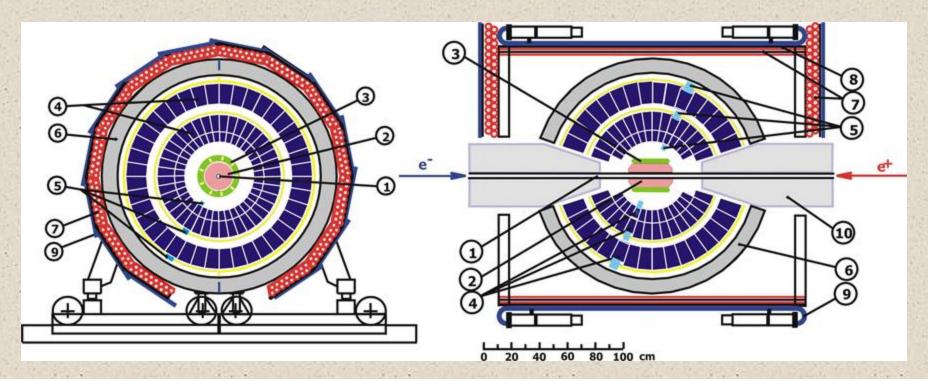


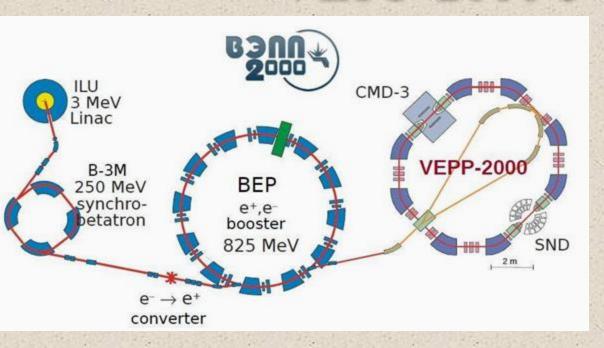
Recent results from SND detector at VEPP-2000 collider.


M.N. Achasov, T.V.Dimova

Budker Institute of Nuclear Physics,

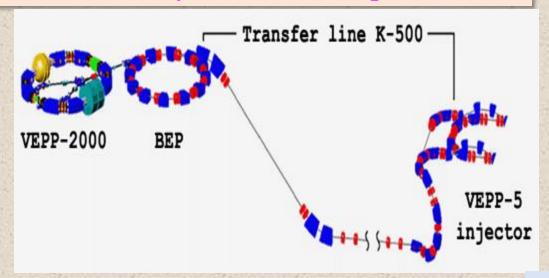
SB RAS, Novosibirsk

TAU2016


SND detector

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counter, 4 – NaI(Tl) crystals, 5 – phototriodes, 6 – iron muon absorber, 7–9 – muon detector, 10 – focusing solenoids.

SND collected data at VEPP-2M (1996-2000) and at VEPP-2000 (2010-2013)


VEPP-2000 e⁺e⁻ collider

- VEPP-2000 parameters:
- c.m. energy 0.3-2.0 GeV
- circumference 24.4 m
- round beam optics
- Luminosity at 2 GeV
- 1′10³² cm⁻² sec⁻¹ (project)
- 2′10³¹ cm⁻² sec⁻¹ (achieved)

During 2010-2013 the luminosity was limited by the deficit of positrons.

- ✓ Currently the VEPP-2000 complex is upgrading.
- ✓ Electrons and positrons are transported from the VEPP-5 injection complex through 250 m beamline.
- ✓ Experiments at upgraded VEPP-2000 are expected to be started in the end of 2016.

SND data

About 15 hadronic processes are currently under analysis.

VEPP-2M					
	Below op	Arroundφ	Above ϕ		
IL, pb-1	9,1	13,2	8,8		
√s, GeV	0,36-0,97	0,98 - 1,06	1,06 – 1,38		

	VEPP-2000					
		Below op	Arround ϕ	Above ϕ		
I	L, pb-1	15,4	6,9	47,0		
1	√s, GeV	0,30-0,97	0,98 - 1,05	1,05-1,38		

