Recent XYZ results from Belle

Changzheng Yuan

IHEP, Beijing

Mini-workshop on XYZ, IHEP, Beijing May 11, 2015

The Belle experiment

Integrated luminosity of B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

outline

- Recently released XYZ results
- Ongoing analyses on XYZ
- Prospects at Belle II
- Summary

Mass: Very close to D⁰D^{*0} threshold

- Width: Very narrow, < 1.2 MeV
- J^{PC}=1⁺⁺
- Production
 - in pp/pp collison rate similar to charmonia
 - In B decays KX / K*X vs. charmonium [Belle, next pages]
 - Y(4260) $\rightarrow \gamma$ +X(3872) [from BESIII]
- Decay BR: open charm ~ 50%, charmonium~O(%)
- Nature (very likely exotic)
 - Loosely $\overline{D}^0 D^{*0}$ bound state (like deuteron?)?
 - Mixture of excited χ_{c1} and D⁰D^{*0} bound state?
 - Many other possibilities (if it is not χ'_{c1} , where is χ'_{c1} ?)

More information on X(3872)

Belle observed $B^0 \rightarrow X(3872)K^+\pi^-$ with smaller data sample (605 fb⁻¹) BELLE-CONF-0849 BR($B^0 \rightarrow X(K^+\pi^-)_{non_res}$) BR($X \rightarrow J/\psi\pi^+\pi^-$) = (8.1±2.0^{+1.1}_{-1.4})10⁻⁶ dominates ! unlike B \rightarrow (cc¯)K π

 $BR(B^0 \rightarrow XK^{*0})BR(X \rightarrow J/\psi \pi^+\pi^-) < 3.4x10^{-6}90\% CL$

arXiv:0809.1224 (Never published !)

With full data sample (711fb⁻¹) and reprocessed data, one expect more sensitivity to this decay mode. It's crucial to investigate further the X(3872)'s properties by adding more B decay modes involving X(3872) like X(3872)K⁺ π ⁻, X(3872)K_S π ⁺ and X(3872)K⁺ π ⁰, and taking advantage of a B-factory environment.

PRD91,051101(R) (2015) 7

B→X(3872)Kπ

 $\mathcal{B}(B^0 \to X(3872)K^+\pi^-) = 0.34 \pm 0.09(\text{stat.}) \pm 0.02(\text{syst.}).$

X-like states decaying to η_{c} modes

Motivation

arXiv:1501.06351

X₁(3872) : C-odd partner candidate of X(3872)

- X(3872) was first observed by Belle in B → K(J/ψπ⁺π⁻). Angular analysis of this mode performed by LHCb determined all quantum numbers: 1⁺⁺.
- If X(3872) is a D⁰D^{*0} molecule, there may be other "X-like" particles with different quantum numbers, that are also bound states of D^(*) mesons.
- Assumption

candidate	combination	quantum number J ^{PC}	decay mode
X ₁ (3872)	$D^0\overline{D}^{*0}-\overline{D}^0D^{*0}$]+-	$X \to \eta_c \omega, X \to \eta_c \rho$
X(3730)	$D^0\overline{D}^0$ + \overline{D}^0D^0	0++	$X \rightarrow \eta_c \eta$, $X \rightarrow \eta_c \pi^0$
X(4014)	D*0 <u>¯</u> ¯¯ ^{∗0} + ¯¯ ^{∗0} ¯¯ ^{∗0}	0++	$X \rightarrow \eta_c \eta, X \rightarrow \eta_c \pi^0$

Analysis features

- X is produced in charged B decays: $B^{\pm} \rightarrow K^{\pm}X$ ($\eta_c \rightarrow K_sK \pi, K_s \rightarrow \pi^{+}\pi^{-}$)
- combined fit of 2 decay modes of η ($\gamma\gamma$ and $\pi^+\pi^-\pi^0$)
- test mode $B^{\pm} \rightarrow K^{\pm}\psi(2S), \psi(2S) \rightarrow J/\psi \pi^{+}\pi^{-}$ gives results consistent with PDG
- B^{\pm} decays into the same final states, but without intermediate X are studied. ¹⁰

X-like states decaying to η_{c} modes

M(X) GeV/c² - Y: N events

arXiv:1501.06351

X-like states decaying to η_{c} modes

- No signal was observed in any of the studied decay channels.
- Upper limits on the branching products for
- Upper limits on the branching products for

