Naturalness and Higgs Measurements

Nathaniel Craig University of California, Santa Barbara

Workshop on Physics at the CEPC IHEP 08/10/15

Institute of High Energy Physics Chinese Academy of Sciences

CEPC precision on Higgs couplings will provide an entirely new window on physics beyond the Standard Model.

Not merely an improvement on LHC Higgs coupling measurements; it *probes entirely new possibilities.*

Testing the Higgs

- Sharp predictions for Higgs couplings in the Standard Model; *completely fixed by mass spectrum*.
- Any deviations are an unambiguous sign of new physics.
- Extensions of the Standard Model give motivated patterns and magnitudes for coupling deviations.
- The coupling reach at CEPC provides qualitatively new probes of the most motivated scenarios for physics beyond the Standard Model.

Higgs couplings at CEPC

ΔM_H	Γ_H	$\sigma(ZH)$	$\sigma(\nu\nu H) \times \mathrm{BR}(H \to bb)$
5.9 MeV	2.8%	0.51%	2.8%
Decay mode		$\sigma(ZH) \times BR$	BR
$H \rightarrow bb$		0.28%	0.57%
$H \to cc$		2.2%	2.3%
$H \to gg$		1.6%	1.7%
$H \to \tau \tau$		1.2%	1.3%
$H \to WW$		1.5%	1.6%
$H \to ZZ$		4.3%	4.3%
$H o \gamma \gamma$		9.0%	9.0%
$H o \mu \mu$		17%	17%
$H \to \mathrm{inv}$		_	0.28%

The benchmark precision @ 5/ab

Higgs couplings at CEPC

Inference of couplings from 7-parameter fit

Higgs & Hierarchy Problem

- Great triumph of Run 1 @ LHC: discovery of an SM-like Higgs @ 125 GeV.
- Great challenge for the future: sensitivity of elementary scalar mass to higher physical thresholds.
- We expect many scales above the weak scale: flavor, dark matter, neutrino mass, gauge coupling unification, PQ symmetry breaking, ...
- At the very least, as far as we know a theory of quantum gravity should give physical thresholds around the string scale.
- An apparently elementary Higgs makes the hierarchy problem as pressing as ever.

Natural vs. unnatural

Hierarchy problem is not a "just-so story"

Field Symmetry as $m \to 0$ Implication Spin-1/2 $m\Psi\bar{\Psi}$ $\Psi \to e^{i\alpha\gamma_5}\Psi$ $\delta m \propto m$ **Natural!** (chiral symmetry) Spin-1 $m^2 A_\mu A^\mu$ $A_{\mu} \to A_{\mu} + \partial_{\mu} \alpha$ $\delta m \propto m$ (gauge invariance) **Natural!** •mSpin-0 $m^2|H|^2$ $\delta m \propto \Lambda$ None **Unnatural!**

 $m_h^2 \sim \frac{3y_t^2}{4\pi^2} \tilde{m}^2 \log(\Lambda^2/\tilde{m}^2)$ Totally natural: $\tilde{m} \lesssim 200 \,\text{GeV}$

