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Review of Lecture Five

1 We can actually “see” and “count” the quarks and gluons
— quark and gluon distributions

d PQCD factorization works for DIS to all orders as well as
all powers due to Operator Product Expansion (OPE)

 PDFs evolves — the number of partons is sensitive to
the probing scale

1 PQCD global analysis for spin averaged cross sections
results into the reasonably well-determined universal

PDFs

 Hadronization — the probability — fragmentation functions
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Cross Section with Identified Hadrons
J One hadron:

DIS . 1
—~ + O —
ot 3 ,,=£ It ¥ (QR)
Now Past Connection
Hard-part Parton-distribution Power corrections
d Two hadrons: l b l b l

DY ( o
Tt~ >¢< ®
/
> Jix)

Soft interactions between incoming hadrons break the universality of PDFs
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“Drell-Yan” Cross Section

I Drell-Yan process: ‘1'_ via a heavy colorless particle
h(p,)+h'(p,)—= 070 (¢)+X  with 0" =¢’
[ Parton model formula:

do”" dé° ., "
Oup (pAapB>Q) EIdxfdx ¢f(x (XP xp Q) ¢f( )

d0’ do*

1 Long-range soft interactions before the hard collision
could break the PDF’s universality — loss of predictive power

Pa
DY
factor DY
PM

PB
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Long-range Soft Gluon Interactions

1 Soft-gluon interaction takes place all the time:

Question:

What is its effect on a physical observable?

 Factorization = soft-gluon interactions are suppressed:

Field -Frame

Scalar Viz)=%
2 i
q >
xyzt
J2t - :
1.2 )~ )=+
» ‘
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Field Strength is Strongly Contracted

Field r-Frame 2-Frame
) o ) - —evA
Field Strength Es(x) = EE Ey(#') = —

(27 + 2 A2)%2
— —  “strongly contracted!”
mmm) [orentz contracted fields of incident p‘m"t»zf cles do not
overlap until the moment of the scattering!
the 1/4% translates into a suppression factor of 1/Q)*
mmm) [nitial-state interaction disappear at high enough en-

ergies!

o(0)=0,(0)+0, (Q)éﬂn (Q)é+...

mep the factorization should be valid at the order of 1/0)?

Leading power (twist): Collins, Soper, and Sterman; Bodwin
Next leading power: Qiu and Sterman
Factorization is violated at 1/Q* via explicit calculation: Taylor et al.
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QCD Formalism for Drell-Yan Cross Section

1 Factorization at Ieading power:

ADY
dO’;BZY pA’pBa Efdx dx ¢f . MF) do (xngzpmq tuF) ¢f’ (x',‘u;) +
7'

< This is not “leading log approximation”, corrections to this factorized
formula are power suppressed 1/Q?

<> Parton distributions are non-perturbative, but, defined in terms of
the same matrix elements as those defined in DIS

% dO has an expansion in powers of (o8

1 Factorization at next-to-leading power:

CZO'](;;L)/ (pA7va q) 1 T( ) dé_fjll)fz,f' r 2 T
dQ?2 Qz L /dajdwldﬂv?/dﬂ'j f1f2(513 5171,5’327,“1?) TQQ be’(x Hp) + T < ¢

T (2,21, 9, %) = W — Twist-4 quark-gluon
correlation function
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Why Drell-Yan Process Makes Sense?

d Drell-Yan = Lowest order in QCD perturbation theory

< Perturbative pinch singularities
<> Collision kinematics

< Large Q?

=== determine the process

do o+ _
o = [ dkardkprdkzdil Hu(QF,Q7 kar+ k1)
XTr{'\’,/—th‘A(Q_*- _ % ’i’-A,Ts Ar‘z)q,qu;B(lcg, kA,Te Q- —7\.\1)}

Approximation:

- - Drell-Yan
<@ = formula
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Trouble of Gluonic Interactions

4 Virtual gluonic interaction is divergent:

{ 2
\J v Virtual loop momentum k-integration
o X | kf can be divergent!
__f\<-£g§
\—— |7 Dominated by on-shell parton momentum

1 One-loop example (EM form factor):

In = / 'k : ! : :
(2m)™ (k* +ie)((p1 — k) +i€)((p2 + k) + te)
_ 2/ d"k /1 doy das dag (1 — ap — ag — ag)
(2m)™ Jo [D(ay, as, as, k)]?

D(ay, an, a3, k) = ank® + as(pr — k)? + as(ps + k)? + ic

1 4t 12
—(Q? — ic

) B(—e,1— 1 .
)F(1+e) (6_’8 2 = Divergent!
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Singularities and Divergences
d Singularities:
<~ Divergences from: D(ay, ay, as, k) = ak® + as(pr — k)* + as(py + k)* +ie =0
< D(ay,a9,a3,k) is quadratic in each component of k"

——> Two poles for each component of £*- contour (1-up, 1-down)

X . No pinched poles _ Pinched poles
X No real divergence T Trouble!
 Conditions for pinched poles:

D(ay, a9, a3, k) =0 Also known as (or
) equivalent to) the
@TD(O‘M ag,ag, k) =0 for p=0,1,2,3 Landau Equations

: ark® + as(p1 — k)* + as(py + k) =0 No pinched

Oélk’u — 9 pl k)’u + Oég(pg + k’) =( p0|e for Q;
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Solutions of Landau Equations

J Landau equations: i k? + ag(py — k) + as(ps + k)2 =0
k! — aa(pr — k)" 4+ ag(pe + k) =0
Solution (1):
=0, =2 =22 Pinched Infrared divergence!
a1 a1
Solution (2):

Kr=uxpf, a3=0, ez =az(l —x), 0<z <1
Pinched collinear divergence!

Solution (3):
K= —2'ph, ap =0, ana’ =a3(1 —2), 0 <2’ <1
Pinch llinear divergence!
0 Note: ched collinear divergence

< Having pinched singularity is a necessary condition for divergence

< Possible extra convergence from the numerator

< Divergent, but, power suppressed — high twist contribution
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Infrared Power Counting

 Pinch surface:
A surface in the full phase-space of d*k, on which the k is pinched

< Intrinsic variable — the component of the k on the pinch surface
<> Normal variable — the component of the k out of the pinched surface

J Rescale all normal variables:

ki = AWK aj=1,2,... (or 3,1,...) K is a hard scale
The momentum A£* moves to the pinch surface when A — 0

Ex: In C.M. frame: p{ = (p{,07,0.), pb = (07,p;,0.), and p{ =p; = \/ Q?%/2,

If k" | pi, rescale k" as kT ~/Q2%, k= ~ X /Q?, k| ~ A Q7

 Keep the lowest power in A for each denominator:
ki, N2 = XY f(k) + ... EX (pa+ k)2 =2ps-k+ k> — \(2py - k)

 Degree of divergence — power of AI S, = power from numerator
n, = Z a; — Z A; + 5] ns > O(IR finite), ny < O(IR divergent)
7 )
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Physics of the Pinched Singularities

d Pinched singularity = long-lived partonic states:

< Collinear divergence:

If B[] pi,  rescale k* as k't ~\/Q% k™ ~ A \/Q? ki~ A\/Q?

:>{D_k k)2 (po + k)2 ~ K2(=2p1 - k) (2pa - k) — A2 A2 1=\
Ak — xl v v v

0 0 1
Similarly for k" || ph. k;\-xg Collinear gluon

(1-x)p>*
< Infrared divergence:

If k¥ — 0, rescale k" as kT ~ k™ ~ k| ~ \/Q?

Q{%_k 4 — k) (P2 + k)~ K2 (=2p1 - K)(2p2 - k) — XX A=\
dk — \

1 General pinch surface:
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QCD Factorization for “Drell-Yan”

1 Analysis of leading (pinch or singular) integration regions:

Power counting in partons’
momentum scales gives

the following separate regions:

Hard (Large Pr or way off shell) — infrared safe
Collinear (to A or to B, small Pr) -could be a trouble

Soft (All components small, includes “Glauber.”)

— a big trouble (took 20 years to solve the problem) T—(kﬂf_! < k1
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Eikonalization of Collinear Gluons

d Collinear gluons:

The extra collinear gluons could
be a big problem because the

factorization formula contemplates
one parton from one hadron

 Solution:

<> transversely polarized gluons are power suppressed
< longitudinally polarized gluons have (k) o< k¥

Their effect can be approximated as shown with eikonal lines, with its
direction, u, in the direction opposite to the hadron momentum:

u = “-" for hadron A, and u =*+" for hadron B

< Feynman rule for the interaction with eikonal line:
[

Propagator = R Vertex = —ig t, u”
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Eikonalization of Collinear Gluons

d Collinear gluons:

The extra collinear gluons could
be a big problem because the

factorization formula contemplates
one parton from one hadron

 Solution:

<> transversely polarized gluons are power suppressed
< longitudinally polarized gluons have (k) o< k¥

Their effect can be approximated as shown with eikonal lines, with its
direction, u, in the direction opposite to the hadron momentum:

u = “-" for hadron A, and u =*+" for hadron B

< Feynman rule for the interaction with eikonal line:
[

Propagator = b u e Vertex = —ig t, u”
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Factorization of Parton Distribution Functions

1 Parton distribution function:

Takes care of collinear
gluon interaction by the
gauge link of PDF

- /
boynl, 1%) = | S PV ()|, (0) {Pe*igfoy d”_‘“(”_)] ;F%(y‘)\h(p»

_I_

 Factorization of collinear gluons:

Two factorized parton
distribution functions

Lec6 Jianwei Qiu 17



Trouble from Soft Gluons

U Interaction between active
guark and spectator quark:

A soft gluon exchanged from

a spectator quark in hadron A

to the active quark in hadron B
can rotate the quark’s color,

and thus, keep it from annihilating

1 Additional pinch singularity:

Soft gluon approximation (with eikonal lines)
requires the active parton to have large “+”
(or “-”) momentum. But, the contours of
these momenta can be trapped in

“too small” region

(zp + k)* +ie o< k™ + ic
(1 —2)p—k)* +icox k= — e

Lec6 Jianwei Qiu 18



Soft gluons take care of themselves

 Sum over all final-state and use of unitarity to remove
all poles from upper half plane for k-integration
(or lower half plane for k*-integration) — no-pinched poles

 Soft gluon approximation and gauge invariance to decouple
soft gluon interaction from the jet-functions into the eikonal
lines

 Unitarity to remove all decoupled soft-gluon interactions
Lec6 Jianwei Qiu 19



Three Hadrons in a Single Hard Collision
Nayak, Qiu, Sterman, 2006

p, p, 4 b/t/H/h/...
— —> .
p, d A — &
dGAB%C;;El,g,pB, p) = P - (x, M}zv )® Gps (x ) x“l%“ )
® dé\-abecu( (X,X',Z, Vs p;M; )®DC_>C z, ‘u; )

dydp;
. . 2
Qd Fragmentation function: D._.. (Z, Up )

. 2 2 2
1 Choice of the scales: Upoe = U, = Pr

To minimize the size of logs in the coefficient functions

June 26, 2007 Jianwei Qiu, ISU/ANL 20
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Processes with two Large Scales

2 2 2
Q1 > Qz > AQCD
d We could choose: u = Q, or Q,, or somewhere between

— O, (Q12 ) is small, (le )En(Ql2 / 02) is not necessary small
Cannot remove the logarithms by choosing a proper m

====p  Resummation of the logarithms is needed

 For a massless theory, we can get two powers of the
logarithms at each order in perturbation theory:

a, (07 )in' (O 107
due to an overlap region of IR and CO divergences

d Examples:

< pT distribution of heavy boson (Higgs, W+, Z, y*,...) production
< jet-momentum imbalance in e*e-, e*h, and hh collisions

June 26, 2007 Jianwei Qiu, ISU/ANL 22



Double Logarithms

 Consider electromagnetic form factor:

RO

/tq €) = —iep u (p1)7,0(

 For massless quark at one Ioop:

(2o % Arp? " T2(1 — e)I(1 +¢) { 1 3
NnNg ,€) = —— :
e i F(1—20 (e

2 o
2T —q° — i€

4‘ In”(q° /%) +

Overlap of IR and CO singularities === Double logarithms
*» known as Sudakov double logarithms

% common in a massless theory
June 26, 2007 Jianwei Qiu, ISU/ANL
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Leading Double Log Contribution to Drell-Yan
VWA W O Differential Q-distribution as Q—0 :

p do do g”(Qz/Qr)
! ¥ par, (dy)gm 2C(n) or

q

i =92 10(a) with OF =M
dy Born

° do
[ dyd

Integrated QT-distribution:

real+virutal

“ do , 2@ Effect of gl
_49 _ d? gluon
{dy Ii realtvirutal pT ‘g\ j; cj}dpf real+virutal pT emiSS|on
do a, n (Qz/ Pr ) do a 1
~| — 2C, dp: — | x|1-C.=tn’ Q2Q2]
(dy)Bom [ f pT ' (dy)Bom [ F” ( / T)

!

do a, 2
~ (d—y)Bom XeXP[ tn’ (Q /O )] +<—— Assume this exponentiates

June 26, 2007 Jianwei Qiu, ISU/ANL 24



Resummed Q--distribution
d Differentiate the integrated Q- -distribution:

d d (n Qz/Qﬁ 262 A0
o z(d_f;)mxzq(j;) <Q% LGXP[_CF(OJ;)M (0 /QT)} =>o

as QT_>O

 compare to the explicit LO calculation:

2 2
do S (d_g) x2C,. (O‘s ) tn (Q 2/QT ) — » | Q-spectrum (as Q;—0) is
dydor o \ dy ). T O; completely changed!

