

Analysis of $\gamma\gamma \rightarrow J/\psi\gamma$

Y.Seino (Niigata Univ), H.Miyata (Niigata Univ) for the Belle collaboration

Abstract: Many models to describe the nature of the heavy quarkonia have been proposed and we can test such models by analyzing charmonium states produced in two-photon collisions through measuring their two-photon decay width ($\Gamma_{\gamma\gamma}$) and the angular distribution since they provide us information on properties and internal structure of charmonium states. In this analysis, we use the decay channel $\gamma \gamma \rightarrow X \rightarrow J/\psi \gamma$, $J/\psi \rightarrow I^+I^-(I = e \text{ or } \mu)$ in the 980.4 fb⁻¹ Belle data sample, where X is a charmonium state. Previously, Belle and CLEO collaborations have reported the measurement of $\gamma \gamma \rightarrow \chi_{c2}(1P) \rightarrow J/\psi \gamma$, $J/\psi \rightarrow I^+I^-$ using 32.6fb⁻¹ and 14.4fb⁻¹ samples, respectively. By analyzing an about 30 times larger data sample, we can make a more precise measurement of $\chi_{c2}(1P)$ and other rare charmonium states including a new charmonium (-like) state. In this presentation, we discuss the purpose and method of the analysis and show the result of the feasibility study using Monte Carlo (MC) samples of $\gamma \gamma \rightarrow X \rightarrow J/\psi \gamma$.

Belle Experiment ECL(Electromagnetic calorimeter) $\sigma_{\rm E}/{\rm E}=1.3\%/{\rm E}^{1/2}$, $\sigma_{\rm pos}=0.5 {\rm cm}/{\rm E}^{1/2}$ KEKB collider (Asymmetric e⁺e⁻ collider) Charmonium-system SVD(silicon vertex detector) $\sqrt{s} = 10.58 \text{GeV} (e^{-18.0 \text{GeV}}, e^{+13.5 \text{GeV}}) @ Y (4S)$ Mass (MeV Double sided Si strip 4700 $\sigma_{\Delta z} \sim 80 \,\mu$ m • The world-highest luminosity: 2.11 × 10³⁴ cm⁻² s⁻¹ X(4360) Integrated luminosity is about 1ab⁻¹ X(4260) 3.5 GeV ψ (4160) (Operation period: 1999~2010) 4100 $+ D_{s}^{*}D_{r}$ $\psi(4040)$ 8.0 GeV Y (4S) : 711fb⁻¹ χ_{c2} (2P) Y (5S) : 121fb⁻¹ **Belle detector** $\psi(3770)$ Y (3S) : 3fb⁻¹ ψ(2S) η_{c} (2S) χ_{c2} (1P) Y (2S) : 24fb⁻¹ TOF(time-of-flight counter) KLM(K₁ Muon detector) Y (1S) : 5. 7fb⁻¹ K/π separation (up to 1.2GeV/c) Resistive plate counter Off-resonance:87fb⁻¹ Scintillator σ_t ~ 100ps CDC(Central Drift Chamber) Belle detector ACC(aerogel Cherenkov counter)

Analysis Motivation (Analysis of Charmonium(-like) States)

• In this century, heavy quarkonium spectroscopy has been developed from the result of many experiments.

• For establishing theory of hadron formation from quarks, we have to research properties, internal structure of the hadrons and discover more new hadrons.

• In 2003, X(3872) which is considered as exotic hadron, was discovered at Belle experiment. After that, many particles which may be exotic have been discovered tetra-quark at various experiments. Exotic hadrons become a popular field at the moment.

Example of exotic hadrons

penta-quark

- Complex detector
 - \rightarrow Track reconstruction: $\sigma_{p_t} / P_t = 0.5\%$ (@1.5GeV/c) \rightarrow Lepton ID:Efficiency \geq 90% Fake rate: O(1)% for μ , O(0.1)% for e

Direct detectable particles e[±], p, K[±], π [±], μ [±], γ , K_I

 $J^{PC} = 0^{-1}$ K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) • We will analyze charmonium states and Charmonium-like (candidate of exotic charmonium("XYZ" states)) states to develop heavy quarkonium spectroscopy.

Analysis of $\gamma\gamma \rightarrow J/\psi\gamma$ (two-photon process)

Measure charged track momentum

Particle ID for dx/dE

Two-photon process

• At an e⁺e⁻ collider We can observe a hadronic system from collisions of virtual or quasi-real photons from beams.