Here we report the four results

Precision measurements

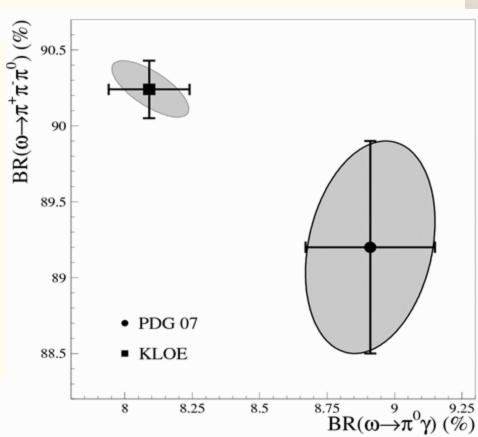
$$e^+e^- \rightarrow \pi^0 \gamma$$
 (VEPP-2M data)

$$e^+e^- \rightarrow K^+K^-$$

First measurements

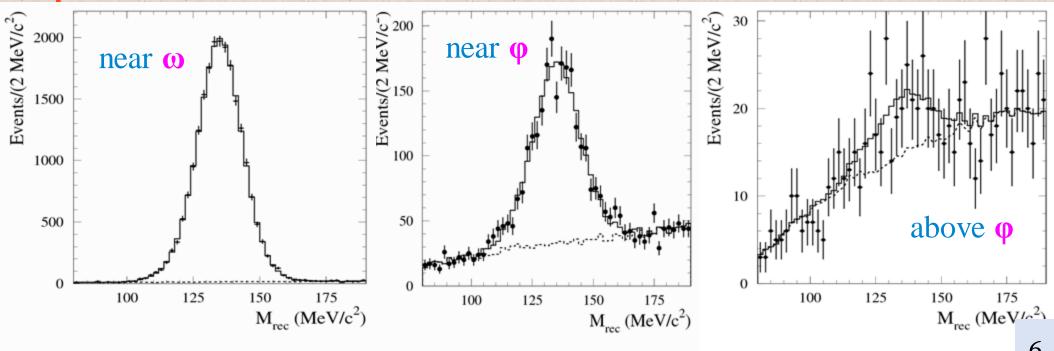
$$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$$

$$e^+e^- \rightarrow \omega \pi^0 \eta$$

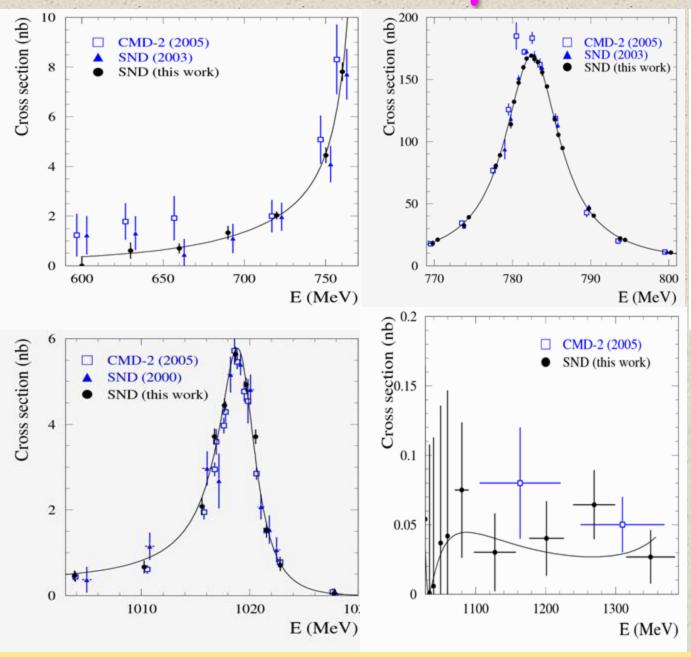

$e^+e^- \rightarrow \pi^0 \gamma$ (VEPP-2M data)

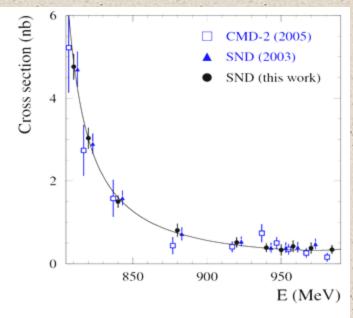
- Third largest cross section (after 2π and 3π) below 1 GeV
- Measurement of the $\pi^0 \gamma * \gamma$ transition form factor
- Measurement of the radiative decays $V \rightarrow \pi^0 \gamma$, $V = \rho$, ω , φ , ...
- There is a tension between the **KLOE** measurement of the ratio $\Gamma(\omega \to \pi^0 \gamma)/\Gamma(\omega \to \pi^+ \pi^- \pi^0)$ and other measurements of ω -meson parameters.

