Search for the Standard Model Higgs boson in the di-tau channel with the ATLAS detector

Dugan O'Neil for the ATLAS Collaboration

Simon Fraser University

September 21, 2016

Introduction

- Several reasons to study SM $H \rightarrow \tau \tau$:
 - Higgs coupling to fermions
 - Higgs CP (see talk by D. Zanzi)
- Challenging channel(s):
 - Complex final states (jets, leptons, MET, taus)
 - Numerous backgrounds (both irreducible and fake) to be understood and controlled
 - Low S/B
 - Poor *M_H* resolution

- Today: Run-1 (2011+2012) results JHEP 04 (2015) 117
- Run-2 results (2015+2016) coming soon.

Higgs Decay to Fermions

Dugan O'Neil (SFU)

Higgs Searches in the $\tau^+\tau^-$ Channe

SM Higgs Production

SM Higgs Decay

- Highest BR among the leptons.
- Low overall BR compensated using all production/decay modes.
- Presence of neutrinos in final state makes full kinematic reconstruction impossible.

Higgs Searches in the $\tau^+\tau^-$ Channel

ATLAS Tau Basics

Identifying hadronic τ Decays

- Hadronic decays are a well-collimated collection of charged and neutral pions.
- Large jet background at LHC.
- BDT-based τ_{had} ID:
 - 55-60%(40%) efficiency for medium (tight)
 - 1-2% (0.5%) jet acceptance.

For this reason, the tau-tau channel is actually many channels, classified by the decay of the tau: $\tau_\ell \tau_\ell$, $\tau_\ell \tau_{had}$, $\tau_{had} \tau_{had}$.

Analysis Strategy

BR for each mode:

- $H \rightarrow \tau \tau \rightarrow \tau_{\ell} \tau_{\ell} + 4\nu$ (12%)
- $H \rightarrow \tau \tau \rightarrow \tau_{\ell} \tau_{had} + 3\nu$ (46%)
- $H \rightarrow \tau \tau \rightarrow \tau_{had} \tau_{had} + 2\nu$ (42%)
- Separate analyses in each decay mode allows optimization for different background compositions.
- Define analysis categories motivated by Higgs production modes:
 - VBF: target VBF topology by requiring 2 forward jets in opposite hemispheres.
 - **Boosted:** target ggF topology with Boosted Higgs to improve mass resolution.

- In all modes, neutrinos limit mass resolution. Use Missing Mass Calculator (MMC) to achieve 30% resolution.
- Use data-driven background models where possible.
- $Z \rightarrow \tau \tau$ is an important background to all decay modes. Use **embedding**:
 - Start with $Z \rightarrow \mu \mu$ data events, remove muons.
 - Embed MC τ in the data events.

Improves modeling of jet/met variables, reduces systematic uncertainties, increases sample sizes!!

Important Backgrounds to $\tau_\ell \tau_\ell$

• $Z \rightarrow \tau \tau$: embedding

- Others: MC normalized in data control region.
- **Top:** MC normalized in data control region.
- Fake Leptons: shape from data control (reverse lepton isolation), normalized to data.

Important Backgrounds to $\tau_\ell au_{ m had}$

• $Z \rightarrow \tau \tau$: embedding

- Fake τ: Includes background with jets faking taus, including W+jets and multi-jets.
- **Top:** MC normalized in data control region.
- Others: W+jets, $Z \rightarrow \ell \ell$, di-bosons. From MC.

Important Backgrounds to $\tau_{had} \tau_{had}$

• $Z \rightarrow \tau \tau$: embedding

- Fake τ: shape from not-opposite-sign (notOS), not isolated data. Normalized by fitting Δη(ττ) distribution (free in final fit).
- Others: Shape from MC. Fake rate derived from data samples. Dominated by W → τν+ jets.