 Radiative photon from the beam is virtual. Virtual $Q^2(=-q^2:q$ is 4-momentum of virtual photon) is expressed by below formula.

 $Q^2 = 4E_b E' \sin^2 \frac{\theta}{2}$

Hadron production from two-photon process

- In the case of P_+ -balance($\theta \approx 0$) requirement of the hadronic system, we can measure the single resonance formation from the quasi-real photons collision $(Q \approx 0)$.
- Assuming a quasi-real photons collision, there are constraints on quantum numbers of the resonance.

(neutral meson, C-parity=+, $J^{P}=(even)^{\pm}$ or $(odd \neq 1)^{+}$)

 Observing the quasi-real photons collision, we can measure two-photon decay width ($\Gamma_{\gamma\gamma}$) from cross-section of the produced meson. $\Gamma_{\gamma\gamma}$ gives information of internal structure of produced meson.

The contents of analysis

- In order to measure properties and internal structure of charmonum(-like) states. we analyze the channel of $\gamma \gamma \rightarrow J/\psi \gamma$, $J/\psi \rightarrow |+|^-$ (|=e or μ).
- We plan to perform the following: (1) More precise measurement of χ_{c2} (1P) < (Update of the Belle result[1])
- ② Search for

new charmonium(-like) states.

3 Analysis with $bad-P_+$ -balance.

 χ_{c2} (1P) (nominal mass: 3.556GeV/c²) is one of charmonium states. In the previous research, the channel of $\gamma \gamma \rightarrow \chi_{c2}(1P) \rightarrow J/\psi \gamma$ was measured at Belle[1] and CLE0[2]. ([1]:32.6fb⁻¹, [2]:14.4fb⁻¹ Now we have much more statistics! Using about 980.4fb⁻¹ and reducing systematic error, the parameters of $\chi_{c2}(1P)$ will be more precise measured than before.

In the previous results ([1], [2]), the statistics have not been sufficient to measure charmonium states except χ_{c2} (1P). In this analysis, 30 times larger statistics may enable us to measure the other charmonium states. We may be able to measure the other charmonium states. (For example, we expect that $\chi_{c2}(2P)$ can be measured.)

If possible, we like to try analyzing it. [1] Phys. Lett. B 540, 33 (2002). [2] Phys. Lett. D 73, 071101 (2006).

	[2] S. Llobara, KEK Poport 06, 11 (1006)				
MC study	[5] 5. Oenara, KEK Keport 90-11 (1990).	Fig.1			Fitter test and expected value of $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$
Generation and detector si	imulation of signal MCs	l:Synthesis of Spin of γ and orbital angular momentum	(J,λ):Spin and helicity of particle generated by	(P)	• We perform a fitter test using the toy MC made from the PDFs defined by signal MC and the previous result[1]. Here the expected
• We use MC samples $\gamma \gamma \rightarrow X$	(Assumed charmonium state) $\rightarrow J/\psi \gamma$		the two-photon process	/ [•] m	numbers of signals and backgrounds are estimated by an extrapolation

to estimate the efficiency for the signal process. (The TREPS MC program[3] is used as an event generator.)

• As seen in Fig. 1, the angular distribution of X(Assumed charmonium state) follows the parameters of J, λ and **l** in the decay mode. (by measuring the angular distribution of charmonium state, we get information on the quantum numbers of charmonium state.)

• To measure known charmonium state and search for new charmonium states, we generate the signal MC samples having 4 different type angular distributions and various charmonium states masses. $(3. 1-4. 5 \text{GeV}/\text{c}^2)$

> (1) Generated particle is $J^{P}=0^{+}$ (or 0^{-}) and l=1 (E1 transition), $\lambda = 0$ (2) Generated particle is $J^{P}=2^{+}$ and l=1 (E1 transition), $\lambda = 2$

(3) Generated particle is $J^{P}=2^{-}$ and l=1 (M1 transition), $\lambda=0$

(4) Generated particle is $J^{P}=2^{-}$ and l=2 (E2 transition), $\lambda=0$

• Fig. 2: Distribution of the polar angle(θ) of the photon in the $|+|^{-}\gamma$ c.m. frame for each type MC sample of 4.2GeV/ c^2 charmonium state mass.

and backgrounds are collinated by an from the previous result[1]. (the below table is summary of the toy MC.)