 $B^{\pm} \rightarrow K^{\pm}X, X \rightarrow \eta_{c}h$ for $h=\pi^{+}\pi^{-}, \omega, \eta, \pi^{0}$

 $B^{\pm} \rightarrow K^{\pm}\eta_{c}h$ for $h=\pi^{+}\pi^{-}$, ω , η , π^{0}

	Deco B [±]	ay mode → K±X	Yield	U (90% C.L.)		$\begin{array}{c} \textbf{Decay mode} \\ \textbf{B}^{\pm} \rightarrow \textbf{K}^{\pm}\textbf{X} \end{array}$		Yield	U (90% C.L.)
V (2970)	$X \rightarrow \eta_c \pi^* \pi^-$		17.9 ± 16.5	3.0 x 10 ⁻⁵		$B^{\pm} \rightarrow K^{\pm} \eta_c \pi^+ \pi^-$		155 ± 72	3.9 x 10 ⁻⁴
A ₁ (30/2)	$X \rightarrow \eta_c \omega$		6.0 ± 12.5	6.9 x 10 ⁻⁵		$B^{\pm} \to K^{\pm} \eta_{\rm c} \omega$		-41 ± 27	5.3 x 10-4
	$X \rightarrow \eta_c \eta$	η → γγ	13.8 ± 9.9	4.6 x 10 ⁻⁵		B± → K±η _c η	η → γγ	-14.1 ± 26.1	2.2 x 10 ⁻⁵
X(3730)		η → π ⁺ π ⁻ π ⁰	1.4 ± 1.0				η → π⁺π⁻π ⁰	-1.8 ± 3.4	
	$X \to \eta_c \pi^0$		-25.6 ± 10.4	5.7 x 10 ⁻⁵		$B^{\pm} \to K^{\pm} \eta_c \pi^0$		-1.9 ± 12.1	6.2 x 10 ⁻⁵
	$\begin{split} X &\to \eta_c \eta, \eta \to \gamma \gamma \\ X &\to \eta_c \eta, \eta \to \pi^* \pi^* \pi^0 \\ X &\to \eta_c \pi^0 \end{split}$		8.9 ± 11.0	2.0 × 10-5	-				
X(4014)			1.3 ± 1.6	3.9 X 10°					
			-8.1 ± 13.2	1.2 x 10 ⁻⁵				arXiv:1	501.0 ⁶ 35

$Z(3900)^{0}$ / $Z(4020)^{0}$ / $X(3915) \rightarrow \eta_{c}$ modes

PRL 113, 142001 (2014)

$e^+e^- \rightarrow \gamma X_b \rightarrow \gamma \omega \Upsilon(1S)$

- The X(3872) counterpart in the bottomonium sector X_b, NOT observed decay channel π⁺π⁻Υ(1S).
- As X_b is above ωY(1S) threshold, this Isospin-conserving process should be more promising. [PRD88, 054007].

Assuming X_b narrow, the product branching fraction : $Br(\Upsilon(5S) \rightarrow \gamma X_b)Br(X_b \rightarrow \omega \Upsilon(1S))$ varies from 2.6 \times 10⁻⁵ to 3.8 \times 10⁻⁵ between 10.55 and 10.65 GeV/c².

$e^+e^- \rightarrow \pi^+\pi^-\pi^0 \chi_{bJ}$ at 10.867 GeV

Motivations:

Heavy quarkonia hadronic transition :

QCD multipole expansion (QCDME) model. [Y. P Kuang, Front Phys. China 1, 19 (2006)]

For Y(5S) resonance peak:

- > The anomalously large width : $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(ns)$ [Belle PRL 100, 112001] and $e^+e^- \rightarrow \pi^+\pi^-h_b(ns)$ [PRL 108, 032001].
- > Z_b (10610)[±] and Z_b(10650)[±] [PRL 108, 122001].

> Search for hadronic transition : $\Upsilon(5S) \rightarrow \pi^+\pi^-\pi^0 \chi_{bJ}$

$$e^+e^- \rightarrow \pi^+\pi^-\pi^0 \chi_{bl}$$

PRL 113, 142001 (2014)

118 fb⁻¹ $\Upsilon(5S)$ data sample $\chi_{bJ} \rightarrow \gamma \Upsilon(1S)$

- The same order as e⁺e⁻→
 π⁺π⁻Υ(nS). [PRL 100, 112001].
- Hadronic loop effect?