	VBF	Boost	Rest
$ au_\ell au_\ell$	$p_T(j) > 40,25 \text{ GeV}$	Fail VBF	
	$\Delta\eta_{jj}>2.2$	$P_T^H > 100 \text{ GeV}$	-
		$P_T^{j1} >$ 40 GeV	
$ au_\ell au_{ m had}$	$p_T(j) > 50, 30 \text{ GeV}$	Fail VBF	-
	$\Delta\eta_{jj}>$ 3.0	$P_T^H > 100 \text{ GeV}$	
	$m_{ au au}^{ m vis} >$ 40GeV		
$\tau_{\rm had} \tau_{\rm had}$	$p_T(j) > 50, 30 \text{ GeV}$	Fail VBF	Fail VBF, Boost
	$\Delta\eta_{jj}>2.0$	$P_T^H > 100 \mathrm{GeV}$	

- Differing background composition and sample sizes lead to different optimal settings per decay mode.
- Events which fail VBF get passed to the next category...

Poor S/B, Train 6 BDTs

	VBF	Boost
$ au_\ell au_\ell$	S/B=0.02	S/B=0.01
$ au_\ell au_{ m had}$	S/B=0.02	S/B=0.01
$ au_{ m had} au_{ m had}$	S/B=0.02	S/B=0.01

Poor S/B, Train 6 BDTs

	VBF	Boost
$ au_\ell au_\ell$		
$ au_\ell au_{ m had}$		
$ au_{ m had} au_{ m had}$		

Dugan O'Neil (SFU)

Higgs Searches in the $\tau^+ \tau^-$ Channel

BDT Variables

Vaniabla	VBF			Boosted			
variable	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had}\tau_{\rm had}$	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had}\tau_{\rm had}$	
$m_{\tau\tau}^{MMC}$	•	٠	٠	•	٠	•	
$\Delta R(\tau_1, \tau_2)$	•	٠	٠		•	•	
$\Delta \eta(j_1, j_2)$	•	٠	٠				
m_{j_1, j_2}	•	•	•				
$\eta_{j_1} \times \eta_{j_2}$		•	•				
$p_{\mathrm{T}}^{\mathrm{Total}}$		•	•				
Sum $p_{\rm T}$					•	•	
$p_{\rm T}^{ au_1}/p_{\rm T}^{ au_2}$					•	•	
$E_{\rm T}^{\rm miss}\phi$ centrality		•	•	•	•	•	
m_{ℓ,ℓ,j_1}				•			
m_{ℓ_1,ℓ_2}				•			
$\Delta \phi(\ell_1, \ell_2)$				•			
Sphericity				•			
$p_{\mathrm{T}}^{\ell_1}$				•			
$p_{\mathrm{T}}^{j_1}$				•			
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\ell_2}$				•			
m_{T}		٠			•		
$\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$	•						
$C_{\eta_1,\eta_2}(\eta_{\ell_1}) \cdot C_{\eta_1,\eta_2}(\eta_{\ell_2})$	•						
$C_{\eta_1,\eta_2}(\eta_\ell)$		٠					
$C_{\eta_1,\eta_2}(\eta_{j_3})$	•						
$C_{\eta_1,\eta_2}(\eta_{ au_1})$			•				
$C_{\eta_1,\eta_2}(\eta_{ au_2})$			•				

Final Discriminant: BDT Score

Combining Channels

Extracting Results

- Use combined, binned maximum-likelihood fit
 - Use BDT output in 6 signal categories (separate 7/8TeV)
 - ZII, top, Rest control regions to constrain backgrounds
 - Extract signal strength μ (observed/expected SM for $\sigma imes BR$)

Source of Uncertainty	Uncertainty on μ
Signal region statistics (data)	$^{+0.27}_{-0.26}$
Jet energy scale	± 0.13
Tau energy scale	± 0.07
Tau identification	± 0.06
Background normalisation	± 0.12
Background estimate stat.	± 0.10
BR $(H \to \tau \tau)$	± 0.08
Parton shower/Underlying event	± 0.04
PDF	± 0.03
Total sys.	$^{+0.33}_{-0.26}$
Total	$^{+0.43}_{-0.37}$

Dugan O'Neil (SFU)

