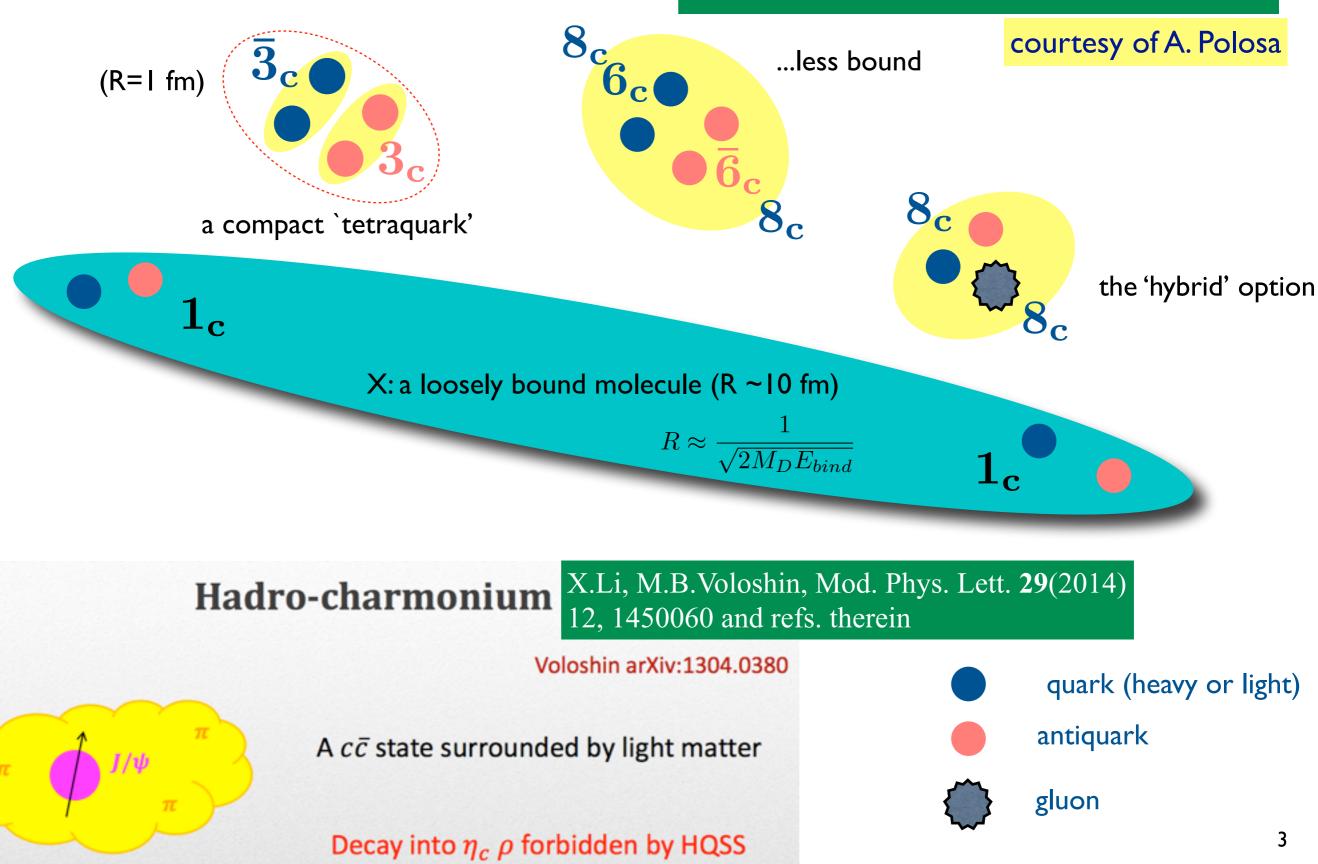
XYZ revisited (mainly Charmonia) IHEP-Beijing, May 11, 2015 Luciano Maiani, Universita' di Roma La Sapienza, and INFN, Roma, Italia

1. Introduction

Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. M. Gell-Mann, A Schematic Model of

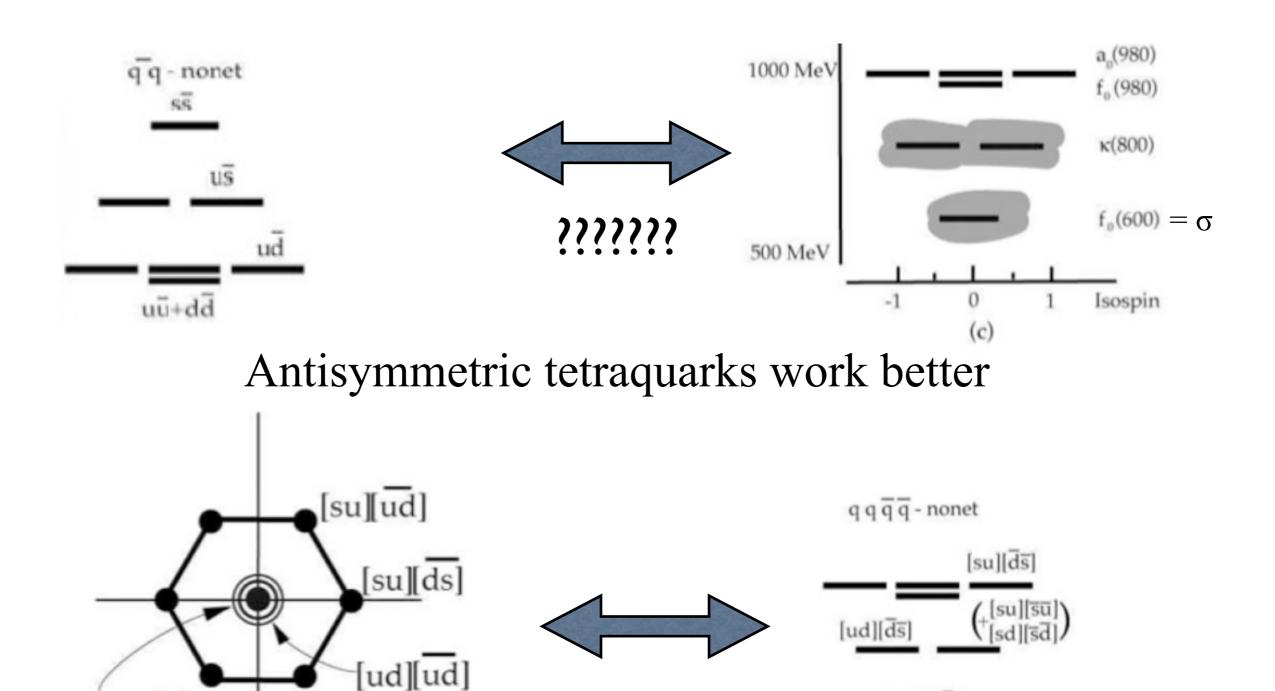
Baryons and Mesons, PL 8, 214, 1964

• For long, we lived with the simplest paradigm:


mesons $= q\bar{q}$, baryons = qqq

- Paradigm rested on the absence of I=2, $\pi\pi$ resonances and of S>0 baryons.
- The case had to be revisited, because the lowest lying, octet of scalar mesons- $f_0(980)$, $a_0(980)$, kappa(800) and sigma(600)- does not fit in the picture.
- The X(3872), narrow width, with decays into J/Psi+ $2\pi/3\pi$, discovered by Belle in 2003, does not fit into the "charmonium" states,
- since then, Belle, BaBar, BES and LHcB have reported many other states that do not fit the charmonium picture, called X (1⁺⁺) and Y(1⁻⁻) states: molecules? hybrids? tetraquarks?
- In 2007, Belle observed a charged "charmonium", $Z^+(4430) \rightarrow \psi(2S) + \pi$, that could not be interpreted as molecule, but later Babar suggested it was simply a reflection of K* states
- LHCb has confirmed the Z⁺(4430) while other similar states, Z⁺(3900) and Z⁺(4020), have been established.

I shall follow the idea that X, Y, and Z states belong to a new spectroscopy of mesons, made by diquark-antidiquark pairs. For Beauty see also A. Ali, Belle II TIP, Krakov (slides available).


