New ISR Cross Section Results on $\pi^+\pi^-\pi^0\pi^0$ and $\pi^+\pi^-\eta$ from *BABAR*

Konrad Griessinger on behalf of the BABAR Collaboration

Institute for Nuclear Physics Mainz University

International Workshop on Tau Lepton Physics, September 2016

Outline

Cross section
$$e^+e^-
ightarrow \pi^+\pi^-\pi^0\pi^0$$

(3) Cross section $e^+e^- \rightarrow \pi^+\pi^-\eta$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The contributions to a_{μ} and its uncertainty

$$ec{\mu} = g rac{e}{2m} ec{s}$$

 $(g_{\mu} - 2)/2 =: a_{\mu}^{\mathrm{SM}} = a_{\mu}^{\mathrm{QED}} + a_{\mu}^{\mathrm{weak}} + a_{\mu}^{\mathrm{hadronic}}$

Interaction	Contribution $[\cdot 10^{-11}]$	Uncertainty $[\cdot 10^{-11}]$
QED [1]	116 584 718.951	0.080
EW [7]	153.6	1
hadronic VP [5, 11]	6837	43
hadronic LbL [10, 2]	119	41
total theory	116 591 828	60
E821 experiment [12]	116 592 089	63
deviation exp-theo	261	87

EL OQO

4 E

3 ×

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Discrepancy between SM prediction and direct measurement from Eur.Phys.J., C71:1515, 2011 [5].

Just a fluctuation?

 3σ effect, thus reduction of uncertainties necessary!

K. Griessinger (U Mainz)

 $^+\pi^-\pi^0\pi^0$ and $\pi^+\pi^-\eta$ at BABAR

Connection between a_{μ} and $\sigma_{\rm had}$

三日 のへの

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Connection between a_{μ} and $\sigma_{ m had}$

The BABAR Experiment

Experimental specifications

 $\begin{array}{ll} \mbox{Energy: } \sqrt{s} \approx 10.58 \mbox{ GeV} & (E_{e^-} \approx 9.0 \mbox{ GeV}, E_{e^+} \approx 3.1 \mbox{ GeV}), \\ \mbox{Luminosity: } \mathcal{L} \approx 500 \mbox{ fb}^{-1} & (\Upsilon(4S)) \end{array}$

Initial State Radiation (ISR) events at BABAR

ISR selection

- Detected high energy photon: $E_{\gamma} > 3 \text{GeV}$ \rightarrow defines E_{CM} & provides strong background rejection
- Event topology: *γ*_{ISR} back-to-back to hadrons
 → high acceptance
- Kinematic fit including γ_{ISR}
 - \rightarrow very good energy resolution (4 15MeV)
- e⁺e[−]-boost into the laboratory reference frame
 → high efficiency at production threshold of hadronic system
- Continuous measurement from threshold to ~5GeV
 - ightarrow provides common, consistent systematic uncertainties

Most important channels

Cross Sections of the single channels measured at BABAR (Courtesy of F. Ignatov).

Most important channels

Right panel: Cross Sect. of single channels (Courtesy of F. Ignatov). Left panel: Relative contributions to a_{μ}^{had} (from Nuovo Cim., C034S1:31-40, 2011 [9]).

Most important channels

Right panel: Cross Sect. of single channels (Courtesy of F. Ignatov). Left panel: Relative contributions to δa_{μ}^{had} (from Nuovo Cim., C03451:31-40, 2011 [9]).