Higgs Searches in the $au^+ au^-$ Channel

Channel and Category	Expected Significance (σ)	Observed Significance (σ)
$\tau_{\rm lep} \tau_{\rm lep}$ VBF	1.15	1.88
$\tau_{\rm lep} \tau_{\rm lep}$ Boosted	0.57	1.72
$ au_{ m lep} au_{ m lep}$ Total	1.25	2.40
$\tau_{\rm lep} \tau_{\rm had}$ VBF	2.11	2.23
$\tau_{\rm lep} \tau_{\rm had}$ Boosted	1.11	1.01
$ au_{ m lep} au_{ m had}$ Total	2.33	2.33
$\tau_{\rm had} \tau_{\rm had} {\rm VBF}$	1.70	2.23
$\tau_{\rm had} \tau_{\rm had}$ Boosted	0.82	2.56
$\tau_{\rm had} \tau_{\rm had}$ Total	1.99	3.25
Combined	3.43	4.54

Results

ATLAS		-σ (\$	statisti	cal)	•	Total uncertainty			nty
m _H = 125.36 GeV		—σ(syst. excl. theory) —σ(theory)		y)	±1σ on μ				
$\textbf{H} \rightarrow \tau \tau$	$\mu = 1.4^{+0.4}_{-0.4}$	+ 0.3 - 0.3 + 0.3 - 0.2 + 0.1 - 0.1							
Boosted	$\mu=2.1^{+0.9}_{-0.8}$	+ 0.5 - 0.5			-		1		
VBF	$\mu = 1.2^{+0.4}_{-0.4}$	+ 0.3 - 0.3							
7 TeV (Combine	d) $\mu = 0.9^{+1.1}_{-1.1}$	+ 0.8 - 0.8					i		-
8 TeV (Combine	d) $\mu = 1.5^{+0.5}_{-0.4}$	+ 0.3 - 0.3							-
$\textbf{H} \rightarrow \tau_{lep} \tau_{lep}$	$\mu = 2.0^{+1.0}_{-0.9}$	+ 0.7 - 0.7 + 0.6 - 0.5 + 0.1 - 0.1			-				Ì
Boosted	$\mu=3.0^{+2.0}_{-1.7}$	+ 1.4 - 1.3		H			÷		
VBF	$\mu = 1.7^{+1.0}_{-0.9}$	+ 0.8 - 0.8		<u> </u>	-				
$\textbf{H} \rightarrow \tau_{lep} \tau_{had}$	$\mu = 1.0^{+0.5}_{-0.5}$	+ 0.4 - 0.3 + 0.4 - 0.3 + 0.1 - 0.1		+					
Boosted	$\mu = 0.9^{+1.0}_{-0.9}$	+ 0.6 - 0.6	H	-					
VBF	$\mu = 1.0^{+0.6}_{-0.5}$	+ 0.5 - 0.4		H					
$\textbf{H} \rightarrow \tau_{had} \tau_{had}$	$\mu = 2.0^{+0.9}_{-0.7}$	+ 0.5 - 0.5 + 0.8 - 0.5 + 0.1 - 0.1							
Boosted	$\mu=3.6^{+2.0}_{-1.6}$	+ 1.0 - 0.9			. 1			4 <u>.</u>	
VBF	$\mu = 1.4^{+0.9}_{-0.7}$	+ 0.6 - 0.5		H I			1.		
			0	2			4		
\s = 7 TeV, \s = 8 TeV,	4.5 fb ⁻¹ 20.3 fb ⁻¹			Sig	jna	ıl stı	eng	th (μ)

Dugan O'Neil (SFU)

Higgs Searches in the $\tau^+\tau^-$ Channel

Results

Dugan O'Neil (SFU)

Higgs Searches in the $\tau^+\tau^-$ Channe

September 21, 2016 20 / 32

Is it at 125 GeV?

Summary and Conclusions

- Results from di-tau channels with full 2011+2012 datasets presented
- Combination with CMS yields a 5.5σ observation with $\mu = 1.12^{+0.25}_{-0.23}$
- 2016 dataset (13 TeV) now exceeds 25*fb*⁻¹. New results coming soon!