A physics driver @ LHC

170 of these 226 channels tied to naturalness

A	FLAS SUSY Sea	arches	* - 9	5% (CL L	ower Limits	ATL	S Preliminary
Sta	atus: Feb 2015							$\sqrt{s} = 7, 8 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	-1] Mass limit		Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}i_{1},\bar{q}-q\bar{q}^{2}i_{1}^{2} \\ \bar{q}y_{1},\bar{q}-q\bar{q}^{2}i_{1}^{2} \\ \bar{q}y_{1},\bar{q}-q\bar{q}^{2}i_{1}^{2} \\ \bar{g}k_{2},\bar{k}-qq\bar{q}r^{2}i_{1}^{2} \\ \bar{g}k_{3},\bar{k}-qq\bar{q}r^{2}i_{1}^{2} \\ \bar{g}k_{3},\bar{k}-qq\bar{q}r^{2}i_{1}^{2} \\ \bar{g}dM(kno NLSP) \\ \bar{G}GM(kno NLSP) \\ \bar{G}M(kno NLSP) \\ \bar{G}M(kn$	$\begin{matrix} 0 \\ 0 \\ 1 & \gamma \\ 0 \\ 1 & e, \mu \\ 2 & e, \mu \\ 1 & 2 & \tau + 0 - 1 & \ell \\ 2 & \gamma \\ 1 & e, \mu + \gamma \\ \gamma \\ 2 & e, \mu & (Z) \\ 0 \end{matrix}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-2 jets - 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20 20 20.3 20.3 20.3 4.8 4.8 4.8 5.8 20.3	4.2 1 4 850 GeV 7 850 GeV 8 1.33 TeV 8 1.21 TeV 900 GeV 1.25 TeV 8 619 GeV 8 600 GeV 855 GeV 855 GeV	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1405.7875 1405.7875 1405.7875 1405.7875 1501.03555 1501.03555 1407.0803 ATLAS-COMF-2014-001 ATLAS-COMF-2012-144 1211.1167 ATLAS-COMF-2012-154 1502.01518
3 rd gen. § med.	$\overline{g} \rightarrow b \overline{b} \overline{\chi}_{1}^{0}$ $\overline{g} \rightarrow t \overline{t} \overline{\chi}_{1}^{0}$ $\overline{g} \rightarrow t \overline{t} \overline{\chi}_{1}^{0}$ $\overline{g} \rightarrow b \overline{t} \overline{\chi}_{1}^{+}$	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	2 1.25 TeV 2 1.1 TeV 2 1.3 TeV 2 1.3 TeV	$\begin{array}{l} m(\tilde{\ell}_{1}^{1})\!<\!400~\text{GeV} \\ m(\tilde{\ell}_{1}^{1})\!<\!450~\text{GeV} \\ m(\tilde{\ell}_{1}^{0})\!<\!400~\text{GeV} \\ m(\tilde{\ell}_{1}^{0})\!<\!400~\text{GeV} \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} & \bar{b}_1 \bar{b}_1 , \bar{b}_1 \rightarrow b \tilde{k}_1^0 \\ & \bar{b}_1 \bar{b}_1 , \bar{b}_1 \rightarrow k \tilde{t}_1^0 \\ & \bar{i}_1 \bar{i}_1 , \bar{i}_1 \rightarrow k \tilde{t}_1^+ \\ & \bar{i}_1 \bar{i}_1 , \bar{i}_1 \rightarrow b \tilde{t}_1^+ \\ & \bar{i}_1 \bar{i}_1 , \bar{i}_1 \rightarrow b \tilde{t}_1^0 \\ & \bar{i}_1 \bar{i}_1 , \bar{i}_1 \rightarrow k \tilde{t}_1^0 \\ & \bar{i}_1 \bar{i}_1 , \bar{i}_1 \rightarrow k \tilde{t}_1^0 \\ & \bar{i}_1 \bar{i}_1 , \bar{i}_1 \rightarrow k \tilde{t}_1^0 \\ & \bar{i}_1 \bar{i}_1 - k \tilde{t}_1 \\ & \bar{i}_1 \bar{i}_1 (natural GMSB) \\ & \bar{i}_2 \bar{i}_2 , \bar{i}_2 \rightarrow \bar{i}_1 + Z \end{split} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1\text{-}2 \ e, \mu \\ 2 \ e, \mu \\ 0\text{-}1 \ e, \mu \\ 0 \ \text{-}1 \ e, \mu \\ 0 \ \text{-}1 \ e, \mu \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 1-2 b nono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3 20.3	à. 100-620 GeV b. 275-440 GeV 7.100-167 GeV 7.100-167 GeV 230-460 GeV 7.100-167 GeV 7.100-167 GeV 230-460 GeV 7.100-160 GeV 7.100-167 GeV 210-520 GeV 7.100-640 GeV 7.100-167 GeV 220-600 GeV 7.100-640 GeV	$\begin{split} m(\vec{r}_1)\!<\!s0~GeV \\ m(\vec{r}_1)\!=\!2~m(\vec{r}_1) \\ m(\vec{r}_1)\!=\!2m(\vec{r}_1), m(\vec{r}_1)\!=\!55~GeV \\ m(\vec{r}_1)\!=\!1~GeV \\ m(\vec{r}_1)\!=\!1~GeV \\ m(\vec{r}_1)\!=\!1~GeV \\ m(\vec{r}_1)\!=\!1~GeV \\ m(\vec{r}_1)\!=\!55~GeV \\ m(\vec{r}_1)\!=\!250~GeV \end{split}$	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1406.1122 1407.0508 1403.5222 1403.5222