Models for X Y Z mesons

see e.g. M.Cleven, F.K.Guo, C.Hanhart, Q.Wang and Q.Zhao, arXiv:1505.01771 and refs. therein

Few think X, Y, Z are only kinematic effects due to the opening of new channels. For one, see:
E. S. Swanson, Cusps and Exotic Charmonia, arXiv:1504.07952 [hep-ph]
I think it takes a lot of unconventional dynamics to produce the X(3872) as a "cusp"
Also, the phase of Z(4430) seems to go at 90⁰ at the peak, like a well-behaved Breit-Wigner resonance...

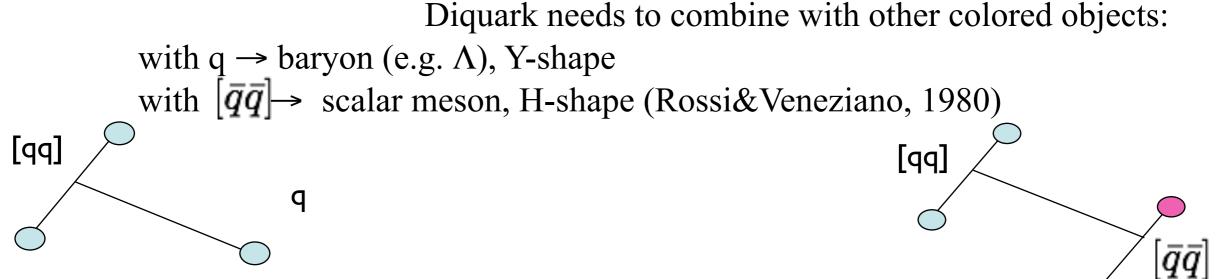
2. The octet of light scalar mesons and diquarks

IHEP-Beijing, May 11, 2015

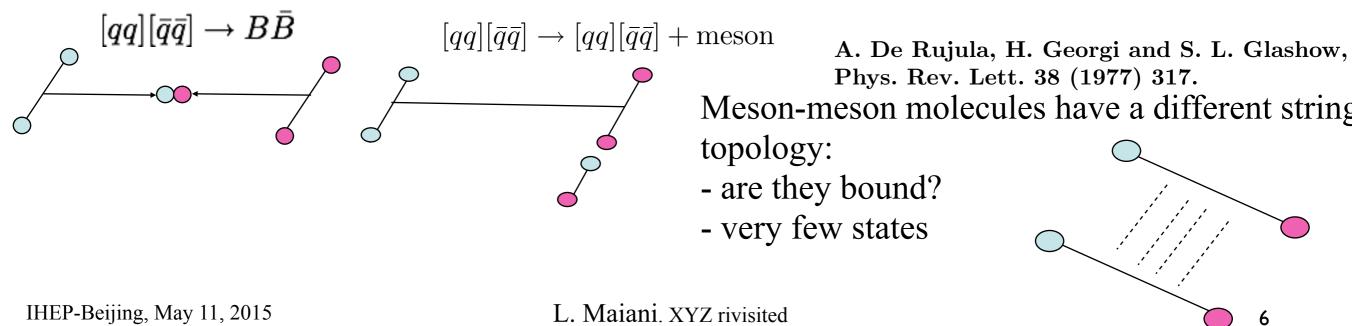
[ds][ds]

(a)

L. Maiani. XYZ rivisited


[ud][ud]

(b)


5

Diquarks vs molecules

QCD attractive in 1 gluon approx. for diquark [qq']: color = 3bar, SU(3) flavour = 3bar, spin=0, spin-spin force also attractive: good diquark (Jaffe, 1977) -makes a simple unit to form color singlets (Jaffe & Wilcezck, 2003) - [cq] may make a stable configuration even for spin 1, bad diquark, since spin-spin interactions, repulsive in spin 1, decrease with mass)

Many states: tetraquarks may have radial and orbital excitations string topology is more related to Baryon-antiBaryon: if you break the string,

X(3872) production @ LHC

4 Measurement of the cross section ratio

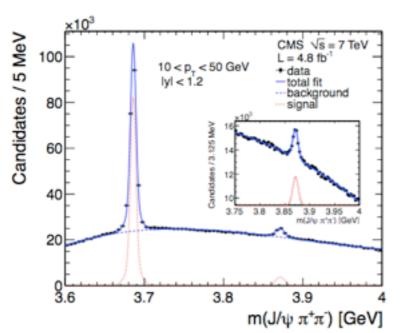
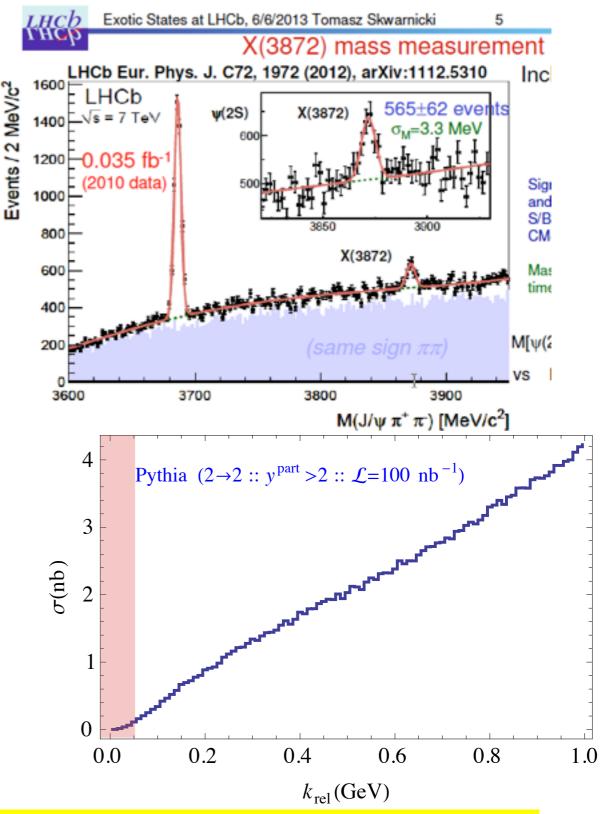
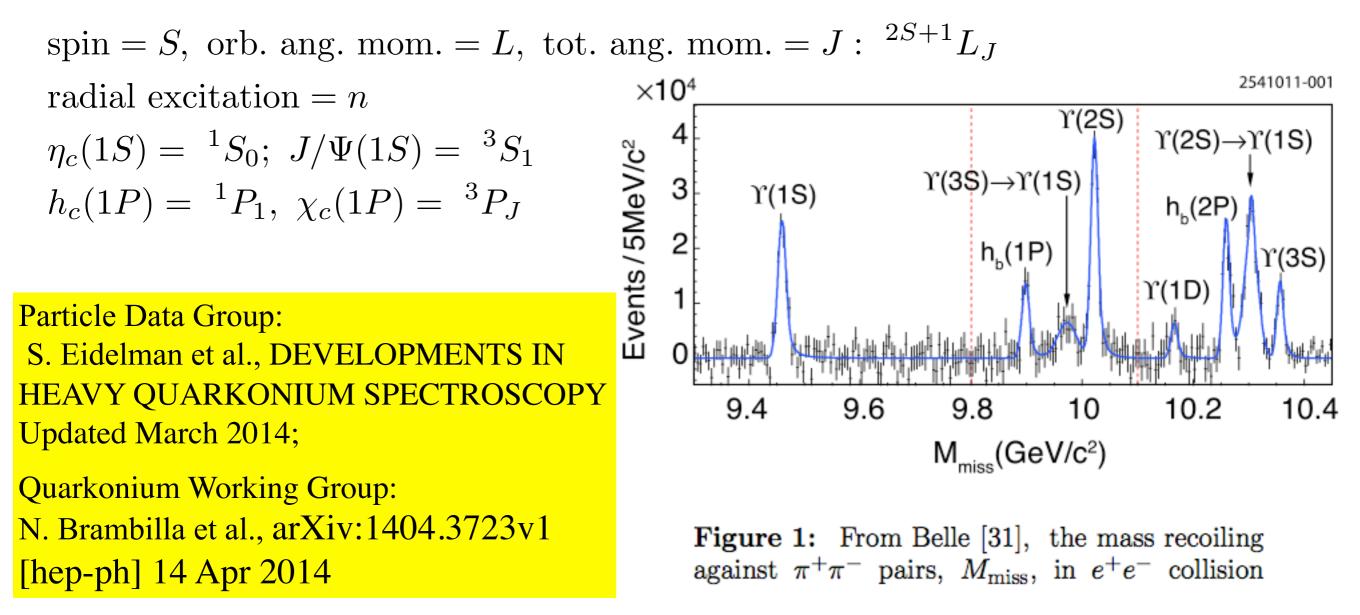