KLOE have studied the $e^+e^- \rightarrow \omega \pi^0$ process near the ϕ -meson resonance in two decay modes $\omega \rightarrow \pi^+\pi^-\pi^0$ a nd $\omega \rightarrow \pi^0 \gamma$


The ω -meson parameters obtained through KLOE studies have a large shifts from the previously measurements, especially for $\omega \rightarrow \pi^0 \gamma$ decay.

F. Ambrosino, et. al., Phys. Lett. B 665 (2008) 223-228




Analysis features

- The process $e^+e^- \rightarrow \gamma\gamma$ is used for normalization. Many selection criteria are common for 2γ and 3γ final states:
 - trigger, absence of charged tracks, cuts on the total energy deposition and event momentum, muon system veto.
- □ Final selection is **based on 4C kinematic fit**: $\chi^2_{3\gamma}$ < 30, 36° < θ_{γ} < 144°, 80 < M_{rec} < 190 MeV, where M_{rec} is the mass recoiling against largest energy photon.
- The number of $e^+e^- \to \pi^0 \gamma$ events is determined from the fit of M_{rec} spectrum.

oss section

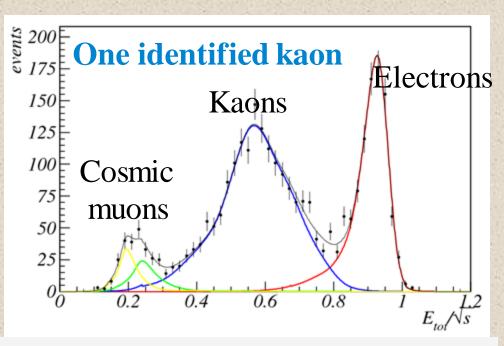
- * The most precise measurement of the $e^+e^- \rightarrow \pi^0 \gamma \text{ cross}$ section.
- Systematic uncertainty at the ω peak is 1.4% (1.2% from luminosity and 0.6% due to selection criteria)

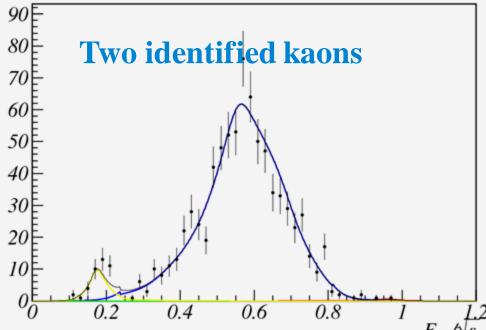
M.N. Achasov, et. al., Phys. Rev. D 93 092001 (2016)

Results on radiative decays

$$B(\omega \to \pi^0 \gamma) B(\omega \to e^+ e^-) = (6.336 \pm 0.056 \pm 0.089) \times 10^{-6}$$

Using PDG value for $B(\omega\to\pi^+\pi^-\pi^0)$ $B(\omega\to e^+e^-)$ we have obtained $\Gamma(\omega\to\pi^0\gamma)/\Gamma(\omega\to\pi^+\pi^-\pi^0)=0.0992\pm0.0023$, which is higher than the KLOE value 0.0897 ± 0.0016 by 3.4σ .

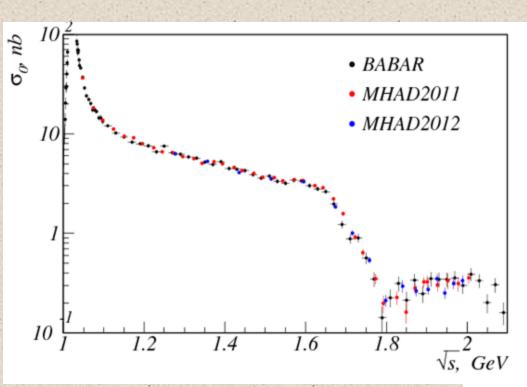

$$B(\rho \to \pi^0 \gamma) = (4.20 \pm 0.47 \pm 0.22) \times 10^{-4}$$


By 1.8σ lower than the current PDG value $(6.0\pm0.8)\times10^{-4}$, but agrees with the branching fraction for the charged mode $B(\rho^{\pm}\to\pi^{\pm}\gamma)=(4.5\pm0.5)\times10^{-4}$.