EXTRA SLIDES

MC Generators

Signal $(m_{\rm er} = 125 \text{ CeV})$	MC gaparator	$\sigma \times BR \ [pb]$			
Signal $(m_H = 125 \text{ GeV})$	MC generator	$\sqrt{s} = 8$	TeV		
ggF, $H \to \tau \tau$	Powheg [36–39]	1.22	NNLO+NNLL	[42-47, 78]	
	+ Pythia8 [40]				
VBF, $H \to \tau \tau$	Powheg + Pythia8	0.100	(N)NLO	[51-53, 78]	
$WH, H \rightarrow \tau \tau$	Pythia8	0.0445	NNLO	[56, 78]	
$ZH, H \rightarrow \tau \tau$	Pythia8	0.0262	NNLO	[56, 78]	
Realizmound	MC generator	$\sigma \times BR$	[pb]		
Dackground	MC generator	$\sqrt{s} = 8$	TeV		
$W(\to \ell \nu), \ (\ell = e, \mu, \tau)$	Alpgen [71]+Pythia8	36800	NNLO	[79, 80]	
$Z/\gamma^*(\to \ell\ell),$	ALDCEN PYTHIAS	3010	NNL O	[70 80]	
$60 \text{ GeV} < m_{\ell\ell} < 2 \text{ TeV}$	ALFGEN TITIAS	5510	INILO	[73, 80]	
$Z/\gamma^*(\to \ell\ell),$	ALPGEN+HERWIG [81]	13000	NNLO	[79 80]	
$10 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}$		10000	Mileo	[10,00]	
VBF $Z/\gamma^*(\to \ell\ell)$	Sherpa [82]	1.1	LO	[82]	
$t\bar{t}$	Powheg + Pythia8	253^{\dagger}	NNLO+NNLL	[83-88]	
Single top : Wt	Powheg + Pythia8	22^{\dagger}	NNLO	89	
Single top : s-channel	Powheg + Pythia8	5.6^{\dagger}	NNLO	[90]	
Single top : t -channel	AcerMC [74]+Pythia6 [67]	87.8^{\dagger}	NNLO	[91]	
$q\bar{q} \rightarrow WW$	Alpgen+Herwig	54^{\dagger}	NLO	[92]	
$gg \rightarrow WW$	GG2WW [73]+HERWIG	1.4^{\dagger}	NLO	[73]	
WZ, ZZ	HERWIG	30^{\dagger}	NLO	[92]	
$H \rightarrow WW$	same as for $H \to \tau \tau$ signal	4.7^{\dagger}			

Dugan O'Neil (SFU)

Septemb

Trigger Thresholds

$\sqrt{s} = 7 \text{ TeV}$							
Trigger	Trigger level		Analysis	level t	hresholds [0	GeV]	
Ingger	thresholds, p_T [GeV]		$\tau_{\rm lep}\tau_{\rm lep}$	7	$lep^{T}had$	τ	$had \tau_{had}$
Single electron	20-22	<i>e</i> μ:	$p_T^e > 22 - 24$ $p_T^\mu > 10$	$e\tau$:	$p_T^e > 25 \\ p_T^{\tau} > 20$		-
Single muon	18	μμ: eμ:	$p_T^{\mu_1} > 20$ $p_T^{\mu_2} > 10$ $p_T^{\mu} > 20$ $p_T^{\mu} > 15$	$\mu \tau$:	$\begin{array}{l} p_{\rm T}^{\mu} > 22 \\ p_{\rm T}^{\tau} > 20 \end{array}$		_
Di-electron	12/12	ee:	$p_T^{e_1} > 15$ $p_T^{e_2} > 15$		-		-
$\text{Di-}\tau_{\text{had}}$	29/20		_		-	$\tau \tau$:	$p_T^{\tau_1} > 35 \\ p_T^{\tau_2} > 25$
$\sqrt{s} = 8 \text{ TeV}$							
Trigger	Trigger level		Analysis	level t	hresholds [0	GeV]	
	thresholds, p _T [GeV]		$\tau_{\rm lep}\tau_{\rm lep}$	7	$lep^{T}had$	τ	had τ_{had}
Single electron	24	еµ: ee:	$p_T^e > 26$ $p_T^\mu > 10$ $p_T^{e_1} > 26$ $p_T^{e_2} > 15$	$e\tau$:	$\begin{array}{l} p_{\mathrm{T}}^{e} > 26 \\ p_{\mathrm{T}}^{\tau} > 20 \end{array}$		-
Single muon	24		-	$\mu \tau$:	$p_T^{\mu} > 26$ $p_T^{\tau} > 20$		-
Di-electron	12/12	ee:	$p_T^{e_1} > 15$ $p_T^{e_2} > 15$		-		-
Di-muon	18/8	$\mu\mu$:	$p_T^{\mu_1} > 20$ $p_T^{\mu_2} > 10$		-		-
Electron+muon	12/8	$e\mu$:	$p_T^e > 15$ $p_T^\mu > 10$		-		-
$\text{Di-}\tau_{\text{had}}$	29/20		-		-	$\tau \tau$:	$p_T^{\tau_1} > 35$ $p_T^{\tau_2} > 25$