[arXiv:1406.6763]

Born cross section:

 σ (e⁺e⁻→ π^0 π⁺π⁻ χ_{b0}) < 3.4 (pb) at 90% C.L.

 $\sigma(e^+e^- \rightarrow \pi^0 \pi^+ \pi^- \chi_{b1}) = 0.98 \pm 0.12 \pm 0.12$ (pb)

 $\sigma(e^+e^- \rightarrow \pi^0 \pi^+ \pi^- \chi_{b2}) = 0.62 \pm 0.14 \pm 0.08 \text{ (pb)}$

Assuming all events decay from Y(5S).

Product BF :

BF($\Upsilon(5S) \rightarrow \pi^0 \pi^+ \pi^- \chi_{b0}$) < 6.9 × 10⁻³ at 90% C.L.

BF($\Upsilon(5S) \rightarrow \pi^0 \pi^+ \pi^- \chi_{b1}$) =(2.02±0.25±0.25) ×10⁻³

BF(Υ (5S) $\rightarrow \pi^{0}\pi^{+}\pi^{-}\chi_{b2}$) =(1.27±0.29±0.16) ×10⁻³

$$e^+e^- \rightarrow \pi^+\pi^-\pi^0 \chi_{bJ}$$

2D fit to scatter plot of $M(\pi^+\pi^-\pi^0)$ vs $M(\gamma\Upsilon(1S))$.

PRL 113, 142001 (2014)

 $\pi^+\pi^-\pi^0$ invariant mass distribution:

≽ω signal

> An enhancement in higher $M(\pi^+\pi^-\pi^0)$

 $e^+e^- \rightarrow \omega \chi_{bJ}$

 ω signal region. 40 🗕 Data 12σ Events/(10 MeV/c²) Total 30 Background π^0 sidebands χ_{b0} 20 χ_{b1} X_{b2}: 3.5σ χ_{b2} 10 0 9.85 9.9 9.95 9.8 10 $M(\gamma \Upsilon(1S))$ (GeV/c²)

Born cross section:

 $σ(e^+e^-→ω\chi_{b0}) < 1.9 (pb) at 90% C.L.$ $σ(e^+e^-→ω\chi_{b1}) = 0.76 ± 0.11 ± 0.11 (pb)$ $σ(e^+e^-→ω\chi_{b2}) = 0.29 ± 0.11 ± 0.08 (pb)$

 \rightarrow S- and D- wave mixing [arXiv:1406.6543]

PRL 113, 142001 (2014)

 $e^+e^- \rightarrow (\pi^+\pi^-\pi^0)_{non-\omega}\chi_{bJ}$

19

- 1. Fit with two coherent resonances $|BW_1+BW_2*exp(i\phi)|^2+bkg$.
- 2. Mass of Y(4008) is lower than before
- 3. Fit quality: χ^2 /ndf=101/84, confidence level is 9.3% ²¹

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ from ISR

(b)

40

35

30

20

10

Events / 20 MeV/c²

PRL110, 252002 (2013)

- M²(ππ) vs. M²(πJ/ψ) for
 4.15<M(ππJ/ψ) <4.45 GeV
- (inset) Background events in J/ψ-mass sidebands
- Structures both in ππ and πJ/ψ systems
- 689 events in J/ψ signal region, purity~80%

Events / 30 MeV/c²

60

50

40

30

20

10

ŏ.2

0.4

(a)

🕂 data

— MC

--- Z(3900) MC

Sideband

0.6

0.8

 $M(\pi^+\pi^-)$ (GeV/c²)

1.2

1.4

Z(3895)⁺ observed in two experiments!

Belle with ISR: PRL110,252002

BESIII at 4.260 GeV: PRL110,252001

- $\Gamma = 63 \pm 24 \pm 26 \text{ MeV}$
- 159 ± 49 events
- >5.2σ

Events / 0.02 GeV/c²

 $M = 3899.0 \pm 3.6 \pm 4.9 MeV$

23

- $\Gamma = 46 \pm 10 \pm 20 \text{ MeV}$
- 307 ± 48 events
- **>8**σ

Confirmed with CLEOc data!