EW direct	$ \begin{split} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{k}_{1}^{0} \\ \tilde{\ell}_{L,R}^{T} \tilde{\lambda}_{1}^{T} \rightarrow \tilde{\ell} \lambda(\ell \bar{\nu}) \\ \tilde{\lambda}_{1}^{T} \tilde{\lambda}_{1}^{T}, \tilde{\lambda}_{1}^{T} \rightarrow \tilde{\ell} \lambda(\ell \bar{\nu}) \\ \tilde{\lambda}_{1}^{T} \tilde{\lambda}_{2}^{T} \rightarrow \tilde{\ell}_{1} \sqrt{\ell}_{L}(\ell \bar{\nu} \nu), \tilde{\ell} \tilde{\ell}_{L} \ell(\bar{\nu} \nu) \\ \tilde{\lambda}_{1}^{T} \tilde{\lambda}_{2}^{T} \rightarrow \tilde{k}_{1} \sqrt{\ell}_{L} \ell(\bar{\nu} \nu), \tilde{\ell} \tilde{\ell}_{L} \ell(\bar{\nu} \nu) \\ \tilde{\lambda}_{1}^{T} \tilde{\lambda}_{2}^{T} \rightarrow W \tilde{\lambda}_{1}^{T} \tilde{\lambda}_{1}^{T} \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \\ \tilde{\lambda}_{2}^{T} \tilde{\lambda}_{2}^{T} \sigma_{2} - \tilde{k} \ell \ell \end{split} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ γγ e,μ,γ 4 e,μ	0 0 - 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	2 90-325 GeV k° 140-455 GeV k° 100-350 GeV k° 1, k° 100-350 GeV k° 1, k° 100-350 GeV k° 1, k° 100-350 GeV k° 1, k° 100-350 GeV	$\begin{split} m(\tilde{t}_{1}^{2}) &= OGeV \\ m(\tilde{t}_{1}^{2}) &= OGeV, m(\tilde{c}_{1}^{2}) &= O(m(\tilde{c}_{1}^{2}) + m(\tilde{c}_{1}^{2})) \\ m(\tilde{c}_{1}^{2}) &= OGeV, m(\tilde{c}_{1}^{2}) &= O(m(\tilde{c}_{1}^{2}) + m(\tilde{c}_{1}^{2})) \\ m(\tilde{c}_{1}^{2}) &= m(\tilde{c}_{2}^{2}), m(\tilde{c}_{1}^{2}) &= O(m(\tilde{c}_{1}^{2}) + m(\tilde{c}_{1}^{2})) \\ m(\tilde{c}_{1}^{2}) &= m(\tilde{c}_{2}^{2}), m(\tilde{c}_{1}^{2}) &= O(m(\tilde{c}_{1}^{2}) + m(\tilde{c}_{1}^{2})) \\ m(\tilde{c}_{1}^{2}) &= m(\tilde{c}_{2}^{2}), m(\tilde{c}_{1}^{2}) &= O(m(\tilde{c}_{2}) + m(\tilde{c}_{1}^{2})) \\ m(\tilde{c}_{1}^{2}) &= m(\tilde{c}_{1}^{2}), m(\tilde{c}_{1}^{2}) &= O(m(\tilde{c}_{2}) + m(\tilde{c}_{1}^{2})) \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086
Long-lived particles	Direct $\tilde{k}_{1}^{\dagger}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, GMSB, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}_{0}, \tilde{\mu}) + \tau(e, GMSB, \tilde{\chi}_{1}^{0} \rightarrow qgu (RPV)$	Disapp. trk 0 trk μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	X² 270 GeV k 832 GeV k 537 GeV X² 537 GeV X² 435 GeV q 1.0 TeV	$\begin{split} m(\tilde{r}_{1}^{1}) + m(\tilde{r}_{1}^{2}) &= 160 \; MeV, \; \tau(\tilde{r}_{1}^{1}) &= 0.2 \; ns \\ m(\tilde{r}_{1}^{2}) &= 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ &= 10 \cdot tang^2 < 50 \\ &= 2 \cdot \tau(\tilde{r}_{1}^{2}) < 3 \; ns, \; SPS \; model \\ &= 1.5 < ex - t56 \; mm, \; BR(\mu) = 1, \; m(\tilde{r}_{1}^{2}) = 108 \; GeV \end{split}$	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear RPV CMSSM \\ \tilde{x}_{1}^{+} \tilde{x}_{1}^{-}, \tilde{x}_{1}^{+} \rightarrow W \tilde{x}_{1}^{0}, \tilde{x}_{1}^{0} \rightarrow e \tilde{v}_{\mu}, e \mu \tilde{v}_{e} \\ \tilde{x}_{1}^{+} \tilde{x}_{1}^{-}, \tilde{x}_{1}^{+} \rightarrow W \tilde{x}_{1}^{0}, \tilde{x}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e \tau \tilde{v}_{\tau} \\ \tilde{s}^{-} q e q \\ \tilde{s} \rightarrow \tilde{q} e \eta \\ \tilde{s} \rightarrow \tilde{t}_{1} t, \tilde{t}_{1} \rightarrow b s \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 0-3 b - - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3	p. 1.61 p. 1.1 TeV \$\$\overline\$ 1.35 TeV \$\$\overline\$ 750 GeV \$\$\overline\$ 750 GeV \$\$\overline\$ 96 GeV \$\$\overline\$ 96 GeV	$\label{eq:constraint} \begin{array}{l} \textbf{TeV} \lambda_{111}^{*} = 0.10, \ \lambda_{122} = 0.05 \\ \lambda_{111}^{*} = 0.10, \ \lambda_{123} = 0.05 \\ m(\overline{q}) = m(\overline{q}), \ c_{223} = c_{233} = c_{233} \\ m(\overline{q}) = m(\overline{q}), \ c_{223} = m(\overline{q}), \ \lambda_{123} = 0 \\ m(\overline{q}) = 2.2 \\ m(\overline{q}), \ a_{223} = m(\overline{q}), \ \lambda_{123} = 0 \\ BR(y) = BR(y) = BR(y) = BR(y) = 0.05 \\ \end{array}$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 490 GeV	m(${ar t}_1^0)$ <200 GeV	1501.01325
	$\sqrt{s} = 7 \text{ TeV}$ full data	s = 8 TeV artial data	$\sqrt{s} = $ full	8 TeV data	1	D ⁻¹ 1	Mass scale [TeV]	J