 We just resummed (exponentiated) an infinite series of
soft gluon emissions — double logarithms

—a L’ (L) (L)
e ol e L= n(Q*/0})

>”'V\' VL Vv VY Soft gluon emission
treated as uncorrelated

June 26, 2007 Jianwei Qiu, ISU/ANL 25



Still a Wrong Q- -distribution

J Experimental fact: dd;Q2 = finite [neither  nor 0!] as O, — 0
Y&

e Double Leading Logarithms Approximation (DLLA)

radiated gluons are both soft and collinear with strong
ordering in their transverse momenta

e Strong ordering in transverse momenta in DLLA
— overly constrains the phase space ofthe emitted gluons
— ignores the overall transverse momentum conservation

= DLLA over suppresses small () region

Resummation of uncorrelated soft gluon emission
leads to too strong suppression at Q=0

June 26, 2007 Jianwei Qiu, ISU/ANL 26



d Why?
Particle can receive many finite k; kicks
via soft gluon radiation yet still have Q=0

— Vector sum!
®
[ ]
@
®
kT4
' kT3
\ k kTZ

4 Subleading logarithms are equally important at Q=0

4 Solution:
Impose 4-momentum conservation at each step of
soft gluon resummation

June 26, 2007 Jianwei Qiu, ISU/ANL



kT-factorization and Resummation

4 Leading order KT-factorized Cross section:
d’k, d’k, d’k,

dQ dQT Ef w5 (27 )
/A(§a7k )f/B(gbﬂk )Hff(Q )S(ksT)

X(S (QT Ay Br _ks,T)

o}, -] Tk T>—(ﬂ fdbe’bene-fg'%»r

1

O Factorized cross section in “impact parameter space”:
d b )
aAB(Q ) Z [d&,d5,P,, (&,.b.m)Py (&, b H (O (b.n)

J ResummatIOﬂ Two equations for two types log’s to resum
do , do _0
du dn’
June 26, 2007 Jianwei Qiu, ISU/ANL 28




CSS b-space Resummation Formalism

d Solve those two equations and transform back to Q+:

do 1 2y BOnTE » >, .—1Nolargelog’s
= d°be” W, (b,0) +Y,,(0;,07)
dQ’dQ; (2n)zf ~— -

resummed

- @ [db J,(bQ,) bW, (b.0) +

(Pert) (Asym)
do', do') ]

d0*dg;  d0' O]
Q b-space distribution: ~ W,,(6,.0) = Y W,(b,0)6,(0)

The Q-distribution is determined by the b-space function:

8 7 ~
51 gz Vs (0 Q) = [K (b, a0) + G(@Q/ 1w, )] Wig (b,Q) - (1)
311?M2K(b“’%) - _%VK(%(M)) (2)
811? 2GQp,as) = %’YK(as(u)) (3)

June 26, 2007 Jianwei Qiu, ISU/ANL 29



Success of the Resummation Formalism
® Fermilab CDF dataon Z at /S = 1.8 TeV Qiu, Zhang, PRL 2001

h

[—
()

‘h

—— 2 e
=

_—
-

t’h

_—
-

do/dQ; (pb/GeV)
[—
|

[—
)

1

P—
III 1 T rrrrei

10 2l
0 10 20 30 40 50 60 70 80 90
Q. (GeV)

Non-perturbative power correction is very small, excellent prediction!
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® Fermilab DO dataon W at v/'S = 1.8 TeV Qiu, Zhang, PRL 2001

S 3' 2250
810‘? 1800 |
5 - 1350 |
o i 900 ™
~ i 450 |
[
Y 0
S 10°L
—— n
b B
T i
10 E
_lllllllllllllllllllllllllllllllllllllll

0 10 20 30 40 50 60 70 80
Q; (GeV)
No free fitting parameter!

