Precision QCD measurement at CEPC

Hua Xing Zhu SLAC

Workshop on physics at the CEPC August 12, 2015

Outline

- Brief history of QCD measurement at e+e- collider
- Precision alphas measurement from e+e- global event shape and jet rates
- Non-global event shape at e+e- collider
- Summary

History of QCD measurement at e+e- Collider

- The first experiment evident of quark-parton came from deep inelastic scattering experiment around 1970s
- Around the same time study on QCD hadron production in e+ecollider started

First 3 jets event observed at PETRA

Energy dependence of three jet rates

Advantage of QCD study at e+e- collider

- e+e- collider is an ideal laboratory for studying QCD
 - No interference between initial state and final state
 - In the absent of significant QED radiation, four momentum of initial state fully transferred to final state
 - Usually clean experimental conditions. No multiple interactions in a given bunch crossing.

Precision observables at e+e- collider

- Strong coupling constant is perhaps the most important parameter of • QCD. Can be measured from a number of precision observables at e+e- collider
- Inclusive observables:

$$- R_{e^+e^-} = \sigma(e^+e^- \to \text{hadrons})/\sigma(e^+e^- \to \mu^+\mu^-)$$

$$- R_Z = \Gamma(Z^0 \to \text{hadrons})/\Gamma(Z^0 \to \text{leptons})$$

$$- R_{\tau} = \Gamma(\tau \to \text{hadrons})/\Gamma(\tau \to \text{leptons})$$

-
$$R_Z = \Gamma(Z^0 \to \text{hadrons}) / \Gamma(Z^0 \to \text{leptons})$$

-
$$R_{\tau} = \Gamma(\tau \rightarrow \text{hadrons}) / \Gamma(\tau \rightarrow \text{leptons})$$

- Exclusive observables
 - e+e- event shape
 - Jets rate

LO is sensitive to alphas

Global event shape observables

- Global e+e- event shape are usually designed as approaching zero for pencil-like events
- Thrust: $1 T = 1 \max_{\vec{n}_T} \frac{\sum_i |\vec{p}_i \cdot \vec{n}_T|}{\sum_i |\vec{p}_j|}$

- Heavy jet mass : $\frac{\max(M_L^2, M_R^2)}{Q^2}$ Total jet broadening : $\frac{\sum_i |\vec{p}_i \times \vec{n}_T|}{\sum_j |\vec{p}_j|}$
- **C** parameter: $\frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_i |\vec{p}_i|)^2}$

Large nonperturbative power corrections in event shape obs. $\mathcal{O}(\Lambda/Q)$ Large center of mass energy very welcome!

Typical feature of event shape

Highlights of precision calculation for event shape in the past 10 years

- NNLO QCD corrections to three jet production at e+ecollider:
 - Gehrmann-De Ridder, Gehrmann, Glover, Heinrich, 2007
 - See also Weinzierl, 2008

Application of Soft-Collinear Effective Theory (SCET) to event shape resummation

- Thrust: Becher, Schwartz, 2008; Abbate, Fickinger, Hoang, Mateu, Stewart, 2010
- Heavy jet mass: Chien, Schwartz, 2010
- C parameter: Hoang, Kolodrubets, Mateu, Stewart, 2014,15

NNLO QCD corr. to 3 jet production

- Known for a long time that the limiting factor of theoretical uncertainty is the missing NNLO QCD corrections
- A heroic calculation span many years
- Techniques developed and applied in this calculation has far reaching impact
 - Two-loop for point integral with one off-shell leg from differential equation: Gehrmann, Remiddi, 2000-2001
 - Two-loop helicity amplitude for e+e- to 3 jets: Garland, Gehrmann, Glover, Koukoutsakis, Remiddi, 2001-2002
 - Antenna method for IR subtraction at NNLO: Gehrmann-De Ridder, Gehrmann, Glover, 2005-2006
 - Physical results: Gehrmann-De Ridder, Gehrmann, Glover, Heinrich, 2007

alphas from NNLO + NLLA

- NNLO QCD corrections improved with NLL resummation (Dissertori et al, 2007 – 2009)
- Fit to six event shape
- Including NLO mass effects
- Hadronization corrections
 model by Monte Carlo
 generator

