

Search for new physics with tau final states at 13 TeV @CMS

Zaixing Mao

On behalf of CMS Collaboration

ing, China, 19-23 September 2016

14th International Workshop on Tau Lepton Physics

• Introduction

What are we looking for?

• 13 TeV Analysis

- Z': EXO-16-008 https://cds.cern.ch/record/2160363
- W': EXO-16-006 https://cds.cern.ch/record/2140976
- W_R: EXO-16-016 https://cds.cern.ch/record/2159374 EXO-16-023 https://cds.cern.ch/record/2205270
- LQ3: EXO-16-016, EXO-16-023

Introduction

In the Exotica group, we look for massive non-SM particles (W', Z', W_R, LQ3) decaying to at least one tau in association with other leptons or jets.

	considered final states			
1 tau	$ au_{ m h}$			
2 taus	$ au_{ m h} au_{ m h}$	$ au_{ m e} au_{ m h}$	$ au_{\mu} au_{ m h}$	$ au_{ m e} au_{ m \mu}$

since most of the non-SM particles couple to fermions equally, decays of $X \rightarrow \tau_{e/\mu}$ and $X \rightarrow \tau_e \tau_e / \tau_\mu \tau_\mu$ are hard to distinguish from $X \rightarrow e/\mu$ and $X \rightarrow ee/\mu\mu$ and have a much smaller branching ratio. Thus, they're not considered in the studies I will present today.

Additional gauge bosons emerge in many extended gauge models :

- Sequential standard models (SSM) : SM + additional massive boson with the same couplings constants as SM massive bosons.
- LR model : Extends the standard model gauge group with a righthanded charged boson as well as an additional neutral current.

Some theories predict enhanced coupling to 3rd generation:

• Extended weak gauge group: Extended SU(2)xSU(2) structure for weak interactions where the first two generations of fermions are charged under the weaker SU(2) and the third generation feels the stronger SU(2).

Typical Background Estimation

SM processes with taus (Drell-Yan / top / rare SM / W+jets*):

- simulate using Powheg/MadGraph + Pythia8 + detector. response
- derive scale factors and corrections
- validate/evaluate systematic uncertainties in control regions

SM processes with jets faking taus (QCD multi-jet/ W+jets*):

- "ABCD" data-driven method
- validate/evaluate syst. in control regions

Analysis: $Z' \rightarrow \tau^+ \tau^-$

Signal sample:

• Z' with invariant mass between 500 to 3000 GeV

Final states:

• $\tau_h \tau_h, \tau_\mu \tau_h, \tau_e \tau_h, \tau_e \tau_\mu$ general di- τ new resonance search using SSM Z' as benchmark model

Selections:

- $\tau_h p_T > 20 (\tau_\ell \tau_h) 60 (\tau_h \tau_h) GeV$
- opposite electric charge
- back-to-back
- *missing E*_T > *30 GeV*
- no b quarks

Limit extraction variable:

$m(\tau_1, \tau_2, \not\!\!E_T) = \sqrt{(E_{\tau_1} + E_{\tau_2} + \not\!\!E_T)^2 - (\vec{p}_{\tau_1} + \vec{p}_{\tau_2} + \not\!\!E_T)^2}.$

- Tau2016, Beijing, China, Sep 21 2016 -

BROWN

Analysis: $W' \to \tau \nu$

Signal sample:

• W' with invariant mass between 1000 to 5800 GeV

Final states:

• τ_h general τ + MET new resonance search using SSM W' as benchmark model

Selections:

- τ_h p_T > 80 GeV
- *missing E*^{*T*} > 120 *GeV*
- large separation angle between τ_h and missing E_T
- 0.7 < p_T/missing E_T < 1.3

Limit extraction variable:

$$M_{\rm T} = \sqrt{2 \, p_{\rm T}^{\tau} \, E_{\rm T}^{\rm miss} \left(1 - \cos \Delta \phi(\tau, \vec{p}_{\rm T}^{\rm miss})\right)},$$

BROWN

W_R Introduction

Results from neutrino oscillation experiments imply neutrinos have mass. One way to confer mass to neutrinos, in the context of the "seesaw" mechanism, is provided by the left-right symmetry extension (LRSM), which predicts the existence of three new gauge bosons, W_R^{\pm} and Z'.