 $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ via ISR

• Clear signal of missed massless particle $(M_{rec}^2(\psi'\pi\pi)\sim 0)$

 $\psi' (\rightarrow J/\psi \pi \pi \text{ or } \mu \mu) + \pi \pi$

Two significant clusters: Y(4360)+Y(4660); a few events at Y(4260)

- Polar angle distribution agrees well with ISR expectation
- Combinatorial background estimated by ψ' sidebands
 - Bkgs from real $(\psi'\pi\pi)_{non ISR}$ or $\psi' X_{non \pi\pi}$ are negligibly small

Belle: arXiv:1410.7641

Fit with Three BWs

Fit with Three BWs

 $\psi' \rightarrow J/\psi \pi \pi + \mu \mu$

Belle: arXiv:1410.7641

Parameters	Solution III	Solution IV	Solution V	Solution VI
$M_{Y(4260)}$		4259	(fixed)	
$\Gamma_{Y(4260)}$		134(fixed)	
$\mathcal{B}[Y(4260) \to \pi^+\pi^-\psi(2S)] \cdot \Gamma_{Y(4260)}^{e^+e^-}$	$1.5\pm0.6\pm0.4$	$1.7\pm0.7\pm0.5$	$10.4\pm1.3\pm0.8$	$8.9\pm1.2\pm0.8$
$M_{Y(4360)}$		$4365 \pm$	$\pm 7 \pm 4$	
$\Gamma_{Y(4360)}$		74 ± 1	14 ± 4	
$\mathcal{B}[Y(4360) \to \pi^+ \pi^- \psi(2S)] \cdot \Gamma_{Y(4360)}^{e^+ e^-}$	$4.1\pm1.0\pm0.6$	$4.9\pm1.3\pm0.6$	$21.1\pm3.5\pm1.4$	$17.7 \pm 2.6 \pm 1.5$
$M_{Y(4660)}$		$4660~\pm$	9 ± 12	
$\Gamma_{Y(4660)}$		74 ± 1	12 ± 4	
$\mathcal{B}[Y(4660) \to \pi^+ \pi^- \psi(2S)] \cdot \Gamma_{Y(4660)}^{e^+ e^-}$	$2.2\pm0.4\pm0.2$	$8.4\pm0.9\pm0.9$	$9.3\pm1.2\pm1.0$	$2.4\pm0.5\pm0.3$
ϕ_1	$304\pm24\pm21$	$294\pm25\pm23$	$130\pm4\pm2$	$141\pm5\pm4$
ϕ_2	$26\pm19\pm10$	$238\pm14\pm21$	$329\pm8\pm5$	$117\pm23\pm25$

Significance of Y(4260) is 2.4 σ Affect the parameters of Y(4360) and Y(4660) significantly!

$M(\pi^+\pi^-)$ distributions

Zc states from Y(4360) decays?

BELLE

Belle: arXiv:1410.7641

30

Z_c(4050)[±]→πψ'

No significant Zc in Y(4660) decays!

Belle: arXiv:1410.7641

$e^+e^- \rightarrow K^+K^-J/\psi$ via ISR

BELLE

Event selections are almost the same as in Phys. Rev. D 77,
011105(R) (2008)Shaded hist.: J/ ψ mass sidebands

Search for $Z_{cs} \rightarrow KJ/\psi$ states

- 4D PWA $\Phi = (M_{K\pi}^2, M_{J/\psi\pi}^2, \theta_{J/\psi}, \varphi).$
- Resonances: all K*s and Zc(4430)
- Search for additional Zc states