Dugan O'Neil (SFU)

Higgs Searches in the $\tau^+\tau^-$ Channel

Preselection

Channel	Preselection cuts
	Exactly two isolated opposite-sign leptons
	Events with τ_{had} candidates are rejected
	$50 \text{ GeV} < m_{\tau\tau} < 100 (75) \text{ GeV for DF (SF) events}$
	$\Delta \phi_{\ell\ell} \leq 2.5$ $F^{miss} > 20$ (40) GeV for DF (SF) events
$\tau_{\rm lep} \tau_{\rm lep}$	$E_{\rm T} > 20$ (40) GeV for DT (51) events $E^{\rm miss, \rm HPTO} > 40$ GeV for SE events
	$p_T^{\ell_1} + p_T^{\ell_2} > 35 \text{ GeV}$
	Events with a b-tagged jet with $p_T > 25$ GeV are rejected
	$0.1 < x_{\tau_1}, x_{\tau_2} < 1$
	$m_{\tau\tau}^{\text{coll}} > m_Z - 25 \text{ GeV}$
	Exactly one isolated lepton and one medium τ_{had} candidate with opposite charges
$\tau_{ m lep} \tau_{ m had}$	$m_{\rm T} < 70 {\rm ~GeV}$
	Events with a b-tagged jet with $p_T > 30$ GeV are rejected
	One isolated medium and one isolated tight opposite-sign τ_{had} -candidate
	Events with leptons are vetoed
	$E_{\rm T}^{\rm mas} > 20 {\rm GeV}$
ThadThad	$E_{\rm T}^{\rm mass}$ points between the two visible taus in ϕ , or min $[\Delta \phi(\tau, E_{\rm T}^{\rm mass})] < \pi/4$
	$0.8 < \Delta R(\tau_{\rm had_1}, \tau_{\rm had_2}) < 2.4$
	$\Delta \eta(\tau_{\text{had}_1}, \tau_{\text{had}_2}) < 1.5$
Channel	VBF category selection cuts
	At least two jets with $p_T^{j_1} > 40$ GeV and $p_T^{j_2} > 30$ GeV
7 lep 7 lep	$\Delta \eta(j_1, j_2) > 2.2$
	At least two jets with $p_T^{j_1} > 50 \text{ GeV}$ and $p_T^{j_2} > 30 \text{ GeV}$
$\tau_{\rm lep} \tau_{\rm had}$	$\Delta \eta(j_1, j_2) > 3.0$
	$m_{\tau\tau}^{\rm vis} > 40 \text{ GeV}$
	At least two jets with $p_T^{21} > 50$ GeV and $p_T^{22} > 30$ GeV
$\tau_{had}\tau_{had}$	$p_T^{j_2} > 35$ GeV for jets with $ \eta > 2.4$
	$\Delta \eta(j_1, j_2) > 2.0$
Channel	Boosted category selection cuts
$\tau_{lep}\tau_{lep}$	At least one jet with $p_T > 40 \text{ GeV}$
Δ11	Failing the VBF selection
	$p_{T}^{H} > 100 \text{ GeV}$

Dugan O'Neil (SFU)

