Quantum Chromodynamics (QCD) and Physics of the strong interaction (Lecture 6)

Name:	Jianwei Qiu (邱建伟)
Office:	Rm A402 – 实验物理中心
Phone:	010-88236061
E-mail:	jwq@iastate.edu
Lecture:	Mon – Wed – Fri
	10:00-11:40AM
Location:	B326, Main Building
lienwei Oiv	

Review of Lecture Five

- We can actually "see" and "count" the quarks and gluons – quark and gluon distributions
- PQCD factorization works for DIS to all orders as well as all powers due to Operator Product Expansion (OPE)
- PDFs evolves the number of partons is sensitive to the probing scale
- PQCD global analysis for spin averaged cross sections results into the reasonably well-determined universal PDFs
- □ Hadronization the probability fragmentation functions

Cross Section with Identified Hadrons

One hadron:

Soft interactions between incoming hadrons break the universality of PDFs

"Drell-Yan" Cross Section

via a heavy colorless particle

4

$$h(p_A) + h'(p_B) \rightarrow \ell^+ \ell^-(q) + X \quad \text{with } Q^2 = q^2$$

Parton model formula:

Drell-Yan process:

$$\frac{d\sigma_{hh'}^{\rm DY}(p_A, p_B, q)}{dQ^2} = \sum_{f, f'} \int_0^1 dx \int_0^1 dx' \phi_f(x) \frac{d\hat{\sigma}_{ff}^{\rm el}(xp_A, x'p_B, q)}{dQ^2} \phi_{f'}(x')$$

Long-range soft interactions before the hard collision could break the PDF's universality – loss of predictive power

Lec6

Long-range Soft Gluon Interactions

Soft-gluon interaction takes place all the time:

Question:

What is its effect on a physical observable?

□ Factorization = soft-gluon interactions are suppressed:

Field Strength is Strongly Contracted

Lorentz contracted fields of incident particles do not overlap until the moment of the scattering!

the $1/\gamma^2$ translates into a suppression factor of $1/Q^4$

Initial-state interaction disappear at high enough energies!

$$\sigma(Q) = \sigma_0(Q) + \sigma_2(Q)\frac{1}{Q^2} + \sigma_4(Q)\frac{1}{Q^4} + \dots$$

the factorization should be valid at the order of 1/Q²
 Leading power (twist): Collins, Soper, and Sterman; Bodwin
 Next leading power: Qiu and Sterman
 Factorization is violated at 1/Q⁴ via explicit calculation: Taylor et al.

QCD Formalism for Drell-Yan Cross Section

□ Factorization at leading power:

$$\frac{d\sigma_{hh'}^{\rm DY}(p_A, p_B, q)}{dQ^2} = \sum_{f, f'} \int_0^1 dx \int_0^1 dx' \phi_f(x, \mu_F^2) \frac{d\hat{\sigma}_{ff}^{\rm DY}(xp_A, x'p_B, q, \mu_F^2)}{dQ^2} \phi_{f'}(x', \mu_F^2) + \dots$$

- \diamond This is not "leading log approximation", corrections to this factorized formula are power suppressed $1/Q^2$
- ♦ Parton distributions are non-perturbative, but, defined in terms of the same matrix elements as those defined in DIS
- $\diamond~d\hat{\sigma}~$ has an expansion in powers of $lpha_{
 m s}$
- □ Factorization at next-to-leading power:

Lec6

Jianwei Qiu

Why Drell-Yan Process Makes Sense?

Drell-Yan = Lowest order in QCD perturbation theory

Trouble of Gluonic Interactions

□ Virtual gluonic interaction is divergent:

Virtual loop momentum *k*-integration can be divergent!