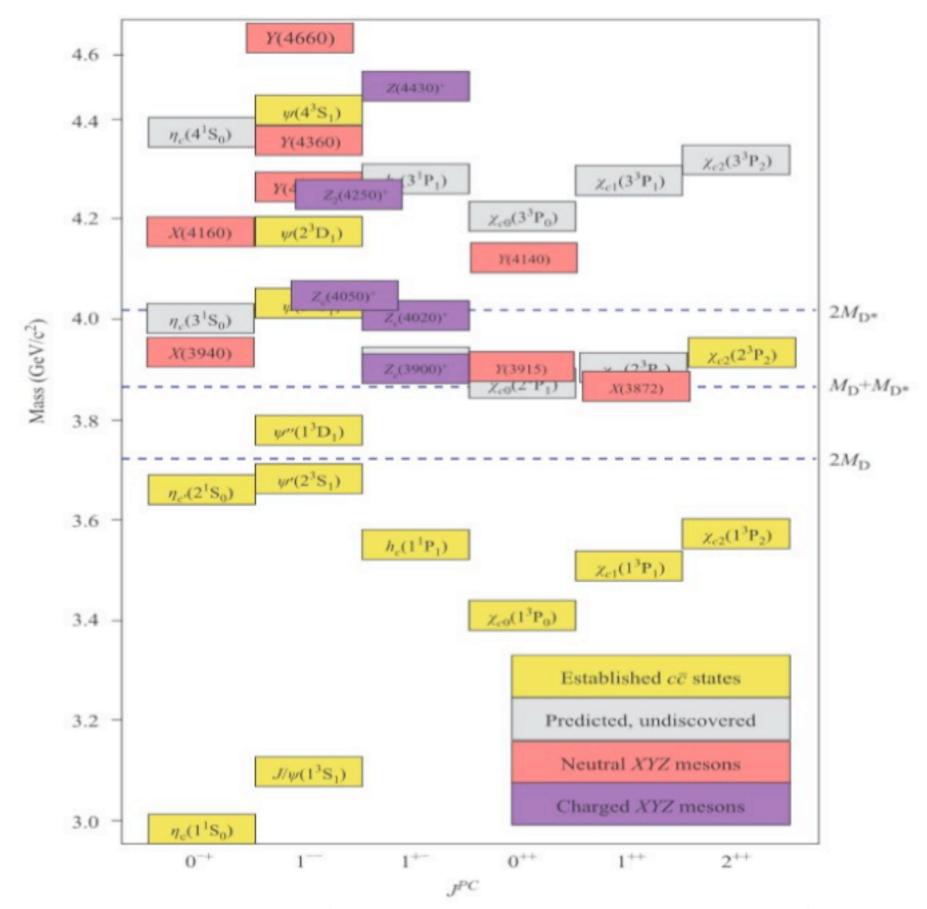
Figure 1: The J/ $\psi \pi^+ \pi^-$ invariant-mass spectrum for 10 < p_T < 50 GeV and |y| < 1.2. The lines represent the signal-plus-background fits (solid), the background-only (dashed), and the signal-only (dotted) components. The inset shows an enlargement of the X(3872) mass region

- Production at Colliders speaks against extended objects;
- using Pythia to estimate the probability to find a D-Dbar pair in the relevant phase space, factors of 10⁻² are found with respect to the X(3872) cross section measured by CDF (~ 30 nb).



7

C. Bignamini, B. Grinstein, F. Piccinini, A. Polosa, C. Sabelli, *Phys Rev Lett*, **103**, 162001 (2009) IHEP-Beijing, May 11, 2015 L. Maiani, XYZ rivisited


3. Conventional and less conventional Quarkonia

The accuracy with which the spectra of Q Qbar states (Q=c, b) are predicted and measured makes it possible to discover new states "by difference"
Terminology of Q-Qbar states in S and P wave:

IHEP-Beijing, May 11, 2015

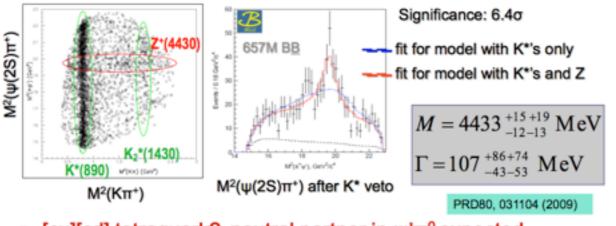
Charmonia and Charmonium-like Hadrons (Olsen, arxiv:1411.7738)

Ahmed Ali (DESY, Hamburg)

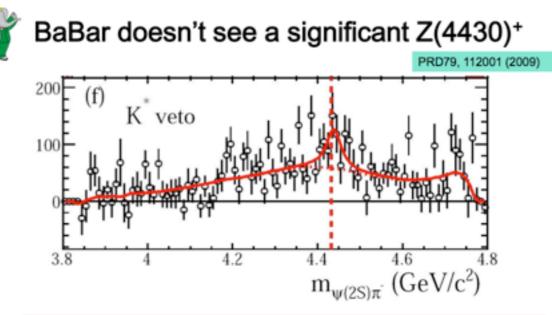
terminology of unanticipated charmonia

- •X, e.g. X(3872): neutral, typically seen in J/Psi+pions, positive parity, J^{PC}=0⁺⁺,1⁺⁺, 2⁺⁺
- Y, e.g. Y(4260): neutral, seen in e⁺e⁻ annihilation with Initial State Radiation, therefore J^{PC}=1⁻⁻
- •Z, eg. Z(4430): charged/neutral, typically positive parity, mostly seen in J/Psi+pion and some in $h_c(1P)$ +pion

Belle observed Z(4430)[±]→ψ(2S)π[±]

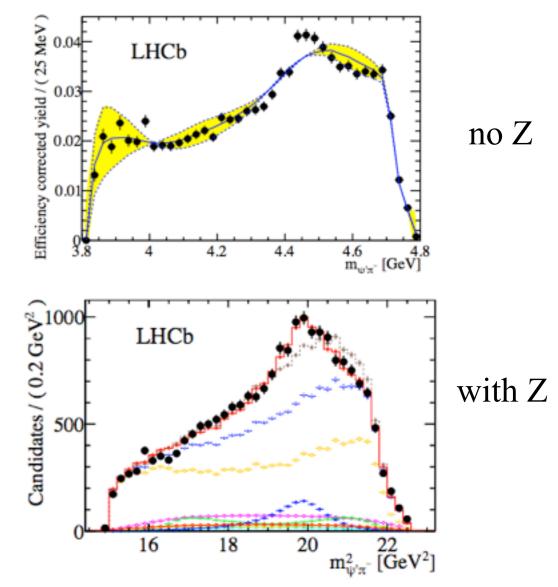

- Found in ψ(2S)π⁺ from B→ψ(2S)π⁺K. Z parameters from fit to M(ψ(2S)π⁺)
- Confirmed through Dalitz-plot analysis of B→ψ(2S)π⁺K
- B→ψ(2S)π⁺K amplitude: coherent sum of Breit-Wigner contributions
- Models: all known K*→Kπ⁺ resonances only

all known $K^* \rightarrow K\pi^+$ and $Z^+ \rightarrow \psi(2S)\pi^+ \Rightarrow$ favored by data


PRL100, 142001

(2008)

42


- [cu][cd] tetraquark? neutral partner in ψ'π⁰ expected
- D*<u>D</u>₁(2420) molecule? should decay to D*<u>D</u>*π

"For the fit ... equivalent to the Belle analysis...we obtain mass & width values that are consistent with theirs,... but only ~1.9 σ from zero; fixing mass and width increases this to only ~3.1 σ ."