Higgs Searches in the $\tau^+\tau^-$ Channe

Control Regions

Process	$\tau_{lep}\tau_{lep}$	$\tau_{lep}\tau_{had}$	$\tau_{had}\tau_{had}$
$Z \rightarrow \ell\ell$ -enriched	$80 < m_{\tau\tau}^{vis} < 100 \ GeV$		
	(same-flavour)		
Top control region	Invert b-jet veto	Invert b-jet veto and $m_T > 40 \text{ GeV}$	
Rest category			Pass preselection,
			Fail VBF and Boosted selections
$Z \rightarrow \tau \tau$ -enriched	$m_{\tau\tau}^{\text{HPTO}} < 100 \text{ GeV}$	$m_{\rm T} < 40 ~GeV$ and $m_{\tau\tau}^{\rm MMC} < 110 ~GeV$	
Fake-enriched	Same sign τ decay products	Same sign τ decay products	
W-enriched		$m_T > 70 \ GeV$	
Mass sideband			$m_{\tau\tau}^{\rm MMC} < 110 \ GeV$ or $m_{\tau\tau}^{\rm MMC} > 150 \ GeV$

Channel	Background	Scale factors (CR)		
		VBF	Boosted	
$ au_{ m lep} au_{ m lep}$	Тор	0.99 ± 0.07	1.01 ± 0.05	
	$Z \to ee$	0.91 ± 0.16	0.98 ± 0.10	
	$Z \to \mu \mu$	0.97 ± 0.13	0.96 ± 0.08	
$ au_{ m lep} au_{ m had}$	Тор	0.84 ± 0.08	0.96 ± 0.04	

Systematic Variations

	Relative signal and background variations [%]											
Source	$\tau_{lep}\tau_{lep}$		$\tau_{lep}\tau_{lep}$		$\tau_{\rm lep} \tau_{\rm had}$		$\tau_{lep}\tau_{had}$		$\tau_{\rm had} \tau_{\rm had}$		$\tau_{\rm had} \tau_{\rm had}$	
- Could	VBF		Boosted		VBF		Boosted		VBF		Boosted	
	S	B	S	B	S	B	S	B	S	B	S	B
Experimental												
Luminosity	± 2.8	± 0.1	± 2.8	± 0.1	± 2.8	± 0.1	± 2.8	± 0.1	± 2.8	±0.1	± 2.8	± 0.1
Tau trigger [*]	-	-	-	-	-	-	-	-	+7.7 -8.8	< 0.1	+7.8 -8.9	< 0.1
Tau identification	-	-	-	-	± 3.3	± 1.2	± 3.3	± 1.8	± 6.6	± 3.8	± 6.6	± 5.1
Lepton ident. and trigger [*]	$^{+1.4}_{-2.1}$	+1.3 -1.7	$^{+1.4}_{-2.1}$	$^{+1.1}_{-1.5}$	± 1.8	± 0.5	± 1.8	± 0.8	-	-	-	-
b-tagging	± 1.3	± 1.6	± 1.6	± 1.6	< 0.1	± 0.2	± 0.4	± 0.2	-	-	-	-
τ energy scale [†]	-	-	-	-	± 2.4	± 1.3	± 2.4	±0.9	± 2.9	± 2.5	± 2.9	± 2.5
Jet energy scale and resolution [†]	$^{+8.5}_{-9.1}$	± 9.2	$^{+4.7}_{-4.9}$	$^{+3.7}_{-3.0}$	+9.5 -8.7	± 1.0	± 3.9	±0.4	$^{+10.1}_{-8.0}$	±0.3	$^{+5.1}_{-6.2}$	± 0.2
$E_{\rm T}^{\rm miss}$ soft scale & resolution	$^{+0.0}_{-0.2}$	$^{+0.0}_{-1.2}$	$^{+0.0}_{-0.1}$	$^{+0.0}_{-1.2}$	$^{+0.8}_{-0.3}$	± 0.2	± 0.4	< 0.1	± 0.5	±0.2	± 0.1	< 0.1
Background Model												
Modelling of fake backgrounds [*] [†]	-	± 1.2	-	± 1.2	-	±2.6	-	±2.6	-	± 5.2	-	± 0.6
Embedding [†]	-	$^{+3.8}_{-4.3}$	-	$^{+6.0}_{-6.5}$	-	± 1.5	-	± 1.2	-	± 2.2	-	± 3.3
$Z \rightarrow \ell \ell$ normalisation [*]	-	± 2.1	-	± 0.7	-	-	-	-	-	-	-	-
Theoretical												
Higher-order QCD corrections †	$^{+11.3}_{-9.1}$	± 0.2	$^{+19.8}_{-15.3}$	± 0.2	+9.7 -7.6	± 0.2	$^{+19.3}_{-14.7}$	± 0.2	$^{+10.7}_{-8.2}$	< 0.1	$^{+20.3}_{-15.4}$	< 0.1
UE/PS	± 1.8	< 0.1	± 5.9	< 0.1	± 3.8	< 0.1	± 2.9	< 0.1	± 4.6	< 0.1	± 3.8	< 0.1
Generator modelling	± 2.3	< 0.1	±1.2	< 0.1	± 2.7	< 0.1	± 1.3	< 0.1	± 2.4	< 0.1	± 1.2	< 0.1
EW corrections	±1.1	< 0.1	± 0.4	< 0.1	± 1.3	< 0.1	± 0.4	< 0.1	±1.1	< 0.1	± 0.4	< 0.1
PDF †	$^{+4.5}_{-5.8}$	± 0.3	$^{+6.2}_{-8.0}$	± 0.2	$+3.9 \\ -3.6$	± 0.2	+6.6 -6.1	± 0.2	$^{+4.3}_{-4.0}$	± 0.2	$^{+6.3}_{-5.8}$	± 0.1
BR $(H \rightarrow \tau \tau)$	± 5.7	-	± 5.7	-	± 5.7	-	± 5.7	-	\pm 5.7	-	± 5.7	-