Dominated by on-shell parton momentum

□ One-loop example (EM form factor):

$$\begin{array}{ccc} p_{l} k & p_{l} \\ & \gamma^{*} \\ \hline Q \\ & p_{2} + k \end{array} \begin{array}{c} I_{\Delta} = \int \frac{d^{n}k}{(2\pi)^{n}} \frac{1}{(k^{2} + i\epsilon)((p_{1} - k)^{2} + i\epsilon)((p_{2} + k)^{2} + i\epsilon)} \\ & = 2\int \frac{d^{n}k}{(2\pi)^{n}} \int_{0}^{1} \frac{d\alpha_{1} \, d\alpha_{2} \, d\alpha_{3} \, \delta(1 - \alpha_{1} - \alpha_{2} - \alpha_{3})}{[D(\alpha_{1}, \alpha_{2}, \alpha_{3}, k)]^{3}} \\ & = 2\int \frac{d^{n}k}{(2\pi)^{n}} \int_{0}^{1} \frac{d\alpha_{1} \, d\alpha_{2} \, d\alpha_{3} \, \delta(1 - \alpha_{1} - \alpha_{2} - \alpha_{3})}{[D(\alpha_{1}, \alpha_{2}, \alpha_{3}, k)]^{3}} \\ & D(\alpha_{1}, \alpha_{2}, \alpha_{3}, k) = \alpha_{1}k^{2} + \alpha_{2}(p_{1} - k)^{2} + \alpha_{3}(p_{2} + k)^{2} + i\epsilon \\ & I_{\Delta} = (-i)\left(\frac{1}{4\pi}\right)^{2} \frac{1}{Q^{2}} \left(\frac{4\pi\mu^{2}}{-Q^{2} - i\epsilon}\right)^{\varepsilon} \Gamma(1 + \varepsilon) \frac{B(-\varepsilon, 1 - \varepsilon)}{-\varepsilon} \longrightarrow \frac{1}{\varepsilon^{2}} \end{array}$$

L

Singularities and Divergences

□ Singularities:

 \diamond Divergences from: $D(\alpha_1, \alpha_2, \alpha_3, k) = \alpha_1 k^2 + \alpha_2 (p_1 - k)^2 + \alpha_3 (p_2 + k)^2 + i\epsilon = 0$

 $\Rightarrow D(lpha_1, lpha_2, lpha_3, k)$ is quadratic in each component of k^{μ}

Conditions for pinched poles:

$$\begin{cases} D(\alpha_1, \alpha_2, \alpha_3, k) = 0 \\ \frac{\partial}{\partial k^{\mu}} D(\alpha_1, \alpha_2, \alpha_3, k) = 0 & \text{for } \mu = 0, 1, 2, 3 \\ & \longrightarrow \begin{cases} \alpha_1 k^2 + \alpha_2 (p_1 - k)^2 + \alpha_3 (p_2 + k)^2 = 0 \\ \alpha_1 k^{\mu} - \alpha_2 (p_1 - k)^{\mu} + \alpha_3 (p_2 + k)^{\mu} = 0 \end{cases}$$

Also known as (or equivalent to) the Landau Equations

No pinched pole for
$$\alpha_i$$

Lec6

Jianwei Qiu

Solutions of Landau Equations

Landau equations:

$$\begin{bmatrix} \alpha_1 k^2 + \alpha_2 (p_1 - k)^2 + \alpha_3 (p_2 + k)^2 = 0\\ \alpha_1 k^\mu - \alpha_2 (p_1 - k)^\mu + \alpha_3 (p_2 + k)^\mu = 0 \end{bmatrix}$$

Solution (1):

 $k^{\mu} = 0, \ \frac{\alpha_2}{\alpha_1} = \frac{\alpha_2}{\alpha_1} = 0$ Pinched Infrared divergence!

Solution (2):

$$k^{\mu} = x p_1^{\mu}, \ \alpha_3 = 0, \ \alpha_1 x = \alpha_2 (1 - x), \ 0 < x < 1$$

Pinched collinear divergence!

Solution (3):

$$k^{\mu} = -x' p_2^{\mu}, \ \alpha_2 = 0, \ \alpha_1 x' = \alpha_3 (1 - x'), \ 0 < x' < 1$$

Pinched collinear divergence!