Ψ.		Resonance	Fit fraction	Significance (Wilks)	
GeV ² /c		$K_0^*(800)$	$(7.1^{+0.7}_{-0.5})\%$	22.5σ	
('π'),	18-	$K^{*}(892)$	$(69.0^{+0.6}_{-0.5})\%$	166.4σ	
ž	16	$K^{*}(1410)$	$(0.3^{+0.2}_{-0.1})\%$	4.1σ	
	14	$K_0^*(1430)$	$(5.9^{+0.6}_{-0.4})\%$	22.0σ	
		$K_2^*(1430)$	$(6.3^{+0.3}_{-0.4})\%$	23.5σ	
	M ² (K,π), GeV ² /c ⁴	$K^{*}(1680)$	$(0.3^{+0.2}_{-0.1})\%$	2.7σ PRD 90	. 112009
1 ² /c ⁴	22- eff.	$K_3^*(1780)$	$(0.2^{+0.1}_{-0.1})\%$	3.8σ (2014)	,
(II), Ge/	20	$K_0^*(1950)$	$(0.1^{+0.1}_{-0.1})\%$	1.2σ	
M²(J/ψ		$K_2^*(1980)$	$(0.4^{+0.1}_{-0.1})\%$	5.3σ	
	16- 14- 	$K_4^*(2045)$	$(0.2^{+0.1}_{-0.1})\%$	3.8σ	BELLE
	12 -0.05	$Z_c(4430)^+$	$(0.5^{+0.4}_{-0.1})\%$	5.1σ	
	Liamu Annu Linu Linu Linu Linu Linu Linu Linu L	$Z_c(4200)^+$	$(1.9^{+0.7}_{-0.5})\%$	8.2σ	35

 $1.2 \text{ GeV}^2/c^4 < M^2(K,\pi) < 2.05 \text{ GeV}^2/c^4$

18 20 22 M²(J/ψ,π), GeV²/c⁴

60 40

20

12

14

16

FIG. 8. The fit results with the $Z_c(4200)^+$ $(J^P = 1^+)$ in the default model. The points with error bars are data; the solid histograms are fit results, the dashed histograms are the $Z_c(4430)^+$ contributions, the dotted histograms are the $Z_c(4200)^+$ contributions and the dash-dotted histograms are contributions of all K^* resonances. The slices are defined in Fig. 4

16

12

14

18 20 22 M²(J/ψ,π), GeV²/c⁴

TABLE I. Fit results in the default model. Errors are statistical only.

J^P	0-	1-	1+	2^{-}	2^{+}
Mass, MeV/c^2	4318 ± 48	4315 ± 40	4196^{+31}_{-29}	4209 ± 14	4203 ± 24
Width, MeV	720 ± 254	220 ± 80	370 ± 70	64 ± 18	121 ± 53
Significance (Wilks)	3.9σ	2.3σ	8.2σ	3.9σ	1.9σ

36

18

16

12

Zc(4200) !

14

20

 $M^{2}(J/\psi,\pi), GeV^{2}/c^{4}$

22

Belle: , PRD 90, 112009 (2014)

Belle: , PRD 90, 112009 (2014)

FIG. 10. The fit results with (solid line) and without (dashed line) the $Z_c(4430)^+$ (the $Z_c(4200)^+$ is included in the model) for the second and third vertical slices that are defined in Fig. 4.

- 4.0 σ evidence for $Z_c(4430) \rightarrow \pi J/\psi!$
- No significant $B \rightarrow Z_c(3900)$ K signal observed!

	J^P	0-	1-	1+	2-	2^{+}
M	ass, MeV/c^2	3889.8 ± 3.3	3890.3 ± 3.1	3890.6 ± 3.3	3891.1 ± 3.2	3891.5 ± 3.3
V	Midth, MeV	43.2 ± 6.5	37.8 ± 7.9	39.2 ± 8.1	39.4 ± 8.5	41.2 ± 7.7
S	Significance	2.4σ	1.1σ	0.1σ	$< 0.1\sigma$	0.2σ

TABLE X. Fit results with addition of the $Z_c(3900)^+$ in the default model. Errors are statistical only.

Belle: , PRD 90, 112009 (2014)

- New state Z_c(4200)! Very wide!
- 4.0 σ evidence for $Z_c(4430) \rightarrow \pi J/\psi!$
- No significant $B \rightarrow Z_c(3900)$ K signal observed!