$\begin{array}{c} BF(B^0 \rightarrow Z^*K) \times BF(Z^+ \rightarrow \psi(2S)\pi^+) < 3.1 \times 10^{-5} \\ Belle PRL: (4.1 \pm 1.0 \pm 1.4) \times 10^{-5} \\ \end{array}$ $\begin{array}{c} \text{Feson} \\ \text{- Babar inserts in the fit all K* resonances} \\ \text{- is Belle effect due to K* reflections ???} \\ IHEP-Beijing, May 11, 2015 \\ \end{array}$

4. The $Z^{\pm}(4430)$ saga

- D*D₁= in S-Wave: may have J=1 but has negative parity
- Argand Plot shows 90⁰ phase: Z is a genuine resonance

Z(4430) as a radially excited tetraquark

- There *are* 4 quarks in Z(4430)
- in 2007 we classified the Z(4430) as a tetraquark, the radial excitation of the S-wave companion of X(3872)
- this was because of its decay into $\psi(2S)\!+\pi$ and its mass $\sim\!550$ MeV larger than the X
- We noted then: A crucial consequence of a Z(4430) charged particle is that a charged state decaying into ψ(1S) π[±] or η_c ρ[±] should be found around 3880 MeV (i.e. almost degenerate with X(3872))
- The Z_c(3900) has been seen later by BES III and Belle with the anticipated decay:

- Z^+ (3900) $\rightarrow \psi(1S) \pi^+$

- a neutral partner was suggested by CLEO,
- The further observation of Z(4020) by the BES III Collaboration reinforces the tetraquark picture, which looks more attractive and constrained as compared to some years ago
- The Z(4430) decay into $\psi(2S)$ as indication of a radially excited tetraquark has been confirmed by S. Brodski *et al.* (arXiv:1406.7281 [hep-ph])

Radial excitations

L.-P. He, D.-Y. Chen, X. Liu and T. Matsuki

Spacing of radial excitations arXiv:1405.3831 [hep-ph]. 4600 are the same in Charmonia ψ(4415) and Bottomonia; 4400 •gap between 1P-2P states is 382 MeV 4200 224 MeV smaller : 224 MeV Υ**(3S)** 4000ψ(3S) $\chi_{bJ}(2P) - \chi_{bJ}(1P) \approx 360 \text{ MeV}$ (MeV) 353 MeV 332 MeV 3800 $\chi_{cJ}(2P) - \chi_{cJ}(1P) \approx 437 \text{ MeV}$ ψ(2S) Y(2S) Sag 3600 563 MeV 589 MeV 3400 3200 J/ψ <u>Υ(1S)</u> Is a diquark-antidiquark pair similar to a quark-antiquark pair? a very tightly bound 3000 diquark? 2800 ψ family Y family

10800

10600

10400

10200

10000

9800

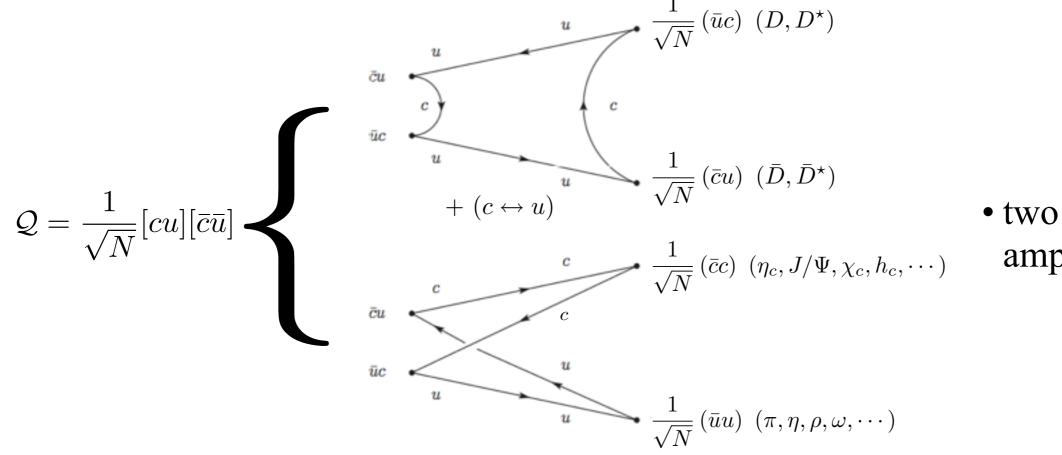
9600

9400

9200

5. Tetraquarks in the large N expansion

• Reputation of tetraquarks was somehow tarnished by a theorem of S. Coleman: tetraquarks correlators for $N \rightarrow \infty$ reduce to disconnected meson-meson propagators


S. Coleman, Aspects of Symmetry (Cambridge University Press, Cambridge, England, (1985), pp. 377–378

- The argument was reexamined by S. Weinberg who argued that if the connected tetraquark correlator develops a pole, it will be irrelevant that it is of order 1/N with respect to the disconnected part: *at the pole the connected part will dominate anyhow*; S. Weinberg, PRL 110, 261601 (2013)
- the real issue is the width of the tetraquark pole: it may increases for large N, to the point of making the state undetectable;
- Weinberg's conclusions is the the decay rate goes like 1/N, making tetraquarks a respectable possibility.
- Weinberg's discussion has been enlarged by M. Knecht and S. Peris (arXiv:1307.1273) and further considered by T. Cohen and R. Lebed et al. (arXiv: 1401.1815, arXiv: 1403.8090).

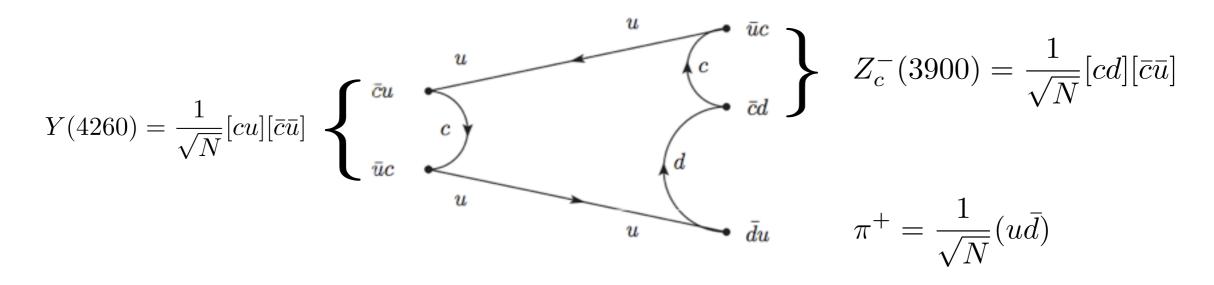
What is not forbidden is NECESSARY

Decay amplitudes in 1/N expansion

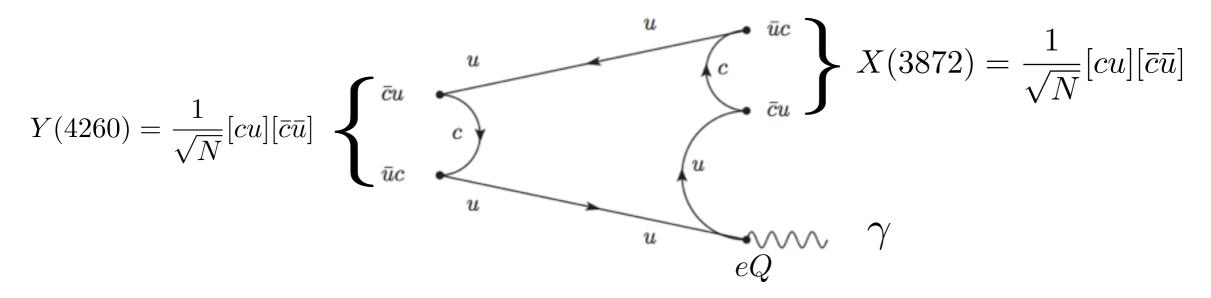
- By Fierz rearrangements, tetraquark operators can be reduced to products of color singlet bilinears;
- interpolating field operators have to be multiplied by powers of N, such as to make the connected two-point correlators to be normalized to unity;
- one loop amplitude with insertions of quark color singlet operators gives a factor N.