♦ Having pinched singularity is a necessary condition for divergence

- Possible extra convergence from the numerator
- ♦ Divergent, but, power suppressed high twist contribution

Infrared Power Counting

Pinch surface:

A surface in the full phase-space of d^4k , on which the k is pinched

- \diamond Intrinsic variable the component of the k on the pinch surface
- \diamond Normal variable the component of the k out of the pinched surface

□ Rescale all normal variables:

 $\begin{aligned} k_j &\equiv \lambda^{a_j} K \qquad a_j = 1, 2, \dots \text{ (or } \frac{1}{2}, 1, \dots) \qquad K \text{ is a hard scale} \\ \text{The momentum } k^{\mu} \text{ moves to the pinch surface when } \lambda \to 0 \\ \text{Ex:} \quad \text{In C.M. frame: } p_1^{\mu} = (p_1^+, 0^-, 0_{\perp}), \ p_2^{\mu} = (0^+, p_2^-, 0_{\perp}), \text{ and } p_1^+ = p_2^- = \sqrt{Q^2/2}, \\ \text{If } k^{\mu} \parallel p_1^{\mu}, \text{ rescale } k^{\mu} \text{ as } k^+ \sim \sqrt{Q^2}, \ k^- \sim \lambda \sqrt{Q^2}, \ k_{\perp} \sim \lambda \sqrt{Q^2} \end{aligned}$ $\blacksquare \text{Keep the lowest power in } \lambda \text{ for each denominator:} \\ \ell(k_j, \lambda)^2 \equiv \lambda^{A_j} f(k_j) + \dots \quad \text{Ex: } (p_2 + k)^2 = 2p_2 \cdot k + k^2 \to \lambda^0 (2p_2 \cdot k) \end{aligned}$ $\blacksquare \text{Degree of divergence - power of } \lambda: \quad S_I = \text{power from numerator} \\ n_s = \sum_j a_j - \sum_i A_i + S_I \qquad n_s > 0 (\text{IR finite}), \ n_s \leq 0 (\text{IR divergent}) \\ \text{Jianwei Qiu} \qquad 12 \end{aligned}$

Physics of the Pinched Singularities

□ Pinched singularity = long-lived partonic states:

♦ Collinear divergence:

If
$$k^{\mu} \parallel p_{1}^{\mu}$$
, rescale k^{μ} as $k^{+} \sim \sqrt{Q^{2}}$, $k^{-} \sim \lambda^{2} \sqrt{Q^{2}}$, $k_{\perp} \sim \lambda \sqrt{Q^{2}}$
 $\Longrightarrow \left\{ \begin{array}{c} D = k^{2} \left(p_{1} - k\right)^{2} \left(p_{2} + k\right)^{2} \sim k^{2} (-2p_{1} \cdot k)(2p_{2} \cdot k) \longrightarrow \lambda^{2} \cdot \lambda^{2} \cdot 1 = \lambda^{4} \\ d^{4}k \longrightarrow \lambda^{4} \end{array} \right\}$
Similarly for $k^{\mu} \parallel p_{2}^{\mu}$, $\gamma_{*}^{*} = -xp_{2}$ Collinear gluon
 $(1-x)p_{2} \qquad p_{2}$
 \Rightarrow Infrared divergence:
If $k^{\mu} \rightarrow 0$, rescale k^{μ} as $k^{+} \sim k^{-} \sim k_{\perp} \sim \lambda \sqrt{Q^{2}}$
 $\Longrightarrow \left\{ \begin{array}{c} D = k^{2} \left(p_{1} - k\right)^{2} \left(p_{2} + k\right)^{2} \sim k^{2} (-2p_{1} \cdot k)(2p_{2} \cdot k) \longrightarrow \lambda^{2} \cdot \lambda \cdot \lambda = \lambda^{4} \\ d^{4}k \longrightarrow \lambda^{4} \end{array} \right\}$
 \Rightarrow General pinch surface:
Lec6 Jan 13