 $\alpha_s = 0.1224 \pm 0.0009(stat) \pm 0.0009(exp) \pm 0.0012(had) \pm 0.0035(th)$

2% lower than world average

Hadronization correction limit the accuracy

Hoang, Kolodrubets, Mateu, Stewart, 2015

NNNLL' resummation for C parameter in SCET

- Definition of C parameter doesn't refer to thrust axis $\frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_i |\vec{p}_i|)^2}$
- The full partonic cross section separate into singular and nonsingular contribution

Leading power corrections amounts to a shift of the distribution

$$\frac{1}{\sigma_0} \frac{\hat{\sigma}}{dC} \stackrel{\text{hadr.}}{\to} \frac{1}{\sigma_0} \frac{\hat{\sigma}}{dC} \left(C - \overline{\Omega}_1^C \right) + \mathcal{O}\left(\frac{\Lambda^2}{Q^2} \right)$$

The quality of SCET alphas fit

 $\alpha_S(m_Z) = 0.1134 \pm 0.0002(\exp) \pm 0.0005(hadr) \pm 0.0011(pert)$

So far the alphas fit with smallest error. But lower than world average...

Comparison of event shape fits

Fits with analytical power corrections seem to systematically lower than world average. The source of this disagreement is an open question.

alphas from 3 jet rates

- Instead of fitting from event shape, one can extract alphas from three jet rates using NNLO results
- Hadronization uncertainties for this observable turn out to be small
- Jets cluster with Durham jet algorithm with measure

Similar experimental and theory error. Room for improvement for both!

World average on alphas

- Dominated my Lattice results
- O(100⁻¹fb) at CEPC v.s. O(100⁻¹pb) at LEP, plus higher energy, smaller power corrections, good news for event shape analysis.
- New challenges to theorists. NNLO corrections to four jet rates? Completing the NNNLL resummation by computing the four loop cusp anomalous dimension? ...

What are non-global logarithms?

- Observables which only sensitive to a restricted region of phase space. (Salam, Dasgupta, 2001)
- A best studied example is the hemisphere mass distribution in e⁺e⁻.
 The hemisphere is defined by thrust axis.

Thrust axis, defined by minimization

$$\min_{\vec{n}} \left(1 - \frac{\sum_{i} |\vec{n} \cdot \vec{p_i}|}{\sum_{j} |\vec{p_j}|} \right)$$

Q: center of mass energy

T is a global observable

ML and MR are non-global observables 16

• Dijet limit:
$$M_L^2 \ll Q^2$$
 and $M_R^2 \ll Q^2$

In the dijet limit thrust is the sum of left and right hemisphere mass

$$1 - T = \frac{M_L^2 + M_R^2}{Q^2}$$

Why studying non-global logarithms

- Jet substructure has evolved into a standard tool at the LHC
- Perhaps the most important jet substructure is the jet mass
- A recent example is the 2 TeV excess observed at ATLAS

- Most the substructure analysis are based on Monte Carlo tool
- First principle QCD computation of jet mass is interesting. Main obstacle: non-global logarithms in jet mass distribution

Origin of non-global logarithms

- The non-global logarithms originated from soft gluon corrections. First show up at $~~\mathcal{O}(\alpha_S^2)$

+ other diagrams

+ global logarithms

Kelly, Schwartz, Schabinger, HXZ, 2011 Hornig et al., 2011

Leading non-global logarithms arise from configurations where E1>>E2 (Salam, Dasgupta, 2001). The difference in soft gluon energy leads to large hierarchy in left and right invariant mass $M_R \gg M_L$

Non-global logarithms and Banfi-Marchesini-Syme (BMS) equation

• In general the evolution of non-global logs is very complicated. Simplify significant in the large Nc approximation

- Formally very similar to the Balitsky-Korchegov (BK) equation
- Compared with the linearized BFKL equation: $\frac{d}{d\bar{\rho}}B_{n\bar{n}} = \int \frac{d\Omega_j}{4\pi} \left| B_{nj} + B_{j\bar{n}} B_{n\bar{n}} \right|$
- No analytical solution for BMS equation due to its non-linear property

SL(2,R) invariance of the BMS eq.

