(inv)

58.1% 2.10% 7.40% 6.64% 22.5% 2.77% 0.243% 0.023% 0

Analytical Linear χ^2 Fit – Definition

Observable Basis:

$$\chi^{2} = (\mathcal{O}^{th,0} + \mathcal{A}\delta\kappa - \mathcal{O}^{exp})^{T}\overline{\Sigma}^{-1}(\mathcal{O}^{th,0} + \mathcal{A}\delta\kappa - \mathcal{O}^{exp}),$$

where the error matrix $\overline{\Sigma}^{-1}$ of measurements is diagonal,

$$\overline{\boldsymbol{\Sigma}}^{-1} = \operatorname{diag}\left\{\frac{1}{(\Delta \mathcal{O}_1)^2}, \frac{1}{(\Delta \mathcal{O}_2)^2}, \cdots, \frac{1}{(\Delta \mathcal{O}_n)^2}\right\}.$$

Fitting Basis:

$$\chi^2 \equiv \chi^2_{\rm min} + \delta \kappa^T \Sigma^{-1} \delta \kappa \,,$$

can be obtained by a simple matrix manipulation,

$$\boldsymbol{\Sigma}^{-1} = \boldsymbol{\mathcal{A}}^T \overline{\boldsymbol{\Sigma}}^{-1} \boldsymbol{\mathcal{A}}$$

So Data yet

$$\mathcal{O}^{th,0}=\mathcal{O}^{exp} \quad \Longrightarrow \quad \chi^2_{\min}=0\,.$$

This assumption affects only χ^2_{\min} , not error matrix Σ^{-1} .

Analytical Linear χ^2 Fit – Marginalization

Marginalization

Uncertainty

When talking about the uncertainty of a specific fitting parameter, the number quoted should be independent of any other parameters.

$$\mathbb{P}(\delta\kappa_1\cdots\hat{\delta\kappa_k}\cdots\delta\kappa_n) = \int_{-\infty}^{+\infty}\mathbb{P}(\delta\kappa_1\cdots\delta\kappa_k\cdots\delta\kappa_n)\,\mathrm{d}\delta\kappa_k\,.$$

Keep doing this until only one parameter is left.

Solution Matrix Manipulation For linear χ^2 fit, Gaussian-type integration can be replaced by matrix manipulation.

$$\widetilde{\boldsymbol{\Sigma}}_{jj}^{-1} = \boldsymbol{\Sigma}_{jj}^{-1} - \frac{\boldsymbol{\Sigma}_{ik}^{-1}\boldsymbol{\Sigma}_{jk}^{-1}}{\boldsymbol{\Sigma}_{kk}^{-1}} \cdot \underbrace{\boldsymbol{\Sigma}_{ik}^{\sigma_{ij}}}_{\sigma_{ij}} \cdot \underbrace{\boldsymbol{\Sigma}_{ij}^{\sigma_{ij}}}_{\sigma_{ij}} \cdot \underbrace{\boldsymbol{\Sigma}_{ij$$

Table: Precisions on measuring Higgs couplings at CEPC (250GeV, $5ab^{-1}$), in comparison with LHC (14TeV, $300fb^{-1}$), HL-LHC (14TeV, $3ab^{-1}$) and ILC (250GeV, $250fb^{-1}$)+(500GeV, $500fb^{-1}$).

Precision (%)	CEPC		LHC	HL-LHC	ILC-250+500
κ _Z	0.254	0.254	8.5	6.3	0.50
κ_W	1.22	1.22	5.4	3.3	0.46
κ_γ	4.67	4.67	9.0	6.5	8.6
κ_{g}	1.52	1.52	6.9	4.8	2.0
κ_b	1.29	1.29	14.9	8.5	0.97
κ_c	1.69	1.69	_	-	2.6
$\kappa_{ au}$	1.40	1.40	9.5	6.5	2.0
κ_{μ}	-	8.59	-	-	-
$\mathrm{Br_{inv}}$	0.138	0.138	8.0	4.0	0.52
Γ_h	2.8	2.8	-	-	_

LHC & ILC from 1312.4974

New physics appears @ high energy scale & can only be probed Indirectly

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \sum_i rac{\mathsf{c}_{\mathsf{i}}}{\Lambda^2} \mathcal{O}_{\mathsf{i}}$$
 .