• two independent amplitudes

• The result is that decay amplitudes into two mesons are of order: $\frac{1}{N^{3/2}}N = \frac{1}{\sqrt{N}}$


IHEP-Beijing, May 11, 2015

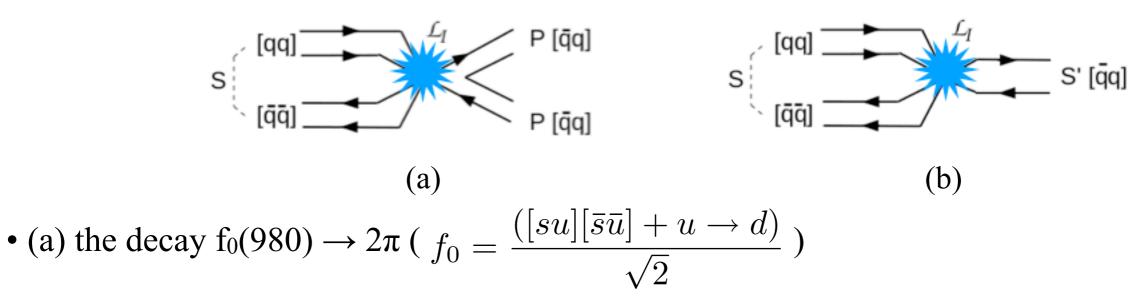
• These two amplitudes were introduced long ago for tetraquark light scalar decay: reassuringly, they turn out both to be leading in 1/N.


L. Maiani, F.Piccinini, A. D. Polosa, V. Riquer, PRL **B93**, 212002 (2004) L. Maiani. XYZ rivisited

further decay amplitudes

• tetraquark de-excitation amplitudes by meson emission, e.g. Y(4260) \rightarrow Z_c(3900) + π , are also of order 1/ \sqrt{N}

• however, e.m. currents need no normalization factor, so that the de-excitation amplitudes via photon emission are of order eQ $\times 1$.


IHEP-Beijing, May 11, 2015

L. Maiani. XYZ rivisited

Non-perturbative instantons: may explain two or three further puzzles

G. 't Hooft, G. Isidori, L. Maiani, A. D. Polosa and V. Riquer, PL **B662** (2008) 424.

A. H. Fariborz, R. Jora and J. Schechter, PR **D77** (2008) 094004.

- (b) the mixing of light (tetraquark) scalar mesons with q-qbar mesons, the latter being made by a₀(1474) (I=1), K₀(1412), (I=1/2), and three isosinglets: f₀(1370), f₀(1507) and f₀(1714) (one could be a glueball);
- (c)= (b) in the reverse:
 - with: $Y(4260) = \frac{([cu][\bar{c}\bar{u}] + u \to d)}{\sqrt{2}}$, the u-ubar or d-dbar pair in Y may give rise to the observed decay: $V(4260) \to L/M + f_0(a\bar{a})$

$$Y(4260) \rightarrow J/\Psi + f_0(q\bar{q})_{off-shell} \rightarrow J/\Psi + f_0([qq][\bar{q}\bar{q}])$$

IHEP-Beijing, May 11, 2015

L. Maiani. XYZ rivisited

17

Selection rules

- Conservation of the heavy quark spin is well established in QCD: decays indicate the value of c-cbar spin in the initial wave function:
 - X(3872): S(c-cbar)=1 \rightarrow J/ Ψ yes, but no η_c
 - Y(4230): both χ_c (S (c-cbar) =1) and h_c (S (c-cbar) =0)
- conservation of light quark spin is not reliable:
 - initial spin composition not necessarily reflected in K K* vs K*K* decay modes
- observed X, Y, Z in the new paradigm of spin-spin coupling respect these rules, as far as we can see !
- more precise measurements of different decay channel will be of the outmost importance.

6. Tetraquark picture of unexpected quarkonia

L.Maiani, F.Piccinini, A.D.Polosa and V.Riquer, Phys. Rev. D 71 (2005) 014028

$$[cq]_{s=0,1}[\bar{c}\bar{q}']_{\bar{s}=0,1}$$

- S-wave: positive parity
- total spin of each diquark, S=1, 0
- neutral states may be mixtures of isotriplet and isosinglet
- mass splitting due to spin-spin interactions (e.g. the non-relativistic costituent quark model)

$$H = 2M_{diquark} - 2\sum_{i < j} \kappa_{ij} (\vec{s}_i \cdot \vec{s}_j) \ \frac{\lambda_i}{2} \frac{\lambda_j}{2}$$

The S-wave, J^P=1 ⁺ charmonium tetraquarks

• use the basis $|s, \bar{s}\rangle_J$

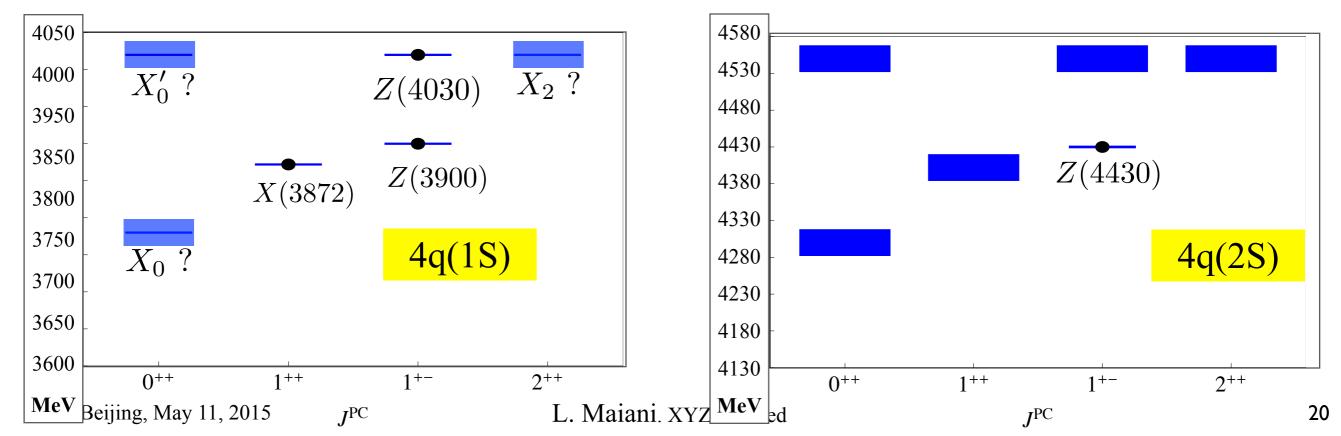
$$J^{P} = 0^{+} \quad C = + \quad X_{0} = |0,0\rangle_{0}, \ X'_{0} = |1,1\rangle_{0}$$

$$J^{P} = 1^{+} \quad C = + \quad X_{1} = \frac{1}{\sqrt{2}} \left(|1,0\rangle_{1} + |0,1\rangle_{1}\right)$$