• Just as BK equation, the BMS equation has a very nice SL(2,R) symmetry, which is most obvious after stereographic projection

$$\frac{\vec{p}_j}{|\vec{p}_j|} = (\sin\theta_j \sin\phi_j, \sin\theta_j \cos\phi_j, \cos\theta_j)$$

$$z_j = \tan\frac{\theta_j}{2}e^{i\phi_j}$$

$$\frac{d}{d\bar{\rho}}G_{n\bar{n}} = \int \frac{dz_j d\bar{z}_j}{2\pi} \frac{|z_n - z_{\bar{n}}|^2}{|z_n - z_j|^2|z_j - z_{\bar{n}}|^2} \left[\theta(|z_j| \le 1)G_{nj} \cdot G_{j\bar{n}} - G_{n\bar{n}}\right]$$

Invariant under linear fractional transformation

$$z \to \frac{az+b}{cz+d}, \quad ad-bc=1, \qquad a, b, c, d \in R$$

Perturbative solution of BMS eq.

• The symmetry of the BMS equation can be exploited to compute its perturbative solution (Schwartz, HXZ, 2014).

But the SL(2,R) symmetry can be used to eliminate three degree of freedom.

$$G_{ab}$$
 is only a function of

$$\Delta = \frac{|z_a - z_b|^2}{(1 - |z_a|^2)(1 - |z_b|^2)}$$

Perturbative solution of BMS eq.

• Indeed the perturbative solution exhibits this symmetry

$$\begin{aligned} & \mathcal{G}_{ab}^{2-\text{loop}} \Big|_{\text{NGL}} = \rho^{2} \Big(-\frac{1}{4} \mathcal{H}_{-1,-1}(\Delta) + \frac{1}{4} \mathcal{H}_{-1,0}(\Delta) \Big) \\ & \mathcal{G}_{ab}^{3-\text{loop}} \Big|_{\text{NGL}} = \rho^{3} \Big(\frac{\pi^{2}}{36} \mathcal{H}_{-1}(\Delta) - \frac{1}{4} \mathcal{H}_{-1,-1,-1}(\Delta) + \frac{1}{4} \mathcal{H}_{-1,-1,0}(\Delta) + \frac{1}{12} \mathcal{H}_{-1,0,-1}(\Delta) - \frac{1}{12} \mathcal{H}_{-1,0,0}(\Delta) \Big) \\ & \mathcal{G}_{ab}^{4-\text{loop}} \Big|_{\text{NGL}} = \rho^{4} \Big(\frac{\pi^{2}}{36} \mathcal{H}_{-1,-1}(\Delta) - \frac{\pi^{2}}{144} \mathcal{H}_{-1,0}(\Delta) - \frac{3}{16} \mathcal{H}_{-1,-1,-1}(\Delta) + \frac{3}{16} \mathcal{H}_{-1,-1,-1,0}(\Delta) \\ & + \frac{1}{12} \mathcal{H}_{-1,-1,0,-1}(\Delta) - \frac{1}{12} \mathcal{H}_{-1,-1,0,0}(\Delta) + \frac{1}{48} \mathcal{H}_{-1,0,-1,-1}(\Delta) - \frac{1}{96} \mathcal{H}_{-1,0,-1,0}(\Delta) \\ & - \frac{1}{32} \mathcal{H}_{-1,0,0,-1}(\Delta) + \frac{1}{48} \mathcal{H}_{-1,0,0,0}(\Delta) - \frac{\zeta_{3}}{16} \mathcal{H}_{-1}(\Delta) \Big) \\ & \mathcal{H}_{0w}(z) = \int_{0}^{z} dt \frac{\mathcal{H}_{w}(t)}{t}, \quad \mathcal{H}_{1w}(z) = \int_{0}^{z} dt \frac{\mathcal{H}_{w}(t)}{1-t}, \quad \mathcal{H}_{-1w}(z) = \int_{0}^{z} dt \frac{\mathcal{H}_{w}(t)}{1+t} \qquad \text{Schwartz, HXZ, 2014} \\ & \text{Unfortunately the berturbative series quickly diverge from the resummed one already at low loops \\ & \text{Example of asymptotically series} \\ & \text{Hopefully the perturbative series quickly diverge from the resummed one already at low loops \\ & \text{Example of asymptotically series} \\ & \text{Hopefully the perturbative series quickly diverge from the resummed one already at low loops \\ & \text{BMS equation} \\ & \text{BMS equation} \\ & \text{DAS equa$$

