Measurements of the top quark branching ratios into channels with leptons and quarks with the ATLAS detector Swagato Banerjee The 14th International Workshop on Tau Lepton Physics ## Introduction Top (t) quark \rightarrow W-boson + beauty (b) quark with > 95% probability. In the Standard Model (SM), the branching ratio (BR) of the t-quark is thus given by that of the W-boson, which are very well measured with 0.3% precision (assuming lepton universality) by the LEP experiments, and predicted with an uncertainty of the order of 0.1%. In the SM, BR of the t-quark into leptons are same. But, in new physics models, the BR to τ -leptons could be different, eg. via contributions from the charged Higgs ($t \rightarrow H^+b$), or decays containing supersymmetric stop quarks (t $\rightarrow \tilde{t} + X$). ## Introduction At the LHC, top anti-top pair production happens via gluon-gluon (>84%) and quark-quark processes. Almost similar diagrams could also lead to pair production of t, decaying via $\tilde{t} \to b \nu_{\tau} \tilde{\tau}$ channel followed by $\tilde{\tau} \to \tau + \text{gravitino decays}$ which could change the measured BR to τ -leptons. Predicted cross-section for pair production of t-quark is same as that of pair production of t-quark for $m_{\tilde{t}} = 120$ GeV and 12% of the value for $m_{\tilde{t}} = 180$ GeV. ICHEP2016 limits on $m_{\tilde{t}}$ from LHC are > 800 GeV. ## **Event Topology** Top-pair events are classified by leptonic or hadronic decays of the 2 W-bosons and presence of b-jet(s). #### **Top Pair Branching Fractions** This analysis requires presence of ≥ 1 lepton ($\ell = e/\mu$) in the event, produced directly from $W \to \ell \nu$ or indirectly via $W \to \tau \nu$ decays, contributions from which are not distinguished, but summed. Events are classified based of the decays of the other W-boson: $W \to jets$ for $\ell + jets$, $W \to \ell \nu$ for $\ell \ell' + jets$, $W \to \tau_h \nu$ for $\ell \tau_h + jets$, where τ_h refers to the hadronic decays of the τ -leptons. ## Analysis overview \geq 1 b-jets events are classified into 7 mutually exclusive final states: #### • e+jets, μ+jets: In ℓ +jets channels, 3 invariant masses from 2- and 3-jet systems, and a transverse mass distributions are fitted. #### • ee+jets, μμ+jets, eμ+jets: In $\ell\ell'$ +jets channels, the di-lepton effective mass distributions from 2 different missing transverse energy (E_T) regions are fitted. Backgrounds are smallest in the e μ +jets channel. #### • $e\tau_h+jets$, $\mu\tau_h+jets$: In $\ell\tau_h$ +jets channels, a multivariate discriminant from a boosted decision tree (BDT) output that separates jets from τ_h is fitted. Signal significance for $\ell\tau_h$ +jets channel is used for optimization, since it has largest background and smallest number of signal events. ## Data and Monte Carlo sets Results presented here were recorded at center-of-mass energy of $\sqrt{s} = 7$ TeV, the full 2011 data sample corresponding to an integrated luminosity of $\int L = 4.6$ fb⁻¹. Reference: ATLAS Collaboration, Phys. Rev. D 92, 072005 (2015) In 2011, ATLAS employed a 3 level trigger system: hardware based level-1 trigger, followed by software based level-2 and event filter to bring the recorded event rate to 75 KHz and 300 Hz for