Lec6

QCD Factorization for "Drell-Yan"

□ Analysis of leading (pinch or singular) integration regions:

Power counting in partons' momentum scales gives the following separate regions:

Hard (Large P_T or way off shell) – infrared safe

Collinear (to A or to B, small P_T) – could be a trouble

Soft (All components small, includes "Glauber.") – a big trouble (took 20 years to solve the problem) $|k^+k^-| \ll k_{\perp}^2$

Eikonalization of Collinear Gluons

Collinear gluons:

The extra collinear gluons could be a big problem because the factorization formula contemplates one parton from one hadron

□ Solution:

 \diamond transversely polarized gluons are power suppressed

 \diamond longitudinally polarized gluons have $\ arepsilon^{\mu}(k) \propto k^{\mu}$

Their effect can be approximated as shown with eikonal lines, with its direction, u, in the direction opposite to the hadron momentum:

u ="-" for hadron A, and u ="+" for hadron B \diamond Feynman rule for the interaction with eikonal line:

Propagator =
$$\frac{i}{k \cdot u + i\epsilon}$$
 Vertex = $-ig t_a u^{\mu}$

Lec6

Jianwei Qiu

Eikonalization of Collinear Gluons

Collinear gluons:

The extra collinear gluons could be a big problem because the factorization formula contemplates one parton from one hadron

□ Solution:

 \diamond transversely polarized gluons are power suppressed

 \diamond longitudinally polarized gluons have $\ arepsilon^{\mu}(k) \propto k^{\mu}$

Their effect can be approximated as shown with eikonal lines, with its direction, u, in the direction opposite to the hadron momentum:

u ="-" for hadron A, and u ="+" for hadron B

 \diamond Feynman rule for the interaction with eikonal line:

Propagator = $\frac{i}{k \cdot u + i\epsilon}$ Vertex = $-ig t_a u^{\mu}$

Lec6

Jianwei Qiu

Factorization of Parton Distribution Functions

Trouble from Soft Gluons

Interaction between active quark and spectator quark:

A soft gluon exchanged from a spectator quark in hadron A to the active quark in hadron B can rotate the quark's color, and thus, keep it from annihilating

□ Additional pinch singularity:

Soft gluon approximation (with eikonal lines) requires the active parton to have large "+" (or "-") momentum. But, the contours of these momenta can be trapped in "too small" region

$$(xp+k)^2 + i\epsilon \propto k^- + i\epsilon$$
$$((1-x)p-k)^2 + i\epsilon \propto k^- - i\epsilon$$

Jianwei Qiu

Soft gluons take care of themselves

- Sum over all final-state and use of unitarity to remove all poles from upper half plane for k⁻-integration (or lower half plane for k⁺-integration) – no-pinched poles
- Soft gluon approximation and gauge invariance to decouple soft gluon interaction from the jet-functions into the eikonal lines

19

Unitarity to remove all decoupled soft-gluon interactions
 Jianwei Qiu

June 26, 2007

High p_T Hadron Production at RHIC

Processes with two Large Scales

 $Q_1^2 \gg Q_2^2 \gg \Lambda_{QCD}^2$ $\square \text{ We could choose: } \mu = Q_1 \text{ or } Q_2, \text{ or somewhere between}$ $\longrightarrow \alpha_s (Q_1^2) \text{ is small, } \alpha_s (Q_1^2) \ell n(Q_1^2/Q_2^2) \text{ is not necessary small}$ Cannot remove the logarithms by choosing a proper *m* $\longrightarrow \text{ Resummation of the logarithms is needed}$ $\square \text{ For a massless theory, we can get two powers of the logarithms at each order in perturbation theory:}$ $\alpha_s (Q_1^2) \ell n^2 (Q_1^2/Q_2^2)$

due to an overlap region of IR and CO divergences

Examples:

