Possibilities of crab waist

A. Bogomyagkov, E. Levichev

Budker Institute of Nuclear Physics Novosibirsk

September 19-23, 2016

Crab waist [P. Raimondi 2006, tested at DAΦNE]

$$K2L[m^{-2}] = \pm \frac{1}{\theta \beta_y^* \beta_y} \sqrt{\frac{\beta_x^*}{\beta_x}}.$$

Upgrade of present colliders DAΦNE and SuperKEKB

	DAΦNE	SuperKEKB	
Run or ring	SIDDHARTA	LER HER	
Energy, GeV	0.51	4	7.007
Circumference, m	97.69	3016.315	
$\varepsilon_x/\varepsilon_y$, nm/pm	250/750	3.2/8.64	4.6/12.9
β_x^*/β_y^* , mm	250/9.3	32/0.27	25/0.3
Crossing angle, mrad	50	83	
σ_z , mm	17	6	5
Piwinski angle $arphi$	1.7	25	19
Beam current e^-/e^+ , A	2.45/1.4	3.6	2.6
Beam beam tune shift ξ_y	0.03	0.088	0.08
Luminosity, cm ⁻² s ⁻¹	Achieved	Design	
	$4.5 imes 10^{32}$	$8 imes 10^{35}$	
Luminosity gain	×3	×40	

Energy, GeV	1
Circumference, m	83
$\varepsilon_x/\varepsilon_y$, nm/pm	9(IBS)/90
β_x^*/β_y^* , mm	100/4
Crossing angle, mrad	100
σ_{z} [mm]	10.2(IBS)/3.1
Piwinski angle $arphi$	17
Beam current, A	2.3
Number of bunches	80
Particles per bunch, 10 ¹⁰	4.97
Beam beam tune shift ξ_y	0.12
Luminosity $[10^{34} cm^{-2} s^{-1}]$	1.5

Interaction Region optical functions

Ring optical functions

Four -I families of sextupoles (cell $\mu_{x,y} = 5\pi/4$)

Dynamic aperture: on momentum, PTC

$$\beta_x = 0.1 \text{ m}$$

$$\beta_y = 0.004 \text{ m}$$

$$R_x = 5.3 \cdot 10^{-4} \text{ m}$$

$$\sigma_x = 3 \cdot 10^{-5} \text{ m}$$

$$\sigma_y = 6 \cdot 10^{-7} \text{ m}$$

$$ksy1 = -330 \text{ T/m}^2$$

$$ksy2 = -2695 \text{ T/m}^2$$

$$ksy2 = -2695 \text{ T/m}^2$$

$$ksy3 = -2886 \text{ T/m}^2$$

$$ksy3 = -2886 \text{ T/m}^2$$

$$ksy4 = -3754 \text{ T/m}^2$$

$$ksx4 = 916 \text{ T/m}^2$$

$$Ls = 0.1 \text{ m}$$

	CTau						
Energy, GeV	1	1.5	2	2.5			
Circumference, m		813.4					
$\varepsilon_x/\varepsilon_y$, nm/pm		8/40)				
β_x^*/β_y^* , mm		40/0.	8				
Crossing angle,							
mrad		60					
σ_z , mm	16.5 11		10	10			
Piwinski angle $arphi$	27 19		17	17			
Beam current, A		1.65)				
Beam beam							
tune shift ξ_y	0.15	0.15	0.12	0.1			
Luminosity, cm ⁻² s ⁻¹	$0.6 imes10^{35}$	$0.9 imes10^{35}$	$1 imes 10^{35}$	1 × 10 ³⁵			

Interaction region CTau

Extra large size: FCCee

	FCC-ee				
Eperiment	Z	W	Н	tt	
Energy, GeV	45	80	120	175	
Circumference, m		100 ×	10 ³		
$\varepsilon_x/\varepsilon_y$, nm/pm	0.14/1	0.44/2	1/2	2.1/4.3	
β_x^*/β_y^* , mm		500	/1		
Crossing angle,					
mrad		30)		
σ_z , mm	5.9	9.1	8.2	6.6	
Piwinski angle $arphi$	11	9	6	3	
Beam current, A	1.4	1.4	0.3	0.06	
Beam beam					
tune shift ξ_y	0.175	0.187	0.16	0.08	
μ'_{y}	-2805				
Luminosity, cm ⁻² s ⁻¹	$211 imes 10^{34}$	$36 imes 10^{34}$	$9 imes 10^{34}$	$1.3 imes10^{34}$	

Interaction region FCC-1 [K. Oide]

Interaction region FCC-2

- Reduce $\varepsilon_x = 144 \rightarrow 30$ nm and $\beta_y^* = 15 \rightarrow 5$ mm. Luminosity gain is 8 times, $\xi_y = 0.04 \rightarrow 0.1$ acceptable with crab waist.
- Reduce coupling $ε_x/ε_y = 0.015 → 0.007$. Luminosity gain is 12 times, $ξ_y = 0.04 → 0.15$ acceptable with crab waist.
- Increase crossing angle $θ = 22 \rightarrow 30$ mrad. Luminosity gaing is 10 times, $ξ_y = 0.04 \rightarrow 0.1$ acceptable with crab waist.
- Increase bunch population, beam current 0.9 \rightarrow 1.3 A. Luminosity gain is 20 times, $\xi_y = 0.04 \rightarrow 0.15$ acceptable with crab waist.