SM Gauge Invariance is respected

$$\begin{split} \mathcal{O}_{\mathsf{H}} &\equiv \frac{1}{2} (\partial_{\mu} |\mathsf{H}|^{2})^{2} , \qquad \mathcal{O}_{\mathsf{T}} \equiv \frac{1}{2} (\mathsf{H}^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \mathsf{H})^{2} , \\ \mathcal{O}_{WW} &\equiv g^{2} |\mathsf{H}|^{2} W_{\mu\nu}^{a} W^{a,\mu\nu} , \qquad \mathcal{O}_{BB} \equiv g'^{2} |\mathsf{H}|^{2} B_{\mu\nu} B^{\mu\nu} , \\ \mathcal{O}_{WB} &\equiv gg' \mathsf{H}^{\dagger} \sigma^{a} \mathsf{H} W_{\mu\nu}^{a} B^{\mu\nu} , \qquad \mathcal{O}_{HB} \equiv ig' (D^{\mu} \mathsf{H})^{\dagger} (D^{\nu} \mathsf{H}) B_{\mu\nu} , \\ \mathcal{O}_{HW} &\equiv ig (D^{\mu} \mathsf{H})^{\dagger} \sigma^{a} (D^{\nu} \mathsf{H}) W_{\mu\nu}^{a} , \qquad \mathcal{O}_{\mathsf{L}}^{(3)} \equiv (i\mathsf{H}^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D}_{\mu} \mathsf{H}) (\overline{\Psi}_{L} \gamma^{\mu} \sigma^{a} \Psi_{L}) , \\ \mathcal{O}_{LL}^{(3)} &\equiv (\overline{\Psi}_{L} \gamma_{\mu} \sigma^{a} \Psi_{L}) (\overline{\Psi}_{L} \gamma^{\mu} \sigma^{a} \Psi_{L}) , \qquad \mathcal{O}_{\mathsf{H}} \equiv (\mathsf{H}^{\dagger} \mathsf{H}) \overline{\Psi}_{L} \mathsf{H} \psi_{R} , \\ \mathcal{O}_{\mathsf{L}} &\equiv (i\mathsf{H}^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \mathsf{H}) (\overline{\Psi}_{L} \gamma^{\mu} \Psi_{L}) , \qquad \mathcal{O}_{\mathsf{R}} \equiv (i\mathsf{H}^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \mathsf{H}) (\overline{\psi}_{R} \gamma^{\mu} \psi_{R}) . \end{split}$$

Solution Z-Scheme to fix free parameters in EW sector

$$(\boldsymbol{lpha},\, \mathbf{G}_{\mathbf{F}},\, \mathbf{M}_{\mathbf{Z}}) \Longleftrightarrow (\mathbf{g},\, \mathbf{g}',\, \mathbf{v})$$

Zeroth-Order Correlation

$$\sin 2\theta_w^{(0)} \equiv \sqrt{\frac{4\pi \boldsymbol{\alpha}^{(0)}}{\sqrt{2} \mathbf{G}_{\mathbf{F}}^{(0)} \left(\mathbf{M}_{\mathbf{Z}}^{(0)}\right)^2}} \,.$$

🥑 Inputs

$$\frac{\delta \sigma(Zh)}{\sigma(Zh)} = 0.51\% \$$
CEPC,
M_W = 80.835 ± 0.015GeV

Effective Field Approach

Higgs Self-Coupling

 \checkmark Rescaling of the trilinear term h^3

$$\Delta {\cal L} = - rac{1}{3!} oldsymbol{\delta\kappa_{h3}} \lambda_{hhh}^{sm} h^3$$
 .

Solution Affect $\sigma(\mathsf{Zh})$ via Loop Correction

 ${\scriptstyle \checkmark}$ Constrained by $\sigma({\sf Zh})$ meansurement

$$rac{\delta\sigma(Zh)}{\sigma(Zh)}pprox \mathbf{2} imes\delta\kappa_Z + \mathbf{0.014} imes \mathbf{\delta\kappa_{h3}}\,.$$

1312.3322

Higgs Self-Coupling

CEPC Test of Higgs CP Violation

- ${old s}$ LHC: h ightarrow ZZ, au au
- ${\scriptstyle {\small \bigcirc}}~~ {\sf CEPC}{\scriptstyle :}~ {\sf h}
 ightarrow au au$

$$\mathcal{L}_{h\tau\tau} \propto rac{y_{ au}}{\sqrt{2}} h ar{ au} (\cos \Delta + i \gamma_5 \sin \Delta) au \,.$$

 \checkmark Complex enough to retain info about the au spin.

$$\begin{split} h &\to \tau^+ + \tau^- \\ &\to \rho^+ \bar{\nu}_\tau + \rho^- \nu_\tau \\ &\to \pi^+ \pi^0 \bar{\nu}_\tau + \pi^- \pi^0 \nu_\tau \,. \end{split}$$

CP-even part $(\cos \Delta)$ in **p-wave** & **CP-odd** $(\sin \Delta)$ in s-wave.

Section Measurement @ CEPC

Higgs Report

Colliders	LHC	HL-LHC	CEPC1	CEPC5	CEPC10
$Accuracy(1\sigma)$	25°	8.0°	5.5°	2.5°	1.7°

Summary

- Higgs Discovery is not just about New Particle, but also New Force!
 - Signature Strategie State Strategie Strategie
 - **G** Higgs Self-Interaction Force: Radiatively Unnatural

Sew Physics

- Neutrino Oscillation
- Dark Matter
- Matter-Antimatter Asymmetry
- Vacuum Energy & Inflation
- LHC Discovery Machine vs Poor sensitivity
- Sepc 10⁶ Higgs
 - \checkmark Higgs Coupling $\sim \mathcal{O}(1\%)$ Level
 - Probe the scale of new physics to 10 TeV
 - \checkmark Higgs Self-Coupling \sim 30%
 - \checkmark Precise measurement of CP $\sim 2.5^\circ$

Thank You!