 \diamond pT distribution of heavy boson (Higgs, W±, Z, γ^* ,...) production

 \diamond jet-momentum imbalance in e⁺e⁻, e[±]h, and hh collisions

June 26, 2007

Double Logarithms

□ Consider electromagnetic form factor:

□ For massless quark at one loop:

$$\rho(q^2,\epsilon) = -\frac{\alpha_s}{2\pi} C_F \left(\frac{4\pi\mu^2}{-q^2 - i\epsilon}\right)^{\epsilon} \frac{\Gamma^2(1-\epsilon)\Gamma(1+\epsilon)}{\Gamma(1-2\epsilon)} \left\{\frac{1}{(-\epsilon)^2} - \frac{3}{2(-\epsilon)} + 4\right\}$$
$$= 1 - \frac{\alpha_s}{4\pi} C_F \ln^2(q^2/\mu^2) + \dots$$

Overlap of IR and CO singularities ----- Double logarithms

- known as Sudakov double logarithms
- common in a massless theory

Resummed Q_T-distribution

 \Box Differentiate the integrated Q_{T} -distribution:

$$\frac{d\sigma}{dydQ_T^2} \approx \left(\frac{d\sigma}{dy}\right)_{\text{Born}} \times 2C_F\left(\frac{\alpha_s}{\pi}\right) \frac{\ell n \left(Q^2/Q_T^2\right)}{Q_T^2} \times \exp\left[-C_F\left(\frac{\alpha_s}{\pi}\right) \ell n^2 \left(Q^2/Q_T^2\right)\right] \implies 0$$

compare to the explicit LO calculation:

$$\frac{d\sigma}{dy dQ_T^2} \approx \left(\frac{d\sigma}{dy}\right)_{\text{Born}} \times 2C_F\left(\frac{\alpha_s}{\pi}\right) \frac{\ell n \left(Q^2/Q_T^2\right)}{Q_T^2} \Rightarrow \infty \quad \begin{bmatrix} \mathbf{Q}_T \text{-spectrum (as } \mathbf{Q}_T \rightarrow 0) \text{ is } \\ \text{completely changed!} \end{bmatrix}$$

We just resummed (exponentiated) an infinite series of soft gluon emissions - double logarithms

completely changed!

as Q₁

Soft gluon emission treated as uncorrelated

June 26, 2007

Still a Wrong Q_T-distribution

 ■ Experimental fact: ^{dσ}/_{dydQ²/_T} ⇒ finite [neither ∞ nor 0!] as Q_T → 0

 ■ Double Leading Logarithms Approximation (DLLA)
 radiated gluons are both soft and collinear with strong
 ordering in their transverse momenta

- Strong ordering in transverse momenta in DLLA
 - overly constrains the phase space of the emitted gluons
 - ignores the overall transverse momentum conservation

 \Rightarrow DLLA over suppresses small Q_T region

Resummation of uncorrelated soft gluon emission leads to too strong suppression at $Q_T=0$

U Why?

Particle can receive many finite k_T kicks via soft gluon radiation yet still have $Q_T=0$

- Vector sum!

 \Box Subleading logarithms are equally important at $Q_T=0$

Solution: impose 4-momentum conservation at each step of soft gluon resummation

June 26, 2007

kT-factorization and Resummation

 \Box Leading order K_T-factorized cross section:

□ Factorized cross section in "impact parameter space":

$$\frac{d\sigma_{AB}(Q,b)}{dQ^2} = \sum_{f} \int d\xi_a d\xi_b \overline{P}_{f/A}(\xi_a,b,n) \overline{P}_{\overline{f}/B}(\xi_b,b,n) H_{\overline{ff}}(Q^2) U(b,n)$$

Resummation:

Two equations for two types log's to resum

$$u_{\rm ren} \frac{d\sigma}{d\mu_{\rm ren}} = 0 \qquad \qquad n^{\nu} \frac{d\sigma}{dn^{\nu}} = 0$$