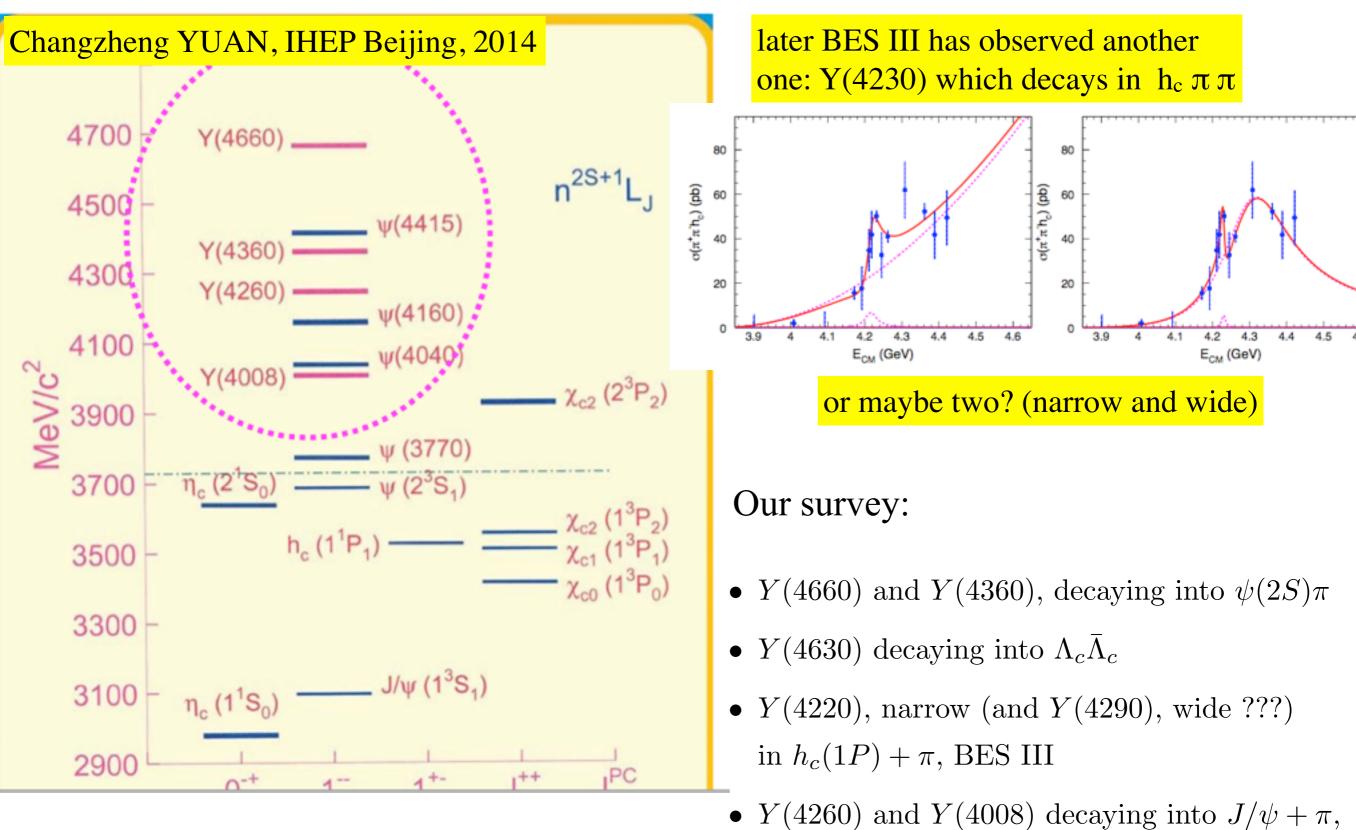
$$J^{P} = 1^{+} \quad G = + \quad Z = \frac{1}{\sqrt{2}} \left(|1,0\rangle_{1} - |0,1\rangle_{1}\right), \ Z' = |1,1\rangle_{1}$$

$$J^{P} = 2^{+} \quad C = + \quad X_{2} = |1,1\rangle_{2}$$

 $X(3872)=X_1$ Z(3900), Z(4020)=lin. combs. of Z&Z' that diagonalize H X(3940)=X₂ ??


Mass spectrum: the new paradigm

A. Polosa, V. Riquer, F, Piccinini, PRD **89**, 114010 (2014)


- A tentative mass spectrum for the S-wave tetraquarks was derived in the 2005 paper, based on an extrapolation of the spin-spin interactions in conventional S-wave mesons and baryons.
- Does NOT agree with the observed level ordering of X(3872), Z(3900) and Z(4020)
- A new, simple paradigm accounts for the observed pattern: dominant interactions are those *between quarks in the same (tightly bound?) diquark* (or antiquarks in the same antidiquark):

$$H \approx 2\kappa_{qc} \ (s_q \cdot s_c + s_{\bar{q}} \cdot s_{\bar{c}}) = \kappa_{qc} \left[s(s+1) + \bar{s}(\bar{s}+1) - 3 \right]$$

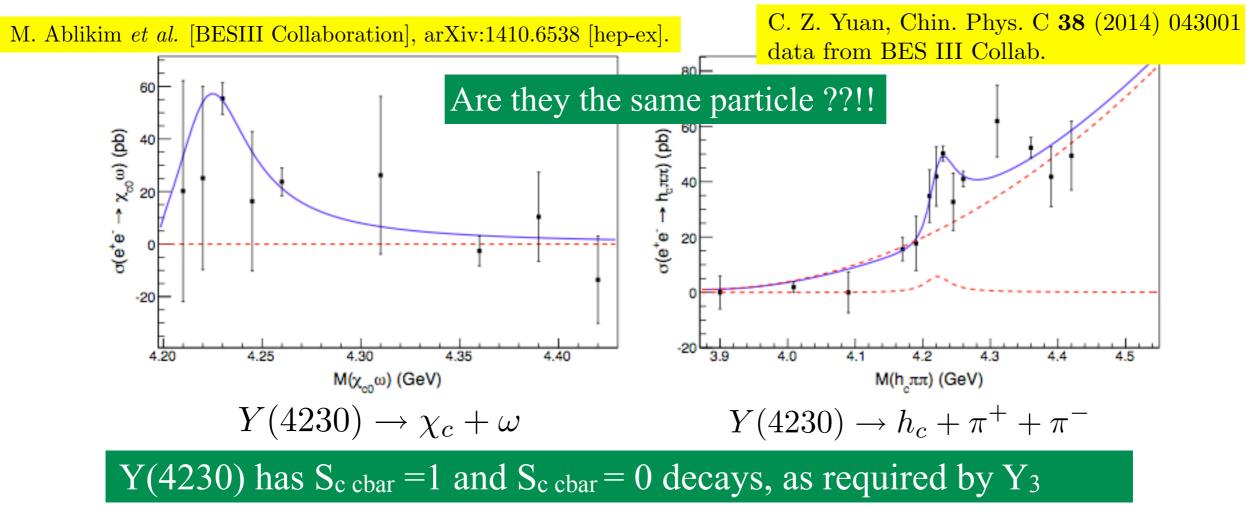
- H is diagonal in the basis of diquark total spin and counts the number of spin=1 diquarks
- one Z is degenerate with X(3872), the other is heavier;
- κ_{qc} ~60 MeV from fit (larger than κ_{qc} in baryons).

7. What are the Y states?

L. Maiani. XYZ rivisited

Y- tetraquarks

- Tetraquark states with $J^{PC}=1$ -can be obtained with odd values of the orbital angular momentum L=1, 3 and diquark and antidiquark spins s, s bar=0,1.
- use the notation: |s,s bar; S,L>_{J=1}, and charge conjugation invariance we get four states with L=1:


	spin composition: $ s, \overline{s}, S, L >_J$	$P(s_{c\bar{c}}=1)$	$P(s_{c\bar{c}}=0)$	assign.
Y_1	$ 0,0;0,1 angle_1$	0.75	0.25	Y(4008)
Y_2	$\frac{1}{\sqrt{2}}(1,0;1,1\rangle_1+ 0,1;1,1\rangle_1)$	1	0	Y(4260)
Y_3	$ 1,1;0,1\rangle_1$	0.25	0.75	Y(4230)
Y_4	$ 1,1;2,1 angle_1$	1	0	Y(4630)

Interpretation of Y states:

- leave aside the L = 3 state (too heavy);
- Y(4360) and Y(4660) = radial excitations of Y(4008) and Y(4260) (decay into $\psi(2S)$, $\Delta M \sim 350$, 400 MeV in the range of ΔM of L = 1 charmonia and bottomonia);
- the 4 states Y_{1-4} identified with Y(4008), Y(4260), Y(4220) (the narrow structure in the h_c channel) and Y(4630). IHEP-Beijing, May 11, 2015 L. Maiani. XYZ rivisited

Y states, decay patterns and very tentative assignements

	$J/\Psi + \pi\pi$	$\psi(2S) + \pi\pi$	$h_c + \pi \pi$	$\chi_{c0} + \omega$	$\Lambda_c + \bar{\Lambda}_c$		$P(S_{c\bar{c}}=1)$	$P(S_{c\bar{c}}=0)$
$S_{car{c}}$	1	1	0	1	1			
Y(4008)	seen	-	-	-		Y_1	0.75	0.25
Y(4230)	-	-	seen	seen		Y_3	0.25	0.75
Y (4260)	seen	-	-	-	-	Y_2	1	0
Y(4360)	-	seen				Y_1'	1	0
Y(4630)	-	-	-	-	seen	Y_4	1	0
Y(4660)	-	seen	-	-	-	Y_2'	1	0

L. Maiani. XYZ rivisited

Radiative decays

• The identical spin structure implied in the model for Y(4260) and X(3872) suggests the decay

 $Y(4260) \rightarrow X(3872) + \gamma$

M.Ablikim et al. [BESIII Collaboration], arXiv:1310.4101 [hep-ex]

to be an *unsuppressed* E_1 *transition*, with $\Delta L=1$ and $\Delta Spin =0$, similar to the observed transitions of charmonium χ states.