$e^+e^- ightarrow \pi^+\pi^-\pi^0\pi^0$

PRELIMINARY

K. Griessinger (U Mainz)

 $\pi^+\pi^-\pi^0\pi^0$ and $\pi^+\pi^-\eta$ at BABAF

September 2016 9 / 23

$e^+e^- ightarrow \pi^+\pi^-\pi^0\pi^0$ world data set before BABAR

- limited precision
- big disagreement between experiments
- small energy ranges

Event Selection Full $\Upsilon(4S)$ on peak data set of 454.4 fb⁻¹

$$e^+e^-
ightarrow \pi^+\pi^-\pi^0\pi^0\gamma_{\rm ISR}$$

Main Selection Requirements

- exactly 2 charged tracks
- $\bullet \ \geq 5 \ \text{photons}$

•
$$E_{\gamma}^{
m lab} > 0.05\,{
m GeV}$$

•
$$|M_{\pi^0}^{
m reco} - M_{\pi^0}^{
m PDG}| < 0.03 \, {
m GeV}$$

•
$$E_{\gamma_{\mathrm{ISR}}} > 3\,\mathrm{GeV}$$

- 6C kinematic fit: $\chi^2_{2\pi 2\pi^0\gamma} < 30$
- reject other hypotheses
- Muon and Kaon PID

15

Background subtraction

$$e^+e^-
ightarrow \pi^+\pi^-\pi^0\pi^0\gamma_{\rm ISR}$$

Simulated background channels:

Background subtraction

Simulated background channels:

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma_{\rm ISB}$

Main issue: background from

Background subtraction

Background subtraction: cross check

Sideband bkg subtraction

Background subtraction: cross check

Resulting cross section

$$e^+e^-
ightarrow \pi^+\pi^-\pi^0\pi^0$$

-

Resulting cross section

-

= nac

Cross section $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

Contribution of $\pi^+\pi^-2\pi^0$ to $g_{\mu}-2$

$$m{a}^{ ext{had}}_{\mu} = rac{1}{4\pi^3} \int_{m_{\pi^0}^2}^\infty rac{\sqrt{1-rac{4m_e^2}{s}}}{1+rac{2m_e^2}{s}} m{K}_\mu(s) \sigma(s) \mathrm{d}s$$

Before BABAR (Eur.Phys.J.,C31:503,2003) [4] $a_{\mu}(1.02 < \sqrt{s} < 1.8 \text{ GeV}) =$ $(16.76 \pm 1.31 \pm 0.20_{rad}) \times 10^{-10}$

1.5

Cross section $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

Contribution of $\pi^+\pi^-2\pi^0$ to $g_{\mu}-2$

$$m{a}^{ ext{had}}_{\mu} = rac{1}{4\pi^3} \int_{m_{\pi^0}^2}^\infty rac{\sqrt{1-rac{4m_e^2}{s}}}{1+rac{2m_e^2}{s}} m{K}_\mu(s) \sigma(s) \mathrm{d}s$$

Before BABAR (Eur.Phys.J.,C31:503,2003) [4] $a_{\mu}(1.02 < \sqrt{s} < 1.8 \text{ GeV}) =$ $(16.76 \pm 1.31 \pm 0.20_{rad}) \times 10^{-10}$

New result in the same energy range $a_{\mu}(1.02 < \sqrt{s} < 1.8 \text{ GeV}) =$ $(17.4 \pm 0.1_{\text{stat}} \pm 0.6_{\text{syst}}) \times 10^{-10}$

ELE SOC

4 E N 4 E N

Contribution of $\pi^+\pi^-2\pi^0$ to $g_{\mu}-2$

$$a_\mu^{ ext{had}} = rac{1}{4\pi^3} \int_{m_{\pi^0}}^\infty rac{\sqrt{1-rac{4m_e^2}{s}}}{1+rac{2m_e^2}{s}} oldsymbol{K}_\mu(s) \sigma(s) \mathrm{d}s$$

New result starting at lower limit $a_{\mu}(0.85 < \sqrt{s} < 1.8 \text{ GeV}) =$ $(17.9 \pm 0.1_{\text{stat}} \pm 0.6_{\text{syst}}) \times 10^{-10}$

New result in a wider energy range $a_{\mu}(0.85 < \sqrt{s} < 3.0 \text{ GeV}) =$ $(21.8 \pm 0.1_{\text{stat}} \pm 0.7_{\text{syst}}) \times 10^{-10}$