June 26, 2007 Jianwei Qiu, ISU/ANL 31



Hadronic Upsilon Production
 Process:  A(pa) + B(pg) — bb(Q)[— T(p) + X] + X’

 Similarities and differences from W/Z, or Higgs

% Events are dominated by low Q+ region
% Gluon shower should play an important role in
determine the Q- — distribution

*

*

4

L)

» My << My, or Q is now small

» Heavy b-quark pair is not necessary color singlet
Additional nonperturbative physics from b-quark to
Upsilon

1 Key approximation:

L)

4

)

L)

X4

L)

L)

Gluon radiation from heavy quarks has a less effect on the
Q. -distribution than that from radiation of initial-state light partons

June 26, 2007 Jianwei Qiu, ISU/ANL 32



The b-space Distribution

a 20@0 ]llllllllllllllllllll
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I
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250 |

0

<> Gluon-gluon dominate the production
< Dominated by perturbative contribution — small b region!
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Upsilon Production at Tevatron

| | | | T T I |
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When is k. -factorization needed?

 Recall: Necessary condition for QCD factorization:

Scattering is dominated by the region of the phase space
where the scattering partons are almost on-shell
2
k=0 = " = xp" +—kT n' +kt
2xp-n

0 Need k,-factorization if (%)

+

collision

0 Need k,-factorization if (5 )cosn = Qotsenct < Grtaa

* Leading logarithm included
In DGLAP to take care of
the rate of partonic flux

¢ kinematics in transverse
direction is approximated

(kp) o~ 0 (Qyppg ) L0 (\/§ ) % <k;>/Q is also neglected

Lec6 Jianwei Qiu 35
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k-factorization can be violated

4 Leading power k -factorization is valid ffwlgs’Y igg\e?:--
for Drell-Yan and SIDIS process

Key: color singlet boson
“universal” TMD

d Leading power k -factorization is violated in multiple
jet production If jet momentum imbalance is of order k;

Collins, Qiu, ...
% Shown by a counter example

¢ Affect both spin averaged and
spin dependent observables

Key: color flow,
non-universal TMD
August 6, 2007 Jianwei Qiu, ISU/ANL 36



Hadronic Heavy Quarkonium Production

1 NRQCD factorization has not been proved theoretically

d NRQCD Factorization fails for low p;:

Low p; requires pQCD k. -factorization

2 by
”:_;’ p
D, NRQCD | P
— é

Collins, Qiu, PRD 2007

d NRQCD Factorization might work for large p+

Spectator interactions are suppressed by (1/p)"

Factorization is necessary for the predictive power
October 17, 2007 Jianwei Qiu, ISU 37




Combination of pQCD and NRQCD

[ Heavy quarkonium production when Py >>2M  Aliso see Lansberg

In the workshop

. 1 . 1 y 1
G\ B G B (amY
When B > (2M)2, fragmentation contribution dominates the production

 Combination of pQCD and NRQCD factorization (not proved):

*» pQCD factorization to isolate heavy quarkonium physics into
the universal fragmentation function

** NRQCD factorization to isolate non-perturbative physics of
the fragmentation function into NRQCD matrix elements
October 17, 2007 Jianwei Qiu, ISU 38



Connection to NRQCD Factorization

1 Proposed NRQCD factorization:
doayp_nix(pr) = Z dO A4+ B—con)+x (PT) <Of )

. . 72 . .
4 Proved pQCD factorization for single hadron production:
doasp_H+x(pr) = Z dG 4+ p—irx (pr/z. 1) © Dy iz, me, p) + O(miy; /p7)
Q Prove NRQCD Factorization

Ge=p O prove: DH/-i(Za Mme, ,U) — Z (l'i—‘rcc‘?[?z.](Za M 77—7"0) <O7Iz—l>
at Uy ~ 2mc n

with (lg—‘rCE[TL] (:q s 772"(:) safe
~NH . . .
< (O) gauge invariant and universal

* Independent of the direction of the Wilson lines

1 An all order proof is still lacking!
October 17, 2007 Jianwei Qiu, ISU 39



Heavy Quarkonium Associated Production

4 Inclusive J/p + charm production:

oglete”™ — J/cc) |
021 Kiselev, .et a! 1994,
Belle: (O 87 —0.19 — =+ 0. 17) pb Cho, Leibovich, 1996
Yuan, Qiao, Chao, 1997
NRQCD-LO: ~0.07 pb iﬁang, Chao, 2007 (NLO)

1 Ratio to light flavors:
ole"e” = J/ce)/ale" e — J/X)
Belle: 0.597013 +0.12
 Message:
Production rate of €€~ — J/(cC is larger than

all these channels: e‘e” = J/ygg, e'e” = J/yqq, ..

combined ?