Signal sample:

 W_R with invariant mass between 1000 to 3000 GeV with mass of N_T between 0.1 to 0.8 x mass of W_R

Final states:

• $\tau_h \tau_h q q$ general di- τ + di-jet new resonance search probing massive neutrino with W_R

Selections:

- $2 \tau_h$ with $p_T > 70 \text{ GeV}$
- *2 jets with p*^{*T*} > 50 GeV
- *missing E*^{*T*} > 50 *GeV*
- invariant mass of $\tau_h \tau_h > 100 \text{ GeV}$

Limit extraction variable:

$$m(\tau_1, \tau_2, j_1, j_2, E_T^{\text{miss}}) = \sqrt{(E_{\tau_1} + E_{\tau_2} + E_{j_1} + E_{j_2} + E_T^{\text{miss}})^2 - (\overrightarrow{p_{\tau_1}} + \overrightarrow{p_{\tau_2}} + \overrightarrow{p_{j_1}} + \overrightarrow{p_{j_2}} + \overrightarrow{E_T})^2}.$$

- Tau2016, Beijing, China, Sep 21 2016 -

CMS Preliminary, $L_{int} = 2.1 \text{ fb}^{-1}$, $\sqrt{s} = 13 \text{ TeV}$ 10 Events / GeV + jets + jets 10-1 QCD |W_R(2200)→τN_τ 10-2 10⁻³ 10-4 Data BG 2 500 1500 2500 1000 2000 3000 m(τ_h,τ_h,j,j,ᡛ_T) [GeV]

Results: $W_R \rightarrow \tau_h \tau_h q q$

EXO-16-016

Assuming only N_T flavor contributes significantly to the W_R decay width, W_R masses below 2.35 (1.63) TeV are excluded at a 95% confidence level, assuming the N_T mass is 0.8 (0.2) times the mass of W_R boson

Expected and observed limits, at 95% confidence level, as functions of $m(W_R)$ mass with $m(N_T) = 0.5$ m(WR)

Signal sample:

 W_R with invariant mass between 1000 to 4000 GeV with mass of N_T = 0.5 x mass of W_R

Final states:

• $\tau_{\mu}\tau_{h}QQ$, $\tau_{e}\tau_{h}QQ$ general di- τ + di-jet new resonance search probing massive neutrino with W_R

Selections:

- τ_h with $p_T > 60 \text{ GeV}$
- *2 jets with p*^{*T*} > 50 GeV
- missing $E_T > 50 \text{ GeV}$
- invariant mass of $\tau_{\ell}\tau_h > 150 \text{ GeV}$

Limit extraction variable:

$$S_{\rm T} = p_T(\ell) + p_T(\tau_{\rm h}) + p_T(jet_1) + p_T(jet_2) + E_{\rm T}^{\rm miss}$$

- Tau2016, Beijing, China, Sep 21 2016 -

12.9 fb⁻¹ (13 TeV)

13/18

Assuming the mass of neutrino to be half of the mass of right-handed W boson, W_R boson masses below 3.2 TeV are excluded at 95% CL.

Leptoquark Introduction

Many extensions of the standard model (SM) predict new scalar or vector bosons, called leptoquarks (LQ), which carry non-zero lepton and baryon numbers:

- SU(5) grand unification: the standard model gauge groups SU(3) × SU(2) × U(1) are combined into a single simple gauge group—SU(5)
- Pati–Salam SU(4): the lepton-ness (non-quark-ness) of leptons is identified as the 4th color, "lilac," of a larger

BROWN

Analysis: $LQ\overline{LQ} \rightarrow \tau\tau bb$

Signal sample:

• LQ3 with invariant mass between 200 to 1500 GeV

Final states:

• $\tau_h \tau_h bb$, $\tau_\mu \tau_h bb$, $\tau_e \tau_h bb$ reinterpretation of the previous di- τ + di-jet new resonance search

Selections:

- *τ_h* with *p*_T > 50 GeV
- 2 jets with high p_T
- at least on b jet *
- *missing E*^{*T*} > 50 *GeV*
- opposite electric charge *
- cuts to reject top events

Limit extraction variable:

 $S_{\rm T} = p_T(\ell) + p_T(\tau_{\rm h}) + p_T(jet_1) + p_T(jet_2) + E_{\rm T}^{\rm miss}$ * applied in EXO-16-23 only

- Tau2016, Beijing, China, Sep 21 2016 -

EXO-16-016 EXO-16-023

12.9 fb⁻¹ (13 TeV)

Third-generation scalar leptoquarks with masses below 740 GeV are excluded, assuming a 100% branching fraction for the leptoquark decay to a τ lepton and a bottom quark.

BROWN

Assuming 100% branching fraction for the leptoquark decay to a τ lepton and a bottom quark, the third-generation leptoquarks with masses below 900 GeV are excluded at 95% CL

• Many exciting search results from the 13 TeV run

• More 13 TeV results coming soon