K. Griessinger (U Mainz)

September 2016 16 / 23

EL OQO

E 5 4 E

Contribution of $\pi^+\pi^-2\pi^0$ to $\Delta\alpha(M_Z^2)$

$$\begin{aligned} \alpha(q^2) &= \frac{\alpha}{1 - \Delta \alpha(q^2)} \\ \Delta \alpha(q^2) &= \frac{1}{4\pi^2 \alpha} \oint \frac{\sqrt{1 - \frac{4m_e^2}{s}}}{1 + \frac{2m_e^2}{s}} \frac{\sigma^{(0)}(s)}{1 - \frac{s}{q^2}} \mathrm{d}s \end{aligned}$$

New result in a wider energy range $\Delta\alpha(0.85 < \sqrt{s} < 1.8 \text{ GeV}) = (4.44 \pm 0.02_{\text{stat}} \pm 0.14_{\text{syst}}) \times 10^{-4}$

 $egin{aligned} 0.85\,{
m GeV} &\leq E_{
m CM} \leq 3.0\,{
m GeV} \ \Deltalpha(0.85 < \sqrt{s} < 3.0\,{
m GeV}) = \ (6.58\pm 0.02_{
m stat}\pm 0.22_{
m syst}) imes 10^{-4} \end{aligned}$

EL OQO

 $e^+e^-
ightarrow \pi^+\pi^-\eta$

PRELIMINARY

K. Griessinger (U Mainz)

 $\pi^+\pi^-\pi^0\pi^0$ and $\pi^+\pi^-\eta$ at BABAR

September 2016 18 / 23

Event Selection Full $\Upsilon(4S)$ on peak data set of 468.1 fb⁻¹

$$e^+e^-
ightarrow \pi^+\pi^-\eta\gamma_{
m ISR} \ (\eta
ightarrow\gamma\gamma)$$

Main Selection Requirements

- at least 2 charged tracks
- $\bullet \geq 3 \text{ photons}$

•
$$E_{\gamma}^{
m lab} > 0.1\,
m GeV$$

• $0.44 < M_\eta^{
m reco} < 0.64 \, {
m GeV/c^2}$

< 回 ト < 三 ト < 三 ト

• $E_{\gamma_{\mathrm{ISR}}} > 3\,\mathrm{GeV}$

EL OQO

Cross section $e^+e^- \rightarrow \pi^+\pi^-\eta$

• Most accurate $\sigma(e^+e^- o \pi^+\pi^-\eta)$ measurement to date

- First measurement up to 3.5 GeV
- Especially above 1.6 GeV more precise than previous data

18 A.

Fits to the cross section $e^+e^- \rightarrow \pi^+\pi^-\eta$

- Model 1: ho(770)
 ho(1450), fit: $E_{
 m CM} < 1.7 \, {
 m GeV}$
- Model 2: ho(770)
 ho(1450)
 ho(1700), fit: $E_{
 m CM} < 1.9\,{
 m GeV}$
- Model 3: ho(770)
 ho(1450) +
 ho(1700), fit: $E_{
 m CM} < 1.9\,{
 m GeV}$
- Model 4: ho(770)
 ho(1450) +
 ho(1700) +
 ho(2150), fit: $E_{
 m CM} < 2.2\,{
 m GeV}$

"+": relative phase 0°, "-": relative phase 180°

Contribution of $\pi^+\pi^-\eta$ to $g_\mu - 2$

$a_\mu^{ ext{had}} = rac{1}{4\pi^3} \int_{m_{\pi^0}^2}^\infty rac{\sqrt{1-rac{4m_e^2}{s}}}{1+rac{2m_e^2}{s}} K_\mu(s) \sigma(s) \mathrm{d}s$