October 17, 2007 Jianwei Qiu, ISU 40



Associated Production at B-factory

7 A

4 Kinematically preferred configuration:

Singlet

(P+p) = 9,
Production rate of a singlet charm quark pair is dominated by the
phase space where s,=(P,+P,+P;)? or s,=(P,+P,+P,)? near its minimum

1 NRQCD formalism does not apply when there are more than
one heavy quark velocity involved

 Color transfer enhances associated quarkonium production

iv —
>
A heavy quark as a color source to enhance the transition rate for

an octet pair to become a singlet pair
October 17, 2007 Jianwei Qiu, ISU
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Soft-gluon Enhancement — Color Transfer

 Soft gluons between heavy quarks:

Py )
active pair: P,, P,; spectators: P, P, Bi; = /1—4m2/(P; + P;)?

 There are three heavy quark velocities:

NRQCD approach is not well defined in this region
 Soft gluon between a heavy quark pair:
P / ([D:I{ —lPI : P)
'] 2mD 2Pk + k2 +id[—2P; - k+ k2 + ie][k% + ie]

October 17, 2007 Jianwei Qiu, ISU 42



Associated Production i1s Enhanced

J NLO correction to the amplitude:

g (¢ 1+ (2 1+ (32
Im [Ay3 + Ags] = 4_¢A(U)(R) [ ,,31'313 — — 23]

,.-"32 3

Py

Does not contribute to NLO production rate in NRQCD  Zhang, Chao, PRL 2007

 Estimate enhancement factor from NNLO in NRQCD:

< Velocity expansion:

1 1 4 qs-q 4 |
— 7 ~ — == ; ~ —5 U COS Qg
G153 a3 5% m? 32 i ~
: . Py = L 1—£+q’f§
< Velocity-ordered region: 2 m2
p. <l v <1 Py = (2m.,0) and gs-Py = 0

N

S 5 a2v2 .7T2
NN LO S LO
<> the enhancement factor: ‘AS,-ngle, ~ (Cgel > )( B )‘AOCtet
£ ;

All other two-loop diagrams give a single pole !
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Exclusive Processes
1 All particles are identified:

ete” = J/v+n, TH+T—>T+T, THp—T+DP,

 no free-space for extra radiation:
Not allowed unless
the final-state gluon
+...  But, IS absorbed into the
matrix elements (wave

functions) of quarkonia
 Conservation of guantum numbers:

It is easy and an advantage to use the conservation of fundamental
Symmetry due to the small number of particles involved

Ex: charge conjugation forbids the S-wave J/p+J/y final-state

1 Factorization and the color:

For factorization and the partonic calculation to work, soft interaction
between produced hadrons has to be strongly suppressed!

Lec6 Jianwei Qiu
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Double Charmonia Production

J Exclusive production: [4] Li, He, and Chao, [6] Braaten and Lee

oo i) o 25)
BABAR  17.6 £2.8%YL% 103 +25H4 164+ 37124

Belle [14] (25.6 2.8 +3.4 6.4+ 1.7+ 1.0 165+ 3.0 +2.4
NRQCD [6] (231 21.09  228+1.03  0.96+0.45

NRQCD [4] 5.5 6.9 } LO
0 Possible resolution for J/y+n.: = Zhang, Gao, Chao

< NLO correction:  Kgetor=1.96 = & -

s Relativistic Correction: 54 \\ Bl
X-section: Kractor = 1.34 :3 RN N - S, -
Wave func: Keootor = 1.32 2 R,

Combined:  k__, =4.15 | L L

b _ 1.5 2.5 3.5 4.5 5.5 /l(( (‘ )

olete” —J/y+n]=17.5£5.71b Bodwin et al. hep-ph/0611002
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Summary

d QCD is very rich in dynamics, much more than QED, while
QED is the underline theory of all excitements of CMP, ...

1 After 35 years, we have learned only a very small part
of QCD dynamics: less than 0.1 fm, although we have
been successful

 There are many research directions for exploring QCD
dynamics: QCD at high density, QCD at finite temperature,
Condensed QCD matter, ...

1 Most important, how hadrons were formed off quarks and
gluons? Discovery of new hadronic resonances and their
properties provides critical information on hadron formation!
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Lec6

Thank you for your attention!
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