Process/Category		VBF		Boosted			
BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin	
$Z \rightarrow \tau \tau$	589 ± 24	9.7 ± 1.0	1.99 ± 0.34	2190 ± 80	33.7 ± 2.3	11.3 ± 1.3	
Fake background	57 ± 12	1.2 ± 0.6	0.55 ± 0.35	100 ± 40	2.9 ± 1.3	0.6 ± 0.4	
Top	131 ± 19	0.9 ± 0.4	0.89 ± 0.33	380 ± 50	9.8 ± 2.1	4.3 ± 1.0	
Others	196 ± 17	3.0 ± 0.4	1.7 ± 0.6	400 ± 40	8.3 ± 1.6	2.6 ± 0.7	
$ggF: H \rightarrow WW (m_H = 125 \ GeV)$	2.9 ± 0.8	0.12 ± 0.04	0.11 ± 0.04	7.7 ± 2.3	0.43 ± 0.13	0.24 ± 0.08	
VBF: $H \rightarrow WW$	3.4 ± 0.4	0.40 ± 0.06	0.38 ± 0.08	1.65 ± 0.18	0.102 ± 0.017	< 0.1	
$WH : H \rightarrow WW$	< 0.1	< 0.1	< 0.1	0.90 ± 0.10	< 0.1	< 0.1	
$ZH: H \rightarrow WW$	< 0.1	< 0.1	< 0.1	0.59 ± 0.07	< 0.1	< 0.1	
ggF: $H \rightarrow \tau \tau \ (m_H = 125 GeV)$	9.8 ± 3.4	0.73 ± 0.26	0.35 ± 0.14	21 ± 8	2.4 ± 0.9	1.3 ± 0.5	
VBF: $H \rightarrow \tau \tau$	13.3 ± 4.0	2.7 ± 0.7	3.3 ± 0.9	5.5 ± 1.5	0.95 ± 0.26	0.49 ± 0.13	
$WH : H \rightarrow \tau \tau$	0.25 ± 0.07	< 0.1	< 0.1	3.8 ± 1.0	0.44 ± 0.12	0.22 ± 0.06	
$ZH: H \rightarrow \tau\tau$	0.14 ± 0.04	< 0.1	< 0.1	2.0 ± 0.5	0.21 ± 0.06	0.113 ± 0.031	
Total background	980 ± 22	15.4 ± 1.8	5.6 ± 1.4	3080 ± 50	55 ± 4	19.2 ± 2.1	
Total signal	24 ± 6	3.5 ± 0.9	3.6 ± 1.0	33 ± 10	4.0 ± 1.2	2.1 ± 0.6	
Data	1014	16	11	3095	61	20	