HLMNT 2011 [8]

$$a_\mu(\sqrt{s} < 1.8\,{
m GeV}) = \ (0.88\pm0.10) imes10^{-10}$$

DHMZ 2011 [5]
$$a_{\mu}(\sqrt{s} < 1.8 \text{ GeV}) =$$

 $(1.15 \pm 0.06_{\text{stat}} \pm 0.08_{\text{syst}}) \times 10^{-10}$

$$\Rightarrow$$
 discrepancy?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Contribution of $\pi^+\pi^-\eta$ to $g_{\mu}-2$

$$a_{\mu}^{
m had} = rac{1}{4\pi^3} \int_{m_{\pi^0}^2}^\infty rac{\sqrt{1-rac{4m_e^2}{s}}}{1+rac{2m_e^2}{s}} K_{\mu}(s) \sigma(s) {
m d}s$$

DHMZ 2011 [5] $a_{\mu}(\sqrt{s} < 1.8 \,\text{GeV}) =$ $(1.15 \pm 0.06_{\text{stat}} \pm 0.08_{\text{syst}}) \times 10^{-10}$

New result

HLMNT 2011 [8] $a_{\mu}(\sqrt{s} < 1.8 \,\text{GeV}) =$ $(0.88 \pm 0.10) \times 10^{-10}$

$$egin{aligned} a_\mu(\sqrt{s} < 1.8\,\mbox{GeV}) = \ (1.19 \pm 0.02_{
m stat} \pm 0.06_{
m syst}) imes 10^{-10} \end{aligned}$$

通 ト イヨト イヨト

JOC ELE

Summary

- ISR physics has proven to be a very productive field even years after the end of data taking at the B-factories
- Precision measurements of hadronic cross sections have greatly improved $a_{\mu}^{\rm SM}$ & more hadronic final states in preparation
- New results from BABAR:

$$\star e^+e^-
ightarrow \pi^+\pi^-\pi^0\pi^0$$

$$\star \ e^+e^- \to \pi^+\pi^-\eta$$

 \star For more BABAR ISR results see W. Gradl's presentation on Friday

Thank you! Any questions?

三日 のへの

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Backup slides

A (10) A (10) A (10)

ELE DOG

References I

- T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio. Complete tenth-order qed contribution to the muon g - 2. *Phys. Rev. Lett.*, 109:111808, Sep 2012.
- [2] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and P. Stoffer. Remarks on higher-order hadronic corrections to the muon g - 2. *Phys.Lett.*, B735:90–91, 2014.
- G. Cosme, B. Dudelzak, B. Grelaud, B. Jean-Marie, S. Jullian, et al. Hadronic Cross-Sections Study in e⁺e⁻ Collisions from 1.350GeV to 2.125GeV. *Nucl.Phys.*, B152:215, 1979.

References II

- [4] M. Davier, S. Eidelman, A. Höcker, and Z. Zhang. Updated estimate of the muon magnetic moment using revised results from e⁺e⁻ annihilation. *Eur. Phys. J.*, C31:503–510, 2003.
- [5] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang. Reevaluation of the Hadronic Contributions to the Muon g – 2 and to α(M_Z). *Eur.Phys.J.*, C71:1515, 2011.
- [6] G. Ecker and R. Unterdorfer.
 Four-Pion Production in e⁺e⁻ Annihilation.
 Eur. Phys. J., C24:535–545, 2002.

ELE DOG

References III

- [7] C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim. The electroweak contributions to (g - 2)_μ after the Higgs boson mass measurement. *Phys.Rev.*, D88(5):053005, 2013.
- [8] K. Hagiwara, R. Liao, A. D. Martin, D. Nomura, and T. Teubner. $(g-2)_{\mu}$ and $\alpha(M_Z^2)$ re-evaluated using new precise data. *J. Phys.*, G38:085003, 2011.
- [9] F. Jegerlehner.
 Electroweak effective couplings for future precision experiments. Nuovo Cim., C034S1:31–40, 2011.
- [10] F. Jegerlehner and A. Nyffeler. The Muon g-2. *Phys.Rept.*, 477:1–110, 2009.

[11] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser.

Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order.

Phys.Lett., B734:144–147, 2014.

[12] K. Olive et al. Review of Particle Physics. Chin.Phys., C38:090001, 2014.

ELE NOR