	Expected number (⊿M=0.15~1.45GeV)	PDF shape
Signal part	4941	Signal MC
Background part	18035	Previous result[1]

• Fig. 4: The result of fit using our toy MC. Signal and background part are fitted with the Crystal Ball function (all of the parameters are floated) and a function of $(\Delta M-a)^{-b}/(1+exp(-c(\Delta M-d)))$ (a, b, c, d are fixed with the previous result[1]), respectively.

pull

5000 0.03777

0.6893

0.2577

94.11 / 86

144.8 ± 2.5

0.03108 ± 0.00972

0.6764 ± 0.0070

Entries

Consta

Mean Sigma

• Fig. 5: Pull distribution as a result of fitter test, where pull is defined as $(Y^{fit}-Y^{gen}) / \sigma^{fit}$, and we generate 5000 toy MC samples for fitter test.

Y^{fit}:yield of fit result

Event Selection

> Only two oppositely-charged particles from J/ψ • -0. 47 $\leq \cos \theta \leq 0.82$ • Pt ≥ 0.4 [GeV/c]

- •|dr| ≤ 1[cm] $|dz| \leq 3[cm]$ • $|\Delta dz| \leq 1$ [cm] $-\cos \alpha > -0.997$ α : The opening angle of the two tracks
- > Lepton PID (E:energy deposit on ECL P:momentum) Electron : $E/P \ge 0.8$ Muon : $0.0 \le E/P \le 0.4$

> Only one photon cluster with $E_{\gamma} \ge 0.2$ [GeV] at ECL • The total energy deposit on ECL is less than 6.0[GeV] • Cluster is isolated from the charged tracks by more than 18.2°

- > Rejection of ISR process $M_{reco}^2 = (E_{beam}^* - E_{J/\psi}^*)^2 - P_{J/\psi}^{*2} \ge 5.0[GeV]$ > Reconstruction of J/ψ by two charged particles • $P_{J/\psi} \le 6.0 [GeV/c]$ • $M_{J/\psi} \le 4.5 [GeV/c^2]$
- > Transverse momentum of total cut for two-photon process • $\Sigma_{+}|Pt^{*}| > 0.10[GeV/c]$ • $\Sigma_{+\gamma}|Pt^{*}| < 0.15[GeV/c]$

 \checkmark Y^{gen}:generated yield at toy MC σ^{fit} :err of fit result

The expected result from the estimated efficiency and the fitter test: $\Gamma_{\gamma\gamma}(\chi_{c2})Br(\chi_{c2} \rightarrow J/\psi\gamma)Br(J/\psi \rightarrow l^+l^-) = 13.5 \pm 0.2(stat.) \pm 0.5(syst.)$

pull

180

160

140

Previous result[1]: $13.5 \pm 1.3(stat.) \pm 1.1(syst.)$

Here, we suppose that systematic error will be 4.0%.

Analysis with bad-P₊-balance

[4] G.A.Schuler et al., NP B523, 423 (1998).

• In the case of loose P_t -balance cut(bad- P_t -balance), production of charmonium(-like) state violating the constraints of quantum numbers by the quasi-real photons collision is expected[4].

- We may be able to report the first measurement of $\chi_{c1}(1P)(J^{PC}=1^{++})$ in the two-photon process with the bad- P_t -balance thanks to the advantage of high statistics(980.4fb⁻¹).
- Because Belle II experiment(the target of integrated luminosity is 50ab⁻¹) is prepared, we like to establish analysis with the bad- P_{+} -balance in advance.

Summary and next step

• To test models describing the nature of heavy quarkonia, we study $\gamma \gamma \rightarrow X \rightarrow J/\psi \gamma$, $J/\psi \rightarrow |+|^-(| = e \text{ or } \mu)$ with the 980.4fb⁻¹ Belle data sample. We will measure the two-photon decay widths ($\Gamma_{\gamma\gamma}$) and the angular distribution of charmonium(-like) states.

• We estimate the efficiency of several charmonium(-like) states and confirm the stability of our fit by performing the fitter test. From them, we evaluate $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))Br(\chi_{c2}\rightarrow J/\psi\gamma)Br(J/\psi\rightarrow I^+I^-)$. It turns out that the statistic error will be 1.5%. (the previous result[1]:9.6%) • After the MC study, we start the analysis using the data sample to measure and search charmonium(-like) states soon.