analysis, respectively. This analysis uses events recorded with single lepton triggers: - single-muon trigger with $p_T > 18$ GeV, or - single-electron trigger with $E_T > 20$ GeV, rising to 22 GeV, during periods of high instantaneous luminosity from 2.4 to 3.7×10^{33} cm⁻² s⁻¹. | Process | Monte Carlo generators | |---------------|--| | t | POWHEG + PYTHIA (Systematics: MCNLO/ALPGEN + HERWIG) | | single-top | MCNLO + HERWIG | | W/Z + jets | ALPGEN + HERWIG + JIMMY | | WW/WZ/ZZ | HERWIG + JIMMY | Use common selection criteria as much as possible for uniformity: 1 muon with $p_T > 20$ GeV and/or 1 electron with $E_T > 25$ GeV - $E_T > 20 \text{ GeV for } \tau_h$ - Consider τ_h seeded with 1 charged track (selects 77% of τ_h) - τ_h overlapping with e/ μ /jet objects not double-counted as τ_h - At least 2 jets with $E_T > 25$ GeV (including b-jet requirement) - \geq 1 b-jet with 70% efficiency, 0.8% mis-tag rate for all channels - In ℓ+jets channels, anti-isolated e/μ are multi-jet backgrounds - $\mathbb{E}_{T} > 30 \text{ GeV}$ Use common selection criteria as much as possible for uniformity: - 1 muon with $p_T > 20$ GeV and/or 1 electron with $E_T > 25$ GeV - In ℓ +jets channels, $p_T > 25$ GeV for muon & 1 isolated-lepton - In $\ell\ell$ '+jets channels, require oppositely charged isolated e/ μ - $E_T > 20 \text{ GeV for } \tau_h$ - Consider τ_h seeded with 1 charged track (selects 77% of τ_h) - τ_h overlapping with e/ μ /jet objects not double-counted as τ_h - At least 2 jets with $E_T > 25$ GeV (including b-jet requirement) - \geq 1 b-jet with 70% efficiency, 0.8% mis-tag rate for all channels - In ℓ +jets channels, anti-isolated e/ μ are multi-jet backgrounds - $E_T > 30 \text{ GeV}$ Use common selection criteria as much as possible for uniformity: - 1 muon with $p_T > 20$ GeV and/or 1 electron with $E_T > 25$ GeV - In ℓ +jets channels, $p_T > 25$ GeV for muon & 1 isolated-lepton - In $\ell\ell$ '+jets channels, require oppositely charged isolated e/ μ - $E_T > 20 \text{ GeV for } \tau_h$ - Consider τ_h seeded with 1 charged track (selects 77% of τ_h) - τ_h overlapping with e/ μ /jet objects not double-counted as τ_h - In ℓ +jets, $\ell\ell$ '+jets channels remove events with identified τ_h - In $\ell \tau_h$ +jets channel, lepton & τ_h must have opposite charge - At least 2 jets with E_T > 25 GeV (including b-jet requirement) - \geq 1 b-jet with 70% efficiency, 0.8% mis-tag rate for all channels - In ℓ+jets channels, anti-isolated e/μ are multi-jet backgrounds - $E_T > 30 \text{ GeV}$ Use common selection criteria as much as possible for uniformity: - 1 muon with $p_T > 20$ GeV and/or 1 electron with $E_T > 25$ GeV - In ℓ +jets channels, $p_T > 25$ GeV for muon & 1 isolated-lepton - In $\ell\ell$ '+jets channels, require oppositely charged isolated e/ μ - $E_T > 20 \text{ GeV for } \tau_h$ - Consider τ_h seeded with 1 charged track (selects 77% of τ_h) - τ_h overlapping with e/ μ /jet objects not double-counted as τ_h - In ℓ +jets, $\ell\ell$ '+jets channels remove events with identified τ_h - In $\ell \tau_h$ +jets channel, lepton & τ_h must have opposite charge - At least 2 jets with E_T > 25 GeV (including b-jet requirement) - \geq 1 b-jet with 70% efficiency, 0.8% mis-tag rate for all channels - In ℓ+jets channels, anti-isolated e/μ are multi-jet backgrounds - In ℓ +jets channels, number of jets ≥ 4 (including b-jet) - $E_T > 30$ GeV, except in ℓ +jets channels where $E_T > 20$ GeV ## l+jets channels #### **Important Backgrounds:** - $W(\rightarrow \ell \nu)$ + jets modeled from MC - $Z(\rightarrow \ell\ell)$ + jets [1 mis-identified ℓ] cross-checked with data - Multi-jet [1 jet mis-identified as \ell] modeled from data For events with fake \mathbb{E}_T (< 30 GeV): transverse mass (m_T) between ℓ & E_T is fitted after fixing single-top & Z+jets contributions from MC. # ℓ+jets channels For events with $E_T > 30$ GeV: a 3D fit is performed using di-jet mass (M_{jj}) between 2 highest E_T jets not b-tagged & 2 3-jet masses (M_{b1jj}, M_{b2ii}) between 1st and 2nd highest E_T b-jet and the ones used for m_{jj}. # l+jets channels | Channel | e+jets | μ +jets | |----------------------------|------------------|------------------| | $t\bar{t} \to \ell + jets$ | 19710 ± 280 | 25090 ± 310 | | (MC) | (18966 ± 31) | (24233 ± 34) | | $t\bar{t}$ (other) | 2674 ± 30 | 3393 ± 30 | | (MC) | (2577 ± 11) | (3277 ± 16) | | W+jets | 4800 ± 500 | 5600 ± 500 | | (MC) | (4140 ± 70) | (5850 ± 90) | | Z+jets (MC) | 1900 ± 500 | 790 ± 200 | | Single top (MC) | 910 ± 70 | 1170 ± 80 | | Diboson (MC) | 5.0 ± 0.2 | 6.1 ± 0.2 | | Multijet | 1000 ± 120 | 2800 ± 140 | | Total Background | 11333±700 | 13700 ± 600 | | Signal+Background | 31000 ± 800 | 38800 ± 700 | | Data | 30733 | 40414 | | χ^2/ndf | 188/207 | 218/207 | | | | | S/B 1.7 1.8 ## ll'+jets channels #### **Important Backgrounds:** - $Z(\rightarrow \ell \ell')$ + jets modeled from MC templates, but very small in eµ - Multi-jet [jets mis-identified as ℓ] modeled from same sign data Single-top, Di-boson modeled from MC Fit di-lepton mass in 2 separate bins (30 < ₹_T < 60 GeV, ₹_T > 60 GeV) to account for varying amounts of Z + jets in different E_T regions. # ll'+jets channels | Channel | $\mu\mu$ +jets | ee+jets | $e\mu$ +jets | |----------------------------|-----------------|---------------|---------------| | $\overline{t}\overline{t}$ | 2890 ± 80 | 1000 ± 40 | 2640 ± 50 | | (MC) | (2536 ± 11) | (903 ± 6) | (2420 ± 11) | | Z+jets | 1380 ± 50 | 379 ± 11 | 13± 4 | | (MC) | (1267 ± 8) | (385 ± 11) | (13 ± 4) | | Single top (MC) | 86± 8 | 36± 7 | 98± 9 | | Diboson (MC) | 22 ± 1 | 8.1 ± 0.5 | 3.3 ± 0.3 | | Fake leptons | 17 ± 10 | 17± 8 | 19±10 | | Total Background | 1430 ± 50 | 442 ± 15 | 136 ± 12 | | Signal+Background | 4400 ± 100 | 1440 ± 40 | 2770 ± 80 | | Data | 4102 | 1447 | 2848 | | χ^2/ndf | 35/34 | 31/34 | 58/49 | | S/B | 2.1 | 2.3 | 19.4 | # lth+jets channels #### **Important Backgrounds:** - $t\overline{t} \rightarrow \ell + jets$ (jets mis-identified as τ_h) - $Z / t\overline{t} \rightarrow \ell \ell + jets (\ell mis-identified as \tau_h)$ - W+jets, multi-jets (one jet mis-identified as ℓ and another jet as τ_h) Separate templates for τ_h (MC), gluon/quark-jets (Data) are validated by a fit to BDT output that separates jets from τ_h using MC ensemble. # lth+jets channels #### Fit data to obtain signal τ_h contribution Region 1 ($20 \le E_T^{\tau} \le 35 \text{ GeV}$) Region 2 (35 \leq E_T \leq 100 GeV) # lth+jets channels #### Signal τ_h composition | Channel | Region 1 | Region 2 | |---|-----------------|-----------------| | $t\bar{t} \to \ell \tau_{\rm had} + {\rm jets}$ | 611.5 ± 5.4 | 621.4 ± 5.4 | | $t\bar{t} \to \ell\ell + \mathrm{jets}$ | 13.0 ± 0.7 | 13.0 ± 0.7 | | Z + jets | 54.5 ± 3.3 | 45.3 ± 3.0 | | Single Top | 23.6 ± 2.3 | 27.1 ± 2.4 | | Dibosons | 1.5 ± 0.2 | 2.2 ± 0.3 | | Total | 705.2 ± 6.8 | 709.5 ± 6.8 | Ns : # of signal events $B_{non-t\bar{t}}$: τ_h from other sources $B_{\ell epton}$: ℓ mis-identified as τ_h $$N_{t\overline{t}}^{fitted}=N_S^{fitted}$$ - $B_{non-t\overline{t}}$ - $B_{\ell epton}$ is in good agreement with $N_{t\overline{t}}^{MC}$ | | $N_{tar{t}}^{ ext{MC}}$ | $B_{\text{non } t\bar{t} \ \tau}$ | B_{lepton} | $N_S^{ m Fitted}$ | $N_{tar{t}}^{ m Fitted}$ | |--|-------------------------|-----------------------------------|----------------|---|--------------------------| | $20 < E_{ m T}^{ au} < 35 { m ~GeV}$ | 611 ± 5 | 76.2 ± 3.5 | 17.1 ± 1.1 | N/A | N/A | | $35 < E_{\mathrm{T}}^{\tau} < 100 \; \mathrm{GeV}$ | 621 ± 5 | 69.5 ± 3.3 | 17.6 ± 1.1 | N/A | N/A | | Combined E_{T}^{τ} bins | 1232 ± 8 | 146 ± 5 | 34.8 ± 1.5 | $1460 \pm 60 \; (\chi^2/\text{ndf} = 0.69)$ | 1280 ± 60 | ## Measuring cross-section & BR #### **Definitions** $\mathcal{A} \cdot \epsilon$: acceptance \times efficiency - $N_{\mu j} = (\text{observed number of } t\bar{t} \to \mu + \text{jets}) / \mathcal{A} \cdot \epsilon_{\mu j}$ - $N_{ej} = (\text{observed number of } t\bar{t} \to e + \text{jets})/\mathcal{A} \cdot \epsilon_{ej}$ - $N_{\mu\mu}$ = (observed number of $t\bar{t} \to \mu\mu$ +jets) $/\mathcal{A} \cdot \epsilon_{\mu\mu}$ - N_{ee} = (observed number of $t\bar{t} \rightarrow e + e + jets) / A \cdot \epsilon_{ee}$ - $N_{e\mu}$ = (observed number of $t\bar{t} \rightarrow e + \mu + \text{jets}$) $/\mathcal{A} \cdot \epsilon_{e\mu}$ - $N_{\tau} = \text{(observed number of } t\bar{t} \to \ell + \tau_h + \text{jets)} / \mathcal{A} \cdot \epsilon_{\ell\tau}$ - \bullet $N_j = N_{\mu j} + N_{ej}$ - $\bullet \ \ N_{\ell} = N_{\mu\mu} + N_{ee} + N_{e\mu}$ - B_{μ} : top quark branching ratio to $\mu\nu_{\mu}(\nu_{\tau}) + X$ - \mathbf{B}_e : top quark branching ratio to $e\nu_e(\nu_{\tau}) + X$ - B_{τ} : top quark branching ratio to $\tau_h \nu_{\tau} + X$ - B_j : top quark branching ratio to jets - B_{ℓ} : $B_{\mu} + B_{e}$ | | e+jets | , , | • | $\mu\mu$ +jets | | • | |--|------------------|------------------|-----------------|------------------|-----------------|-----------------| | $\mathcal{A}_{ch} \cdot \epsilon_{ch}(\%)$ | 14.02 ± 0.02 | 17.88 ± 0.02 | 7.09 ± 0.04 | 19.74 ± 0.08 | 9.50 ± 0.04 | 4.36 ± 0.02 | ## Measuring cross-section & BR #### Calculate B.R. and cross section Note that B_{μ} and B_{e} include events coming from τ leptons decaying leptonically. With these definitions the following relations hold: $$\mathbf{N}_{j} = 2\sigma_{t\bar{t}} \cdot \mathbf{B}_{\ell} \cdot \mathbf{B}_{j} \cdot \mathcal{L} \tag{1}$$ $$\mathbf{N}_{\ell} = \sigma_{t\bar{t}} \cdot \mathbf{B}_{\ell}^{2} \cdot \mathcal{L} \tag{2}$$ $$\mathbf{N}_{\tau} = 2\sigma_{t\bar{t}} \cdot \mathbf{B}_{\ell} \cdot \mathbf{B}_{\tau} \cdot \mathcal{L} \tag{3}$$ $$\mathbf{B}_{j} + \mathbf{B}_{\ell} + \mathbf{B}_{\tau} = 1 \tag{4}$$ where \mathcal{L} is the integrated luminosity. Solving four equations with four unknowns: $$\mathbf{B}_j = \mathbf{N}_j / (\mathbf{N}_j + 2N_\ell + \mathbf{N}_\tau) \tag{5}$$ $$\mathbf{B}_{\ell} = 2\mathbf{N}_{\ell}/(\mathbf{N}_{j} + 2N_{\ell} + \mathbf{N}_{\tau}) \tag{6}$$ $$\mathbf{B}_{\tau} = \mathbf{N}_{\tau} / (\mathbf{N}_{j} + 2\mathbf{N}_{\ell} + \mathbf{N}_{\tau}) \tag{7}$$ $$\sigma_{t\bar{t}} \cdot \mathcal{L} = (N_j + 2N_\ell + N_\tau)^2 / 4N_\ell \tag{8}$$ ## Systematic Uncertainties #### Relative uncertainties (%) | | $\sigma_{t \overline{t}}$ | B_j | B_{ℓ} | B_{τ} | |--------------------------|---------------------------|-----------|------------|------------| | μ uncertainty | 1.3 | 0.15 | 0.6 | 0.5 | | e uncertainty | 1.1 | 0.15 | 0.5 | 0.5 | | Jet energy scale | -6.9/+4.9 | -1.6/+1.4 | -1.9/+2.7 | -3.8/+4.3 | | Jet energy resolution | 1.2 | 0.3 | 0.8 | 0.7 | | ISR/FSR | 2.0 | 0.3 | 1.3 | 4.0 | | MC generator | 3.6 | 0.6 | 0.8 | 1.9 | | PDF | 2.9 | 0.3 | 0.1 | 0.3 | | b-tag | -1.3/+5.0 | 0.3 | 1.0 | 1.5 | | τ identification | 0.5 | 0.15 | 1.1 | 3.5 | | au background correction | 0.2 | < 0.1 | < 0.1 | 2.5 | | W+jets HF content | -4.1/+2.7 | -1.0/+0.7 | -1.1/+2.3 | -1.3/+2.1 | | Total | -9.7/+9.2 | -2.1/+1.8 | -3.4/+4.2 | -7.1/+7.6 | | Luminosity | 1.8 | < 0.1 | < 0.1 | < 0.1 | ## Results | | N_{ej} | $N_{\mu j}$ | N_{ee} | $N_{\mu\mu}$ | $N_{e\mu}$ | $N_{\ell au}$ | |-----------|------------------|------------------|-----------------|------------------|-----------------|-----------------| | | N | $ ilde{\ell}_j$ | | $N_{\ell\ell}$ | | | | Measured | 30.62 ± 0.26 | 30.57 ± 0.29 | 3.06 ± 0.12 | 3.19 ± 0.10 | 6.06 ± 0.12 | 6.39 ± 0.30 | | | 61.19 | ± 0.40 | | 12.31 ± 0.20 | | | | SM | 30.40 ± 1.2 | 30.40 ± 1.2 | 2.86 ± 0.11 | 2.86 ± 0.11 | 5.72 ± 0.20 | 6.39 ± 0.25 | | NNLO+NNLL | 60.64 | 1 ± 2.4 | | 10.95 ± 0.44 | | | The $N_{\ell x}$ are in units of events/pb⁻¹. | | Measured | SM | LEP | |---------------------------|---|--|------------------| | | (top quark) | | (W) | | $\sigma_{t \overline{t}}$ | $178 \pm 3 \text{ (stat.)} \pm 16 \text{ (syst.)} \pm 3 \text{ (lumi.) pb}$ | $177.3 \pm 9.0^{+4.6}_{-6.0} \text{ pb}$ | | | B_j | $66.5 \pm 0.4 \text{ (stat.)} \pm 1.3 \text{ (syst.)}$ | 67.51 ± 0.07 | 67.48 ± 0.28 | | B_e | $13.3 \pm 0.4 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$ | 12.72 ± 0.01 | 12.70 ± 0.20 | | B_{μ} | $13.4 \pm 0.3 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$ | 12.72 ± 0.01 | 12.60 ± 0.18 | | $B_{ au}$ | $7.0 \pm 0.3 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$ | 7.05 ± 0.01 | 7.20 ± 0.13 | ## Summary - A single parameter fit to ℓ + jets, $\ell\ell'$ + jets and $\ell\tau_h$ + jets yields a cross-section of $\sigma_{t\bar{t}} = 178 \pm 17$ pb, in good agreement with SM prediction of $\sigma_{t\bar{t}} = 177.3 \pm 9.0^{+4.6}_{-6.0}$ pb using NNLO + NNLL. - This analysis is the first measurement of top quark hadronic and semi leptonic branching ratios. Branching ratio measurements have smaller systematic uncertainties than cross-section measurements because of cancellation in ratios. The precision ranges from 2.3% for $t \rightarrow$ jets to 7.6% for $t \rightarrow \tau_h + X$. - The measured branching ratio \mathcal{B}_{τ} will vary by more than the observed uncertainty if the $\mathcal{B}(\tilde{t} \to b \, \nu_{\tau} \, \tilde{\tau})$ times the production crosssection of the \tilde{t} -quark is > 3% of that of pair production of t-quark.