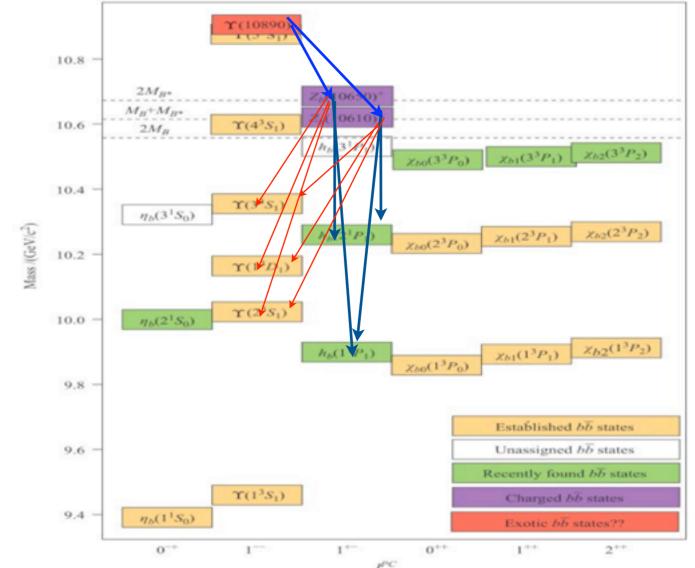
- The decay rate could provide a first estimate of the radius of the tetraquark.
- A comparison of the spin structures in Y and X states provides selection rules for E₁ transitions that should provide a better identification of the levels.
- The assignments we have made produce the table:

$$Y_{4} = Y(4630) \rightarrow \gamma + X_{2} \quad (J^{PC} = 2^{++}) = \gamma + X(3940), \ ??$$

$$Y_{3} = Y(4220) \rightarrow \gamma + X'_{0} \quad (J^{PC} = 0^{++}) = \gamma + X(3916), \ ??$$

$$Y_{2} = Y(4260) \rightarrow \gamma + X_{1} \quad (J^{PC} = 1^{++}) = \gamma + X(3872), \ \text{seen}$$

$$Y_{1} = Y(4008) \rightarrow \gamma + X_{0} \quad (J^{PC} = 0^{++}) = \gamma + X(3770 \ ??), \ ??$$


IHEP-Beijing, May 11, 2015

8. Hidden beauty tetraquarks

A. Ali, C. Hambrock, I. Ahmed and M. J. Aslam, Phys. Lett. B 684, 28 (2010);
A. Ali, C. Hambrock and M. J. Aslam, Phys. Rev. Lett. 104, 162001 (2010) [Erratum-ibid. 107, 049903 (2011)];
A. Ali, BELLE II ITIP, Krakow, 2015

Bottomonia and Bottomonium-like Hadrons (Olsen, arxiv:1411.7738)

- note: $\Delta M(Z_b)/\Delta M(Z_c) \sim m_c/m_b$, as expected
- Y(10850) usually identified with Y(5S)
- however Ali et al suggest Y(5S) is superimposed to the b-analog of Y(4260) with the decays:
 - $Y_b \rightarrow Z_b/Z_b^{'} \pi \rightarrow h_b(nP) \pi \pi$
 - $Y_b \rightarrow Z_b/Z_b^{'} \pi \rightarrow Y(nS) \pi \pi$
- simultaneous decay in h_b and Y *is compatible* with heavy quark spin
 conservation, since Z_b are not degenerate and each has both S_(b b bar)= 0,1 components

Ahmed Ali (DESY, Hamburg)

$$\begin{aligned} |Z_b\rangle &= \frac{|1_{bq}, 0_{\bar{b}\bar{q}}\rangle - |0_{bq}, 1_{\bar{b}\bar{q}}\rangle}{\sqrt{2}} = \frac{\alpha |1_{q\bar{q}}, 0_{b\bar{b}}\rangle - \beta |0_{q\bar{q}}, 1_{b\bar{b}}\rangle}{\sqrt{2}} \\ |Z_b'\rangle &= |1_{bq}, 1_{\bar{b}\bar{q}}\rangle_{J=1} = \frac{\beta |1_{q\bar{q}}, 0_{b\bar{b}}\rangle + \alpha |0_{q\bar{q}}, 1_{b\bar{b}}\rangle}{\sqrt{2}} \end{aligned}$$

 $\alpha \approx \beta \approx 1$

IHEP-Beijing, May 11, 2015

L. Maiani. XYZ rivisited

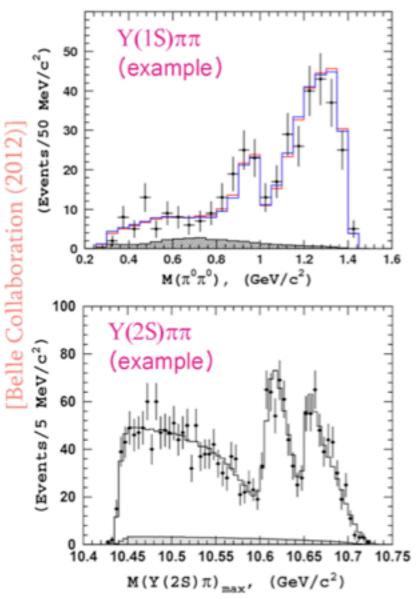
• heavy quark spin conservation implies:

$$\begin{array}{ll} - \mathrm{Y} \rightarrow \mathrm{h}_{\mathrm{b}} \left(\mathrm{n} \mathrm{P} \right) & S = 1 \rightarrow S = 0: \\ & g_{Z} = g(\Upsilon \rightarrow Z_{b}\pi)g(Z_{b} \rightarrow h_{b}\pi) \propto -\alpha\beta\langle h_{b}|1_{q\bar{q}}, 0_{b\bar{b}}\rangle\langle 0_{q\bar{q}}, 1_{b\bar{b}}|\Upsilon\rangle \\ & g_{Z'} = g(\Upsilon \rightarrow Z'_{b}\pi)g(Z'_{b} \rightarrow h_{b}\pi) \propto \alpha\beta\langle h_{b}|1_{q\bar{q}}, 0_{b\bar{b}}\rangle\langle 0_{q\bar{q}}, 1_{b\bar{b}}|\Upsilon\rangle = -g_{Z} \\ & - \mathrm{Y}\text{-}\mathrm{Y}(\mathrm{n} \mathrm{S}) \\ & f_{Z} = f(\Upsilon \rightarrow Z_{b}\pi)f(Z_{b} \rightarrow \Upsilon(nS)\pi) \propto |\beta|^{2}\langle \Upsilon(nS)|0_{q\bar{q}}, 1_{b\bar{b}}\rangle\langle 0_{q\bar{q}}, 1_{b\bar{b}}|\Upsilon\rangle \\ & f_{Z'} = f(\Upsilon \rightarrow Z'_{b}\pi)f(Z'_{b} \rightarrow \Upsilon(nS)\pi) \propto |\alpha|^{2}\langle \Upsilon(nS)|0_{q\bar{q}}, 1_{b\bar{b}}\rangle\langle 0_{q\bar{q}}, 1_{b\bar{b}}|\Upsilon\rangle = \frac{\alpha^{2}}{\beta^{2}}f_{Z} \end{array}$$

• in agreement, within still large errors, with Belle data:

Final State	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$	$h_b(2P)\pi^+\pi^-$
Rel. Norm.	$0.57 \pm 0.21^{+0.19}_{-0.04}$	$0.86 \pm 0.11^{+0.04}_{-0.10}$	$0.96 \pm 0.14^{+0.08}_{-0.05}$	$1.39 \pm 0.37^{+0.05}_{-0.15}$	$1.6^{+0.6+0.4}_{-0.4-0.6}$
Rel. Phase	$58 \pm 43^{+4}_{-9}$	$-13 \pm 13^{+17}_{-8}$	$-9 \pm 19^{+11}_{-26}$	187^{+44+3}_{-57-12}	$181_{-105-109}^{+65+74}$

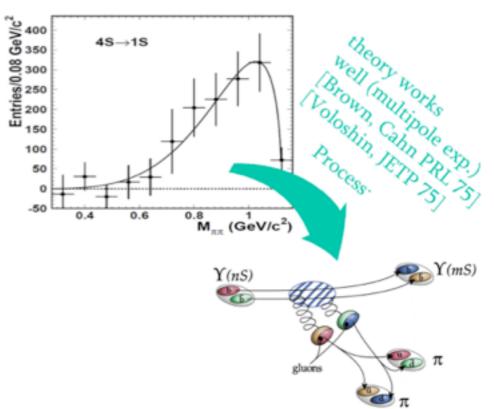
Table 1: Relative normalizations and relative phases (in degrees), for $s_{b\bar{b}}: 1 \to 1$ and $1 \to 0$ transitions, as reported by Belle.