$$\begin{split} &\mathcal{B}(\bar{B}^{0} \to J/\psi K^{-}\pi^{+}) = (1.15 \pm 0.01 \pm 0.05) \times 10^{-3}, \\ &\mathcal{B}(\bar{B}^{0} \to J/\psi K^{*}(892)) = (1.19 \pm 0.01 \pm 0.08) \times 10^{-3}, \\ &\mathcal{B}(\bar{B}^{0} \to Z_{c}(4430)^{+}K^{-}) \times \mathcal{B}(Z_{c}(4430)^{+} \to J/\psi\pi^{+}) = \\ & (5.4^{+4.0+1.1}_{-1.0-0.9}) \times 10^{-6}, \\ &\mathcal{B}(\bar{B}^{0} \to Z_{c}(4200)^{+}K^{-}) \times \mathcal{B}(Z_{c}(4200)^{+} \to J/\psi\pi^{+}) = \\ & (2.2^{+0.7+1.1}_{-0.5-0.6}) \times 10^{-5}, \\ &\mathcal{B}(\bar{B}^{0} \to Z_{c}(3900)^{+}K^{-}) \times \mathcal{B}(Z_{c}(3900)^{+} \to J/\psi\pi^{+}) < \\ & 9 \times 10^{-7} (90\% \text{ CL}). \end{split}$$

IJMPA 29, 1430046 (2014)

Many Z_c^{\pm} states now

State	Mass (MeV/c^2)	Width (MeV)	
$Z_c(3900)^-$	3888.6 ± 2.7	34.7 ± 6.6	·m
$Z_c(4020)^-$	4023.9 ± 2.4	10.2 ± 3.5	
$Z(4050)^{-}$	4051^{+24}_{-43}	82^{+51}_{-28}	
$Z(4200)^{-}$	4196_{-30}^{+35}	370^{+99}_{-110}	2
$Z(4250)^{-}$	4248_{-45}^{+185}	177^{+321}_{-72} BELL	E
$Z(4430)^{-}$	4478 ± 20	181 ± 33	

We are eager to know their nature!

2. Ongoing analyses on XYZ

Doubly charmed tetraquark

Tcc+(ccud)

- One of the tetraquarks including <u>two charm quarks</u> (cc) and two light quarks (u and d),
- Explicitly exotic hadron (not a hidden charm state)
- <u>Bound state</u> is expected ^[1]
- But we want to check all possible scenarios

 I I 580 events could be generated at BELLE with 772fb⁻¹ onresonance data assuming 0.015pb cross-section ^[2]

[1] Eur. Phys. J. C 54, 259 (2008)), Eur. Phys. J. C 64, 283 (2009)

[2] Phys. Atom. Nucl. 67, 757 (2004), Phys. Rev. Lett. 84, 1663 (2003), Phys. Lett. B 551, 296 (2003),

Strategy of analysis

- Two independent analysis methods
- <u>Recoil mass</u>
- Invariant mass

- In this analysis, we reconstruct D⁰ and D to check recoil mass.
- In this analysis, we reconstruct Tcc by D^*D (expected for Tcc > 3.88 GeV/c²).
- In this presentation, we only show the status for $D^{*0}(\rightarrow D^0\pi^0)D^+$ (status similar for $D^{*0}(\rightarrow D^0\gamma)D^+$ and $D^{*+}(\rightarrow D^0\pi^+, D^+\pi^0)D^0$).

Recoil mass study

Blind analysis is on going Check the expectation before open the signal window in data Using two (anti-)charmed mesons, we calculate recoil mass

- : 4395 ± 353 (correspond 0.10 pb) : 219759 ± 468 (702 fb⁻¹) : 180327 ± 424 (702 fb⁻¹) : 542549 ± 2604 (56 fb⁻¹ is normalized)
- : 361009 ± 6272 (6 fb⁻¹ is normalized)
 - Two kind of background:
 - e⁺e⁻→BB : D(D) mesons are produced from B decays
 - e⁺e⁻→qq where q = u,d,s and c: many D and D are generated and mis-reconstructed D

Invariant mass study

- Tcc⁺ is reconstructed by $D^{*0}(\rightarrow D^0\pi^0) D^+$
- Signal extraction by using $M_{Tcc} = \sqrt{((E_{D^*} + E_D)^2 - |\vec{p}_{D^*} + \vec{p}_D|^2)}.$

3. Prospects at BelleII

SuperKEKB collider

[Beam Channel]

Belle II is coming

ISR produces events at all CM energies BESIII can reach

Summary

- Lots of results on XYZ states
- Nature yet to understand
- Belle is still producing results with 1/ab data
- Belle II will collect 50/ab data to improve the analyses

Thanks a lot!

The end