BEPC-II	0	1	2	3	4
Energy, GeV	1.89	1.89	1.89	1.89	1.89
Circumference, m	237.53	237.53	237.53	237.53	237.53
$\varepsilon_x/\varepsilon_y$, nm	144/2.2	30/0.45	30/0.2	30/0.2	30/0.2
β_x^*/β_y^* , mm	1000/15	100/5	100/5	100/4	100/4
Crossing angle,					
mrad	22	22	22	30	30
σ_{z}, mm	15	16	16	16	16
Piwinski angle $arphi$	0.4	3.3	3.3	4.5	4.5
Beam current, A	0.9	0.9	0.9	0.9	1.3
Beam beam					
tune shift ξ_y	0.04	0.1	0.15	0.1	0.15
Luminosity,	0	07	00	00	170
×10 ⁵² cm ⁻² s ⁻¹	8	67	98	83	170

BEPC-II	0	1	2	3	4
Energy, GeV	1.89	1.89	1.89	1.89	1.89
Circumference, m	237.53	237.53	237.53	237.53	237.53
$\varepsilon_x/\varepsilon_y$, nm	144/2.2	30/0.45	30/0.2	30/0.2	30/0.2
β_x^*/β_y^* , mm	1000/15	100/5	100/5	100/4	100/4
Crossing angle,					
mrad	22	22	22	30	30
σ_{z}, mm	15	16	16	16	16
Piwinski angle $arphi$	0.4	3.3	3.3	4.5	4.5
Beam current, A	0.9	0.9	0.9	0.9	1.3
Beam beam					
tune shift ξ_y	0.04	0.1	0.15	0.1	0.15
Luminosity,					
$\times 10^{32} cm^{-2} s^{-1}$	8	67	98	83	170

BEPC-II	0	1	2	3	4
Energy, GeV	1.89	1.89	1.89	1.89	1.89
Circumference, m	237.53	237.53	237.53	237.53	237.53
$\varepsilon_x/\varepsilon_y$, nm	144/2.2	30/0.45	30/ <mark>0.2</mark>	30/0.2	30/0.2
β_x^*/β_y^* , mm	1000/15	100/5	100/5	100/4	100/4
Crossing angle,					
mrad	22	22	22	30	30
σ_{z}, mm	15	16	16	16	16
Piwinski angle $arphi$	0.4	3.3	3.3	4.5	4.5
Beam current, A	0.9	0.9	0.9	0.9	1.3
Beam beam					
tune shift ξ_y	0.04	0.1	0.15	0.1	0.15
Luminosity,					
$\times 10^{32} cm^{-2} s^{-1}$	8	67	98	83	170

BEPC-II	0	1	2	3	4
Energy, GeV	1.89	1.89	1.89	1.89	1.89
Circumference, m	237.53	237.53	237.53	237.53	237.53
$\varepsilon_x/\varepsilon_y$, nm	144/2.2	30/0.45	30/ <mark>0.2</mark>	30/0.2	30/0.2
β_x^*/β_y^* , mm	1000/15	100/5	100/5	100/4	100/4
Crossing angle,					
mrad	22	22	22	30	30
σ_z , mm	15	16	16	16	16
Piwinski angle $arphi$	0.4	3.3	3.3	4.5	4.5
Beam current, A	0.9	0.9	0.9	0.9	1.3
Beam beam					
tune shift ξ_y	0.04	0.1	0.15	0.1	0.15
Luminosity,					
$\times 10^{32} cm^{-2} s^{-1}$	8	67	98	83	170

BEPC-II	0	1	2	3	4
Energy, GeV	1.89	1.89	1.89	1.89	1.89
Circumference, m	237.53	237.53	237.53	237.53	237.53
$\varepsilon_x/\varepsilon_y$, nm	144/2.2	30/0.45	30/ <mark>0.2</mark>	30/0.2	30/0.2
β_x^*/β_y^* , mm	1000/15	100/5	100/5	100/4	100/4
Crossing angle,					
mrad	22	22	22	30	30
σ_z , mm	15	16	16	16	16
Piwinski angle $arphi$	0.4	3.3	3.3	4.5	4.5
Beam current, A	0.9	0.9	0.9	0.9	1.3
Beam beam					
tune shift ξ_y	0.04	0.1	0.15	0.1	0.15
Luminosity,					
$\times 10^{32} cm^{-2} s^{-1}$	8	67	98	83	170

How to reduce emittance 5 times?

Install damping wigglers in the dispersion free section.

$$\frac{\varepsilon_w}{\varepsilon_0} = \frac{1 + i_5/I_5}{1 + i_2/I_2}, \qquad i_2 = \frac{1}{2}h_w^2 L_w, \qquad i_5 = \frac{8}{15}h_w^2 N_w \theta_m^3 \langle \beta_x \rangle,$$

 h_w is peak curvature, θ_m is maximum deviation angle, L_w and N_w are wiggler length and number of periods, $\langle \beta_x \rangle$ is average beta function. Two wigglers with $B_m = 7.5$ T, $\lambda_w = 0.164$ m, $L_w = 1.8$ m reduce BEPCII emittance 5 times.

- Arrangement of compact CW IR (BINP has experience).
- Wigglers will increase energy spread twice.
- In the system to compensate for additional SR power loss.
- 9 Place for the damping wigglers, SR.
- Injector capacity. We believe that these and other problems can be solved if scientific community would show its interest.

- BEPC II is very close to Crab Waist layout requirements.
- By moderate (our belief) modification it can be converted to Crab Waist collider factory.
- Luminosity enhancement for BEPCII-CW is about 20. Study for further luminosity increase is possible.
- Many accelerator physics and technology aspects needed for CEPC CW mode can be proven at BEPCII-CW (FF quadrupoles, MDI, crab sextupoles dynamics, IR high chromaticity correction, CW scheme DA study and optimization, etc.).
- Solution to the SR operation mode.
- High field wiggler extends SR spectrum to the hard X-ray area.