$$B(\phi \to \pi^0 \gamma) B(\phi \to e^+ e^-) = (3.92^{+0.71}_{-0.40} \pm 0.51) \times 10^{-7}$$

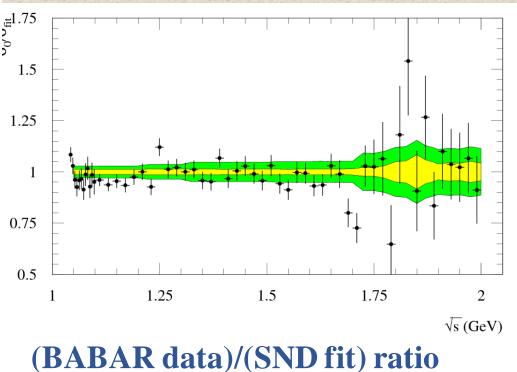
The model uncertainties of the previous measurements ($\sim 8\%$) were underestimated. For ϕ_{ϕ} fixed at the value (163 ± 7)° obtained in the VMD fit to $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ data

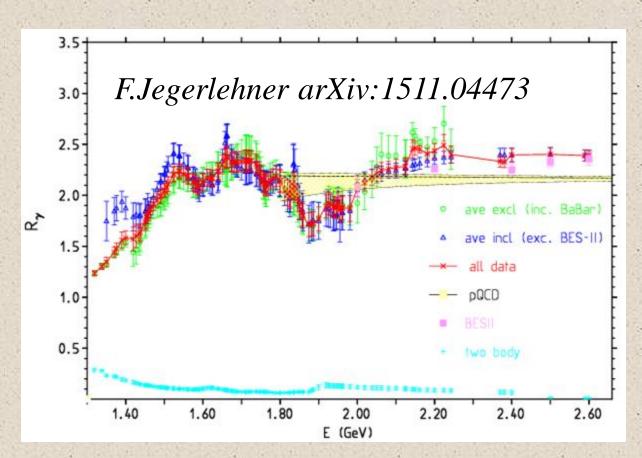
$$B(\phi \to \pi^0 \gamma) B(\phi \to e^+ e^-) = (4.04 \pm 0.09 \pm 0.19) \times 10^{-7}$$



Total energy deposition in calorimeter normalized by c.m. energy

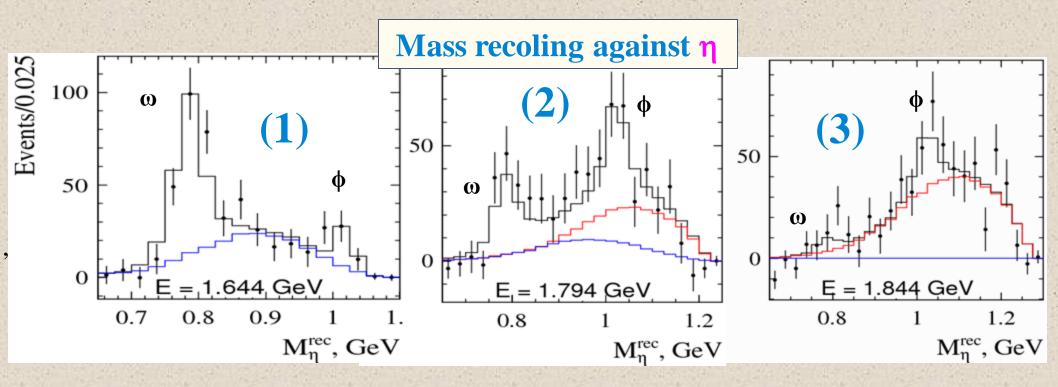
$e^+e^- \rightarrow K^+K^-$


- Kaon identification is based on information from Cherenkov aerogel counters.
- Kaons do not produce Cherenkov signal in the counter, while electron, muon and pions do.
- The kaon ID requirement suppresses background from e⁺e[−]→ e⁺e[−] by a factor of 300.


The green and yellow bands represent the BABAR and SND systematic uncertainties.