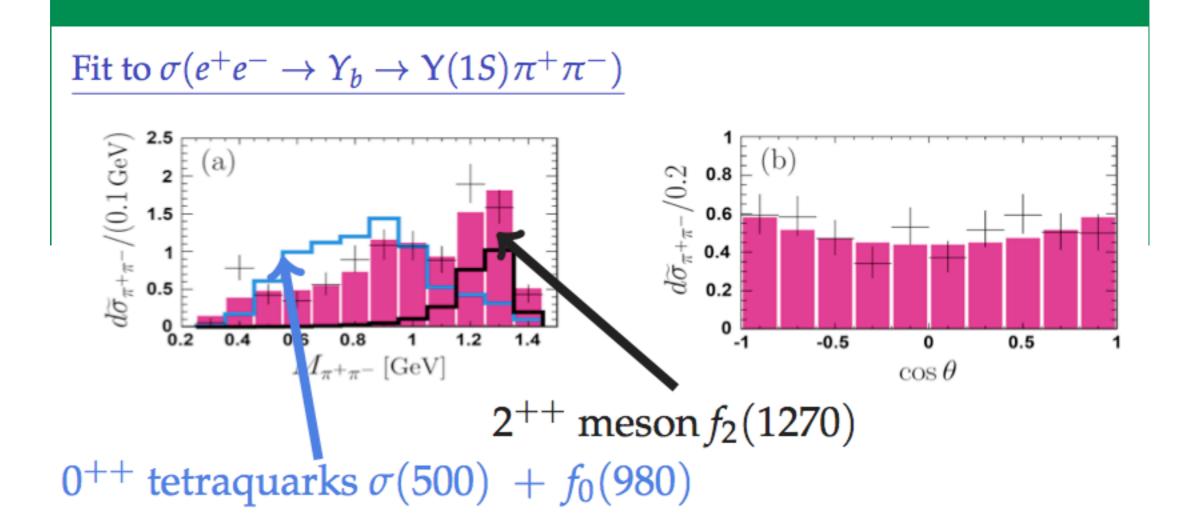

$$\begin{array}{l} \underline{\mathbf{s}_{b\bar{b}}:1 \rightarrow 1 \text{ transition}:} \\ \overline{\text{Rel.Norm.}} = 0.85 \pm 0.08 = |\alpha|^2 / |\beta|^2 \\ \overline{\text{Rel.Phase}} = (-8 \pm 10)^{\circ} \end{array} \qquad \begin{array}{l} \underline{\mathbf{s}_{b\bar{b}}:1 \rightarrow 0 \text{ transition}:} \\ \overline{\text{Rel.Norm.}} = 1.4 \pm 0.3 \\ \overline{\text{Rel.Phase}} = (185 \pm 42)^{\circ} \end{array}$$

IHEP-Beijing, May 11, 2015

L. Maiani. XYZ rivisited

has the $Y_b(10850)$ bump a 4quark component, besides the Y(5S) one, as proposed by Ali and coworkers?


Dipion mass distributions in $Y(5S) \rightarrow Y(nS)\pi\pi$ decays?


Ahmed Ali (DESY, Hamburg)

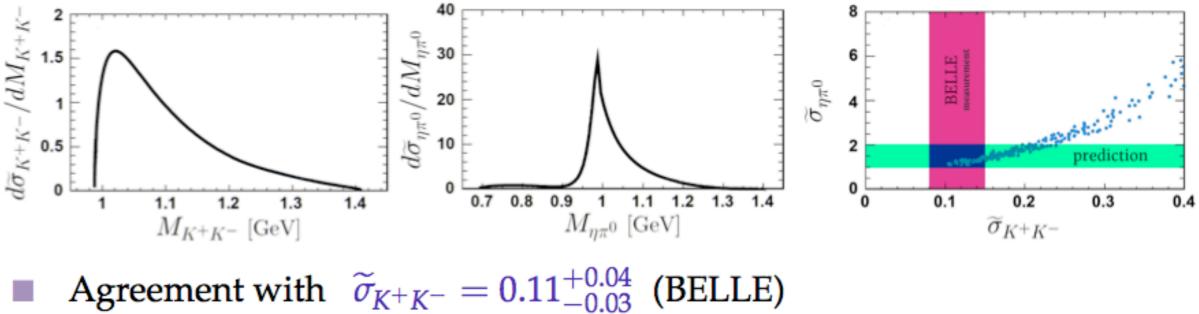
• the dipion spectrum strongly suggestive of the characteristic processes:

- 4quark decay in Y(1S)+q qbar -> $f_2(1270)$
- same with $f_0(1370) > f_0(990)$ by instanton mixing [$f_0(1370)$ goes essentially in 4pi only]
- hint of de-excitation in $Y_b(b \ b \ bar)$ +4quark $f_0(500)$
- note the difference w.r.t. the 2 pion spectrum in the decay of $Y_b(4S)!!$

L. Maiani. XYZ

- Fit results, data from [Belle, PRL 08]
- $\chi^2/d.o.f. = 21.5/15 \longrightarrow \text{Good agreement with data}$
- Clear resonance dominance!

($\tilde{\sigma}$: normalized to measurement)


Ahmed Ali (DESY, Hamburg)

IHEP-Beijing, May 11, 2015

Predictions for : $Y(10850) \rightarrow Y(1S) + K^+K^-$, or $\eta \pi^0$

Fit determines couplings (assume SU(3) flavor symmetry for couplings $(\sigma(500), f_0(980), a_0(980)) \rightarrow PP'$, ['t Hooft, Isidori, Maiani, Polosa, Riquer, PLB 08])

predictions for spectra:

→ $1.0 \lesssim \tilde{\sigma}_{\eta\pi^0} \lesssim 2.0$ predicted

Resonance dominance

Characteristic shape

Good tests (relying on *Y*_b has **2 flavor states)**

Ahmed Ali (DESY, Hamburg)

IHEP-Beijing, May 11, 2015

L. Maiani. XYZ rivisited

31 / 33

9. To be convinced that we *do see* a new spectroscopy....

- Complete the 1S tetraquark multiplet (masses estimated with \pm 40 MeV ?):
 - X₀: 3780, X₀, X₂: 4020, decay: J/ Ψ π π
- Fill the 2S multiplet
 - Z'(2S): 4550, decay $\psi(2S) \pi$, h_c(2S) π
 - X(2S): 4430
 - X₀(2S): 4310, X'₀(2S), X₂(2S): 4550 decay $\psi(2S) \pi$
- Y(4660) $\rightarrow \psi(2S) \pi \pi$ decay:
 - does it go via Z(4430)+ π ? and there is a trace of Z'(2S)+ π ?
- Y(4660) $\rightarrow \gamma$ +... to discover X(2S) ??
- Is there the I=1 (i.e. charged) companion of X(3872)? is it very wide?
- are there $Y_b(10850) \rightarrow Y(1S) \eta \pi^0$ decays?
- Can LHCb see the X, Y, Z states seen by Belle and BES?

Many Thanks !!

IHEP-Beijing, May 11, 2015

•