June 26, 2007

CSS b-space Resummation Formalism

 \Box Solve those two equations and transform back to Q_T :

$$\frac{d\sigma_{AB}}{dQ^2 dQ_T^2} = \frac{1}{\left(2\pi\right)^2} \int d^2 b \ e^{i\vec{b}\cdot\vec{Q}_T} \tilde{W}_{AB}(b,Q) + Y_{AB}(Q_T^2,Q^2)$$
 No large log's
resummed
$$= \frac{1}{\left(2\pi\right)^5} \int_0^{\infty} db \ J_0(bQ_T) \ b\tilde{W}_{AB}(b,Q) + \left[\frac{d\sigma_{AB}^{(\text{Pert})}}{dQ^2 dQ_T^2} - \frac{d\sigma_{AB}^{(\text{Asym})}}{dQ^2 dQ_T^2}\right]$$

b-space distribution: $\tilde{W}_{AB}(b,Q) = \sum_{i,j} \tilde{W}_{ij}(b,Q) \hat{\sigma}_{ij}(Q)$

The Q_T -distribution is determined by the b-space function:

$$\frac{\partial}{\partial \ln Q^2} \tilde{W}_{ij}(b,Q) = \left[K(b\mu,\alpha_s) + G(Q/\mu,\alpha_s) \right] \tilde{W}_{ij}(b,Q) \quad (1)$$

$$\frac{\partial}{\partial \ln \mu^2} K(b\mu, \alpha_s) = -\frac{1}{2} \gamma_K(\alpha_s(\mu)) \tag{2}$$

$$\frac{\partial}{\partial \ln \mu^2} G(Q/\mu, \alpha_s) = \frac{1}{2} \gamma_K(\alpha_s(\mu)) \tag{3}$$

June 26, 2007

Success of the Resummation Formalism

Qiu, Zhang, PRL 2001

Non-perturbative power correction is very small, excellent prediction!

• Fermilab D0 data on W at $\sqrt{S}=1.8~{\rm TeV}$

No free fitting parameter!

Hadronic Upsilon Production

$\square \text{ Process:} \quad A(p_A) + B(p_B) \to b\bar{b}(Q) [\to \Upsilon(p) + \bar{X}] + X'$

□ Similarities and differences from W/Z, or Higgs

- Events are dominated by low Q_T region
- Gluon shower should play an important role in determine the Q_T distribution
- $M_Y \ll M_W$, or Q is now small
- Heavy b-quark pair is not necessary color singlet
- Additional nonperturbative physics from b-quark to Upsilon

□ Key approximation:

Gluon radiation from heavy quarks has a less effect on the Q_T -distribution than that from radiation of initial-state light partons

♦ Gluon-gluon dominate the production

♦ Dominated by perturbative contribution – small b region!

Upsilon Production at Tevatron

Berger, Qiu, Wang

June 26, 2007

When is k_T-factorization needed?

□ Recall: Necessary condition for QCD factorization:

Scattering is dominated by the region of the phase space where the scattering partons are almost on-shell

$$k^{2} = 0 \implies k^{\mu} = xp^{\mu} + \frac{k_{T}^{2}}{2xp \cdot n}n^{\mu} + k_{T}^{\mu}$$

$$\square \text{ Need } k_{T} \text{-factorization if } \langle k_{T} \rangle_{\text{collision}} \sim xp^{+}$$

$$\square \text{ Need } k_{T} \text{-factorization if } \langle k_{T} \rangle_{\text{collision}} \sim Q_{\text{observed}} \ll Q_{\text{Hard}}$$

$$\square \text{ Need } k_{T} \text{-factorization if } \langle k_{T} \rangle_{\text{collision}} \sim Q_{\text{observed}} \ll Q_{\text{Hard}}$$

$$\square \text{ Leading } k_{T} \text{ log } Q_{\text{observed}} \longrightarrow P_{2}$$

$$= \int_{J_{I}} \int_$$

- Leading logarithm included in DGLAP to take care of the rate of partonic flux
- kinematics in transverse direction is approximated
- $< k_T > /Q$ is also neglected

Lec6

Jianwei Qiu

k_T-factorization can be violated

Leading power k_T-factorization is valid for Drell-Yan and SIDIS process Collins, Soper, ... Ji, Ma, Yuan, ...