$e^+e^- \rightarrow K^+K^-$

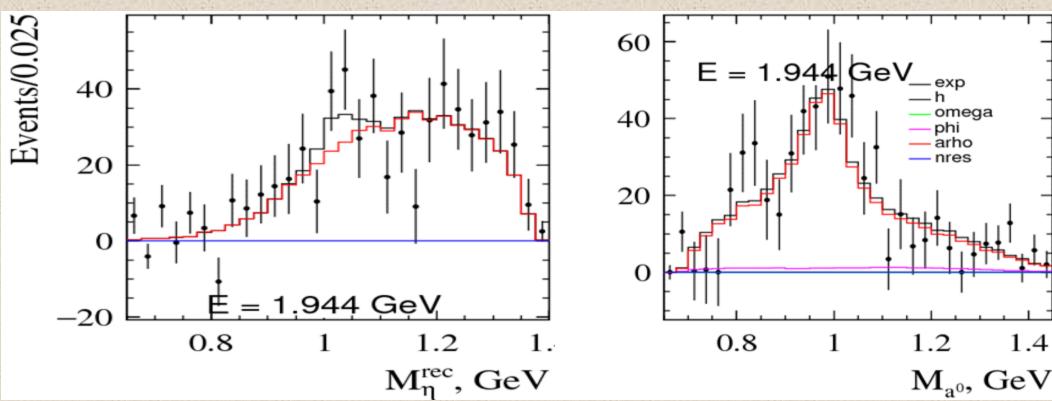
SND measurement agrees with the BABAR data and has comparable or better accuracy.


Exclusive vs inclusive measurements

- Below 2 GeV the total hadronic cross section is calculated as a sum of exclusive cross sections.
- ☐ Currenly the exclusive and inclusive data below 2 GeV are in reasonable agreement.

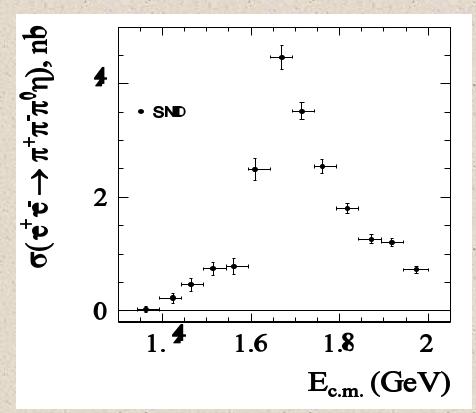
In the energy region 1.5-2.0 GeV exclusive data are incomplete. There is no experimental data on the final states $\pi^+\pi^-\pi^0\eta$, $\pi^+\pi^-\eta\eta$, $\pi^+\pi^-\pi^0\pi^0\pi^0$, $\pi^+\pi^-\pi^0\pi^0\eta$...

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$

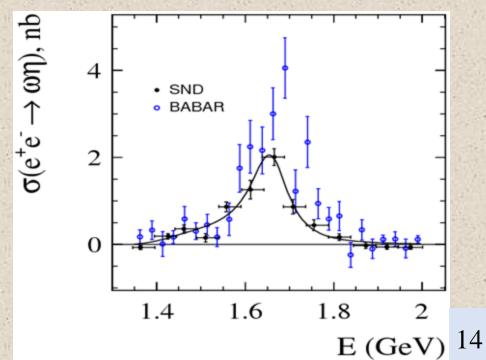


- (1) The spectrum can be fitted by sum of $\omega \eta$, $\phi \eta$ and structureless $\pi^+\pi^-\pi^0\eta$ (blue histogram) contributions.
- (2) The spectrum can be fitted by sum of $\omega \eta$, $\phi \eta$ structureless $\pi^+\pi^-\pi^0\eta$ and $a_0(980)\rho$ (red histogram) contributions.
- (3) The spectrum can be fitted by sum of $\phi\eta$ and $a_0(980)\rho$ contributions.

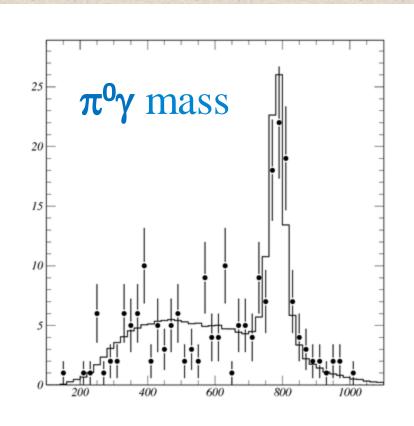
$\mathrm{e^{+}e^{-}} \rightarrow \pi^{+}\pi^{-}\pi^{0}\eta$