$au_\ell au_{ m had}$ Yields

Process/Category		VBF		Boosted			
BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin	
Fake background	1680 ± 50	8.2 ± 0.9	5.2 ± 0.7	5640 ± 160	51.0 ± 2.5	22.3 ± 1.8	
$Z \rightarrow \tau \tau$	877 ± 29	7.6 ± 0.9	4.2 ± 0.7	6210 ± 170	57.5 ± 2.8	41.1 ± 3.2	
Top	82 ± 15	0.3 ± 0.4	0.5 ± 0.4	380 ± 50	12 ± 4	4.8 ± 1.5	
$Z \rightarrow \ell \ell (\ell \rightarrow \tau_{had})$	54 ± 26	1.0 ± 0.7	0.30 ± 0.28	200 ± 50	13 ± 4	8.6 ± 3.5	
Diboson	63 ± 11	1.0 ± 0.4	0.48 ± 0.20	430 ± 40	9.7 ± 2.2	4.7 ± 1.6	
ggF: $H \to \tau \tau \ (m_H = 125 GeV)$	16 ± 6	1.0 ± 0.4	1.2 ± 0.6	60 ± 20	9.2 ± 3.2	10.1 ± 3.4	
VBF: $H \rightarrow \tau \tau$	31 ± 8	4.5 ± 1.1	9.1 ± 2.2	16 ± 4	2.5 ± 0.6	2.9 ± 0.7	
$WH: H \rightarrow \tau\tau$	0.6 ± 0.4	< 0.1	< 0.1	9.1 ± 2.3	1.3 ± 0.4	1.9 ± 0.5	
$ZH: H \rightarrow \tau\tau$	0.16 ± 0.07	< 0.1	< 0.1	4.6 ± 1.2	0.77 ± 0.20	0.93 ± 0.24	
Total background	2760 ± 40	18.1 ± 2.3	10.7 ± 2.7	12860 ± 110	143 ± 6	82 ± 6	
Total signal	48 ± 12	5.5 ± 1.3	10.3 ± 2.5	89 ± 26	14 ± 4	16 ± 4	
Data	2830	22	21	12952	170	92	

$au_{\rm had} au_{ m had}$ Yields

Process/Category		VBF		Boosted			
BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin	
Fake background	370 ± 18	2.3 ± 0.9	0.57 ± 0.29	645 ± 26	35 ± 4	0.65 ± 0.33	
Others	37 ± 5	0.67 ± 0.22	< 0.1	89 ± 11	15.9 ± 2.0	0.92 ± 0.22	
$Z \rightarrow \tau \tau$	475 ± 16	0.6 ± 0.7	0.6 ± 0.4	2230 ± 70	93 ± 4	5.4 ± 1.6	
ggF: $H \to \tau \tau \ (m_H = 125 GeV)$	8.0 ± 2.7	0.67 ± 0.23	0.53 ± 0.20	21 ± 8	9.1 ± 3.3	1.6 ± 0.6	
VBF: $H \rightarrow \tau \tau$	12.0 ± 3.1	1.8 ± 0.5	3.4 ± 0.9	6.3 ± 1.6	2.8 ± 0.7	0.52 ± 0.13	
$WH: H \rightarrow \tau\tau$	0.25 ± 0.07	< 0.1	< 0.1	4.0 ± 1.1	1.9 ± 0.5	0.41 ± 0.11	
$ZH: H \rightarrow \tau\tau$	0.16 ± 0.04	< 0.1	< 0.1	2.4 ± 0.6	1.13 ± 0.30	0.23 ± 0.06	
Total background	883 ± 18	3.6 ± 1.3	1.2 ± 1.0	2960 ± 50	143 ± 6	7.0 ± 1.8	
Total signal	20 ± 5	2.5 ± 0.6	3.9 ± 1.0	34 ± 10	15 ± 4	2.7 ± 0.8	
Data	892	5	6	3020	161	10	