Key: color singlet boson "universal" TMD

Leading power k_T-factorization is violated in multiple jet production if jet momentum imbalance is of order k_T

 P_1 k_1 J_1 k_2 q J_2 P_2

Collins, Qiu, ...

- Shown by a counter example
- Affect both spin averaged and spin dependent observables
 - Key: color flow, non-universal TMD

Jianwei Qiu, ISU/ANL

August 6, 2007

36

Hadronic Heavy Quarkonium Production

□ NRQCD factorization has not been proved theoretically

D NRQCD Factorization fails for low p_T :

□ NRQCD Factorization might work for large p_T

Spectator interactions are suppressed by $(1/p_T)^n$

Combination of pQCD and NRQCD

□ Heavy quarkonium production when $P_T >> 2M$ Also see Lansberg In the workshop $\frac{1}{P_T} \propto \left(\frac{1}{P_T^2}\right)^2$ $\frac{1}{P_T^2} \propto \frac{1}{P_T^2} \times \frac{1}{(2M)^2}$

When $P_T^2 \gg (2M)^2$, fragmentation contribution dominates the production

- Combination of pQCD and NRQCD factorization (not proved):
 - PQCD factorization to isolate heavy quarkonium physics into the universal fragmentation function

NRQCD factorization to isolate non-perturbative physics of the fragmentation function into NRQCD matrix elements

October 17, 2007

Connection to NRQCD Factorization

Proposed NRQCD factorization:

$$d\sigma_{A+B\to H+X}(p_T) = \sum d\hat{\sigma}_{A+B\to c\bar{c}[n]+X}(p_T) \langle \mathcal{O}_n^H \rangle$$

 \square Proved pQCD factorization for single hadron production:

 $d\sigma_{A+B\to H+X}(p_T) = \sum_{i} d\tilde{\sigma}_{A+B\to i+X}(p_T/z,\mu) \otimes D_{H/i}(z,m_c,\mu) + \mathcal{O}(m_H^2/p_T^2)$ Prove NRQCD Factorization

$$\begin{array}{l} \longleftarrow \quad \text{To prove:} \\ \text{at } \mu_0 \sim 2m_c \end{array} \quad D_{H/i}(z,m_c,\mu) = \sum_n \ d_{i \to c\bar{c}[n]}(z,\mu,m_c) \ \langle \mathcal{O}_n^H \rangle \end{array}$$

with
$$\checkmark d_{g \to c\bar{c}[n]}(z, \mu, m_c)$$
 safe $\blacklozenge \langle \mathcal{O}_n^H \rangle$ gauge invariant and universal

independent of the direction of the Wilson lines

An all order proof is still lacking!

October 17, 2007

Heavy Quarkonium Associated Production

Inclusive J/ ψ + charm production:

$$\sigma(e^+e^- \rightarrow J/\psi c\bar{c})$$

Belle: $(0.87^{+0.21}_{-0.19} \pm 0.17)$ pb
NRQCD-LO: ~ 0.07 pb

Kiselev, et al 1994, Cho, Leibovich, 1996 Yuan, Qiao, Chao, 1997 ... Zhang, Chao, 2007 (NLO)

Ratio to light flavors:

$$\sigma(e^+e^- \to J/\psi c\bar{c})/\sigma(e^+e^- \to J/\psi X)$$

Belle: $0.59^{+0.15}_{-0.13} \pm 0.12$

□ Message:

Production rate of $e^+e^- \rightarrow J/\psi c\overline{c}$ is larger than

all these channels: $e^+e^- \rightarrow J/\psi gg, \ e^+e^- \rightarrow J/\psi q\overline{q}, \ ...$

combined ? Jianwei Qiu, ISU

October 17, 2007

40

Associated Production at B-factory

Production rate of a singlet charm quark pair is dominated by the phase space where $s_3 = (P_1 + P_2 + P_3)^2$ or $s_4 = (P_1 + P_2 + P_4)^2$ near its minimum

- NRQCD formalism does not apply when there are more than one heavy quark velocity involved
- Color transfer enhances associated quarkonium production

A heavy quark as a color source to enhance the transition rate for an octet pair to become a singlet pair October 17, 2007 Jianwei Qiu, ISU Nayak, Qiu, Sterman, PRL 2007

Soft-gluon Enhancement – Color Transfer

□ Soft gluons between heavy quarks:

□ There are three heavy quark velocities:

NRQCD approach is not well defined in this region

□ Soft gluon between a heavy quark pair:

$$-i g^{2} \int \frac{d^{D}k}{(2\pi)^{D}} \frac{4P_{i} \cdot P_{j}}{[2P_{i} \cdot k + k^{2} + i\epsilon][-2P_{j} \cdot k + k^{2} + i\epsilon][k^{2} + i\epsilon]}$$
$$= \frac{\alpha_{s}}{2\pi} \left[-\frac{1}{2\varepsilon} \left(\frac{1}{\beta_{ij}} + \beta_{ij} \right) (2\beta_{ij} - i\pi) + \dots \right] \implies i \frac{1}{\varepsilon} \frac{\alpha_{s}}{\beta_{ij}}$$

October 17, 2007

Associated Production is Enhanced

□ NLO correction to the amplitude: $\operatorname{Im}\left[\mathcal{A}_{13} + \mathcal{A}_{23}\right] = \frac{\alpha_s}{4\varepsilon} \mathcal{A}^{(0)}(P_i) \left[\frac{1 + \beta_{13}^2}{\beta_{13}} - \frac{1 + \beta_{23}^2}{\beta_{22}}\right] \overset{\gamma^*}{\longrightarrow} \overset{\gamma^*}{\longrightarrow}$

Does not contribute to NLO production rate in NRQCD Zhang, Chao, PRL 2007

Estimate enhancement factor from NNLO in NRQCD:

October 17, 2007

Numerical Enhancement from NNLO

LO hard parts with color factor:

October 17, 2007

Jianwei Qiu, ISU

Kang, et al. 2007

44

Exclusive Processes

□ All particles are identified:

 $e^+e^- \rightarrow J/\psi + \eta_c, \ \pi + \pi \rightarrow \pi + \pi, \ \pi + p \rightarrow \pi + p, \dots$

□ no free-space for extra radiation:

Not allowed unless the final-state gluon is absorbed into the matrix elements (wave functions) of quarkonia

Conservation of quantum numbers:

It is easy and an advantage to use the conservation of fundamental Symmetry due to the small number of particles involved

Ex: charge conjugation forbids the S-wave J/ ψ +J/ ψ final-state

Factorization and the color:

For factorization and the partonic calculation to work, soft interaction between produced hadrons has to be strongly suppressed!

Lec6

Double Charmonia Production

Exclusive production:

[4] Li, He, and Chao, [6] Braaten and Lee

Summary

□ QCD is very rich in dynamics, much more than QED, while QED is the underline theory of all excitements of CMP, ...

After 35 years, we have learned only a very small part of QCD dynamics: less than 0.1 fm, although we have been successful

There are many research directions for exploring QCD dynamics: QCD at high density, QCD at finite temperature, Condensed QCD matter, …

Most important, how hadrons were formed off quarks and gluons? Discovery of new hadronic resonances and their properties provides critical information on hadron formation!

Lec6

Jianwei Qiu

Thank you for your attention!