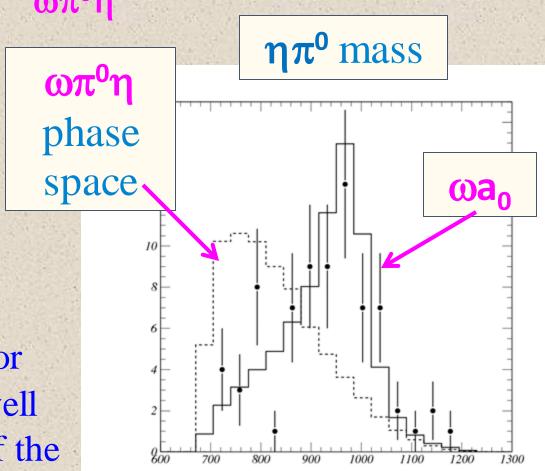
ηρ invariant mass.


Above 1.8 GeV the dominant reaction mechanism is $a_0(980)\rho$.

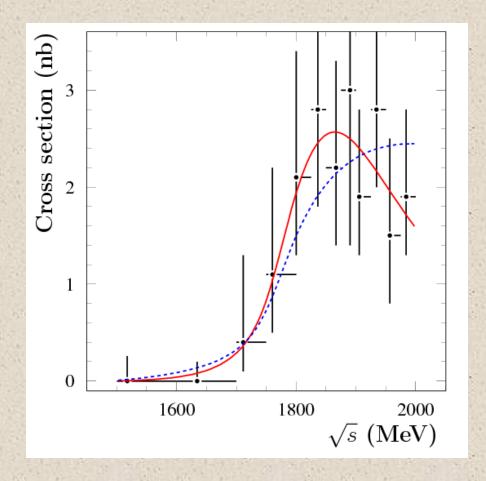
$\pi^+\pi^-\pi^0\eta$



- > First measurement of this process.
- \triangleright Intermediate states are ω_{η} , ϕ_{η} , strucureless $\pi^+\pi^-\pi^0\eta$ and $a_0(980)\rho$.
- \triangleright The known ω_{η} and ϕ_{η} contributions explain about 50-60% of the cross section below 1.8 GeV.
- ➤ Above 1.8 GeV the dominant reaction mechanism is $a_0(980)\rho$.


- The process $e^+e^- \rightarrow \omega \eta$ has been measured separately.
- There is a significant difference between **SND** result and the previous **BABAR** measurement.

$e^+e^- \rightarrow \omega \pi^0 \eta$



- Events of the $e^+e^- \rightarrow \pi^0\pi^0\eta\gamma \rightarrow 7\gamma$ process are selected.
- The dominant intermediate state is $\omega \pi^0 \eta$

The $\eta \pi^0$ mass spectrum for selected $\omega \pi^0 \eta$ events is well described by the model of the $\omega a_0(980)$ intermediate state.

$\mathrm{e^{+}e^{-}} \rightarrow \omega \pi^{0} \eta$

- First measurement of the $e^+e^- \rightarrow \omega \pi^0 \eta$ cross section.
- The dominant reaction mechanism is $\omega a_0(980)$.
- The cross-section energy dependence is fitted by **two** models.
- Red line corresponds to a singleresonance model. The resonance's parameters are consistent with those for $\rho(1700)$.
- **Blue** line corresponds to $\omega a_0(980)$ phase space model.
- ➤ **Both** models are consistent with data.

The cross section is about 2.5 nb, 5% of the total hadronic cross section in the energy region 1.8 – 2.0 GeV.

Conclusions

- □ During 2010 2013 the SND detector accumulated ~70 pb⁻¹ of integrated luminosity at the VEPP-2000 electron-positron collider in the c.m. energy range 0.3 2 GeV.
- Data analysis on hadron production is in progress. The obtained results have comparable or better accuracy than previous measurements $(\omega \pi^0, \pi^+\pi^-\pi^0, \pi^+\pi^-\eta, \mathbf{n} \text{ anti-n}, \pi^0\gamma, \mathbf{K}^+\mathbf{K}^-)$.
- For several processes the cross sections have been measured for the first time ($\eta \gamma$, $\pi^+\pi^-\pi^0 \eta$, $\omega \pi^0 \eta$).
- ☐ After VEPP-2000 upgrade the data taking runs will be continued with a goal of ~1 fb⁻¹ of integrated luminosity.