Beyond the LHC

- LHC has finite reach in direct searches for states associated with naturalness.
- There are also possible holes in search coverage well below the LHC's kinematic limits.
- The question of naturalness of the weak scale will not be settled by the LHC.
- Precision Higgs coupling measurements (specifically, better than %-level) at CEPC can go much further.

Naturalness at CEPC

Very generally:

Solutions to hierarchy problem influence Higgs mass

Generically also give Higgs wavefunction renormalization

Effects generically correlated.

Latter effects measurable in Higgs coupling deviations.

Minimal supersymmetric extension of the Standard Model requires two doublets H_u, H_d

After EWSB, five physical states:

Potential SM-
like Higgs

Neither CP-even scalar is exactly SM-like; tree-level mixing leads to Higgs coupling deviations.

Higgs potential is fixed by supersymmetry; free parameters are m_{H} , tan β

SUSY at tree level

In the limit $m_h \ll m_H$ coupling deviations are clear:

SUSY at tree level

In detail...

CEPC: ~1.2% precision in κ_b (combined 7-param fit)

Reach comparison

HL-LHC direct reach vs. CEPC coupling reach

Higgs mixes w/ heavy resonances, couplings dictated by symmetries (as in the chiral lagrangian)

$$\kappa_V \sim \sqrt{1 - \frac{v^2}{f^2}} \sim 1 - \frac{v^2}{2f^2} + \dots$$

f = decay constant of pNGB Higgs

Coupling deviation contributes to precision electroweak

Pre-LHC constraints as good as reach of LHC Higgs coupling measurements

$$\int \cdots \int \delta \kappa_V \lesssim 5\%$$

Reach comparison

Adopted from [Thamm, Torre, Wulzer, 1502.01701]

CEPC coupling sensitivity constrains *f* well beyond existing precision electroweak limits

Also far exceeds direct LHC reach for heavy resonances

Pushes naturalness of composite models to below the 1% level

Neutral fermionic partners

21

e.g. Twin Higgs

No direct sensitivity @ LHC Higgs is a pNGB; coupling deviations like those of composite Higgs models

$$\kappa_V \sim \sqrt{1 - \frac{v^2}{f^2}} \sim 1 - \frac{v^2}{2f^2} + \dots$$

f sets mass scale for neutral top partners; definitive and test of "neutral" naturalness.