Subleading non-global evolution

$$\frac{d^{2}\sigma^{(2)}}{dM_{L}^{2} dM_{R}^{2}} \Big|_{\text{NGL}} = -C_{F}C_{A} \frac{4\pi^{2}}{3} \ln^{2} \frac{M_{L}^{2}}{M_{R}^{2}} + \left[C_{F}C_{A} \left(-8\zeta_{3} + \frac{44\pi^{2}}{9} - \frac{4}{3}\right) + C_{F}N_{F}T_{F} \left(-\frac{16\pi^{2}}{9} + \frac{8}{3}\right)\right] \left|\ln \frac{M_{L}}{M_{R}}\right|$$
Subleading nonglobal logs

An evolution equation governing subleading nonglobal derived by (Caron-Huot, 2015)

$$K^{(2)} = \int_{i,j,k} \int \frac{d^2 \Omega_0}{4\pi} \frac{d^2 \Omega_{0'}}{4\pi} K^{(2)\ell}_{ijk;00'} i f^{abc} \left(L^a_{i;0} L^b_{j;0'} R^c_k - R^a_{i;0} R^b_{j;0'} L^c_k \right) + \int_{i,j} \int \frac{d^2 \Omega_0}{4\pi} \frac{d^2 \Omega_{0'}}{4\pi} K^{(2)N=4,\ell}_{ij;00'} \left(f^{abc} f^{a'b'c'} U^{bb'}_0 U^{cc'}_{0'} - \frac{C_A}{2} (U^{aa'}_0 + U^{aa'}_{0'}) \right) (L^a_i R^{a'}_j + R^{a'}_i L^a_j) + \int_{i,j} \int \frac{d^2 \Omega_0}{4\pi} \frac{\alpha_{ij}}{\alpha_{0i}\alpha_{0j}} \gamma^{(2)}_K \left(R^a_{i;0} L^a_j + L^a_{i;0} R^a_j \right) + K^{(2)N\neq4}.$$

$$(3.32)$$

A direct verification of this equation at two loops with the explicit subleading nonglobal logarithms will establish the resummation of hemisphere mass distribution at NNLL.

Is non-global logarithms relevant?

• There are different opinion on the importance of non-global in jet mass distribution

Dasgupta, Khelifa-Kerfa, Marzani, Spannowsky, 2012

Non-global logs are unimportant

- A direct measurement and of hemisphere mass distribution and compare with theoretical prediction will be important
- Large C.O.M energy important for creating large mass hierarchy $Q >> M_{R} >> M_{I} >> \Lambda$
- CEPC will be an ideal laboratory for this study

Summary

- At CEPC, precision measurement of alphas using event shape variables or jet rates will be interesting
 - Event shape
 - Sensitive to power corrections. Goes to large C.O.M energy helps a lot
 - Discrepancy between analytical power corrections method and world average. More work need.
 - Jet rates
 - Ideal observable for measuring alphas. Insensitive to nonperturbative phys.
 - Comparable exp. and theo. uncertainties at LEP. Room for improvement for both experimental and theoretical sides
- High energy e+e- collider ideal laboratory for studying nonglobal logarithms. Important for precision jet substructure
- Despite being developed for 40 years QCD and jet physics is still an actively evolving subject. CEPC will stimulate their study for many years to come

Thank you for your attention!