Neutral scalar partners

Enforce naturalness by couplings $y_t^2 |H|^2 |\Phi|^2$ to the Higgs of the form

Just like stops in SUSY, but neutral under the SM

No direct sensitivity @ LHC.

How to probe experimentally with the Higgs?

- No tree-level coupling deviations.
- No loop-level contributions to loop-level couplings.
- But there are *oblique corrections*.

Neutral scalar partners

Looks like wavefunction renormalization for the physical Higgs.

Neutral scalar partners

Canonically normalize kinetic term→shift *all* Higgs couplings

But measure $\delta \sigma_{Zh}$ directly at CEPC via Z recoils.

 m_T [GeV]

Beyond couplings

 $\mathcal{L}_{\text{eff}} \supset c_{ZZ}^{(1)} H Z_{\mu} Z^{\mu} + c_{ZZ}^{(2)} H Z_{\mu\nu} Z^{\mu\nu} + c_{Z\widetilde{Z}} H Z_{\mu\nu} \widetilde{Z}^{\mu\nu} + c_{AZ} H Z_{\mu\nu} A^{\mu\nu} + c_{A\widetilde{Z}} H Z_{\mu\nu} \widetilde{A}^{\mu\nu}$ $+ H Z_{\mu} \overline{\ell} \gamma^{\mu} \left(c_V + c_A \gamma_5 \right) \ell + Z_{\mu} \overline{\ell} \gamma^{\mu} (g_V - g_A \gamma_5) \ell - g_{\text{em}} Q_{\ell} A_{\mu} \overline{\ell} \gamma^{\mu} \ell,$

Beneke, Boito, Wang [1406.1361]

coupling shifts; much more information in tensor structure, accessible in angular variables

Studies to date focus on

 $\mathcal{A}_{\theta_1} = \frac{1}{d\Gamma/dq^2} \int_{-1}^{1} d\cos\theta_1 \, \operatorname{sgn}(\cos(2\theta_1)) \, \frac{d^2\Gamma}{dq^2 d\cos\theta_1}$ $\mathcal{A}_{\phi}^{(1)} = \frac{1}{d\Gamma/dq^2} \int_{0}^{2\pi} d\phi \, \operatorname{sgn}(\sin\phi) \, \frac{d^2\Gamma}{dq^2 d\phi} \qquad \qquad \mathcal{A}_{\phi}^{(3)} = \frac{1}{d\Gamma/dq^2} \int_{0}^{2\pi} d\phi \, \operatorname{sgn}(\cos\phi) \, \frac{d^2\Gamma}{dq^2 d\phi}$ $\mathcal{A}_{\phi}^{(2)} = \frac{1}{d\Gamma/dq^2} \int_{0}^{2\pi} d\phi \, \operatorname{sgn}(\sin(2\phi)) \, \frac{d^2\Gamma}{dq^2 d\phi} \qquad \qquad \mathcal{A}_{\phi}^{(4)} = \frac{1}{d\Gamma/dq^2} \int_{0}^{2\pi} d\phi \, \operatorname{sgn}(\cos(2\phi)) \, \frac{d^2\Gamma}{dq^2 d\phi}$

NC, Jiayin Gu, Zhen Liu, Kechen Wang, In Progress

CEPC sensitive not only to coupling shifts, but different tensor structures.

- Truncate flat directions in the HEFT.
- Improve BSM reach by using added information.
- Distinguish between different BSM models with similar total cross section shifts.

Conclusions

With sub-percent level precision in many channels, CEPC:

- Places strong constraints on tree-level corrections to tree-level couplings, *exceeding reach of direct searches.*
- Also constrains loop-level corrections to loop-level couplings, *covering holes in direct searches at LHC.*
- Most impressively, constrains loop-level corrections to tree-level couplings. *Qualitatively new territory.*

Covers the parameter space of Higgs deviations motivated by naturalness.