Measurements of the top quark branching ratios into channels with leptons and quarks with the ATLAS detector

Swagato Banerjee

The 14th International Workshop on Tau Lepton Physics

Introduction

Top (t) quark \rightarrow W-boson + beauty (b) quark with > 95% probability. In the Standard Model (SM), the branching ratio (BR) of the t-quark is thus given by that of the W-boson, which are very well measured with 0.3% precision (assuming lepton universality) by the LEP experiments, and predicted with an uncertainty of the order of 0.1%.

In the SM, BR of the t-quark into leptons are same. But, in new physics models, the BR to τ -leptons could be different, eg. via contributions from the charged Higgs ($t \rightarrow H^+b$), or decays containing supersymmetric stop quarks (t $\rightarrow \tilde{t} + X$).

Introduction

At the LHC, top anti-top pair production happens via gluon-gluon (>84%) and quark-quark processes.

Almost similar diagrams could also lead to pair production of t, decaying via $\tilde{t} \to b \nu_{\tau} \tilde{\tau}$ channel followed by $\tilde{\tau} \to \tau + \text{gravitino decays}$ which could change the measured BR to τ -leptons.

Predicted cross-section for pair production of t-quark is same as that of pair production of t-quark for $m_{\tilde{t}} = 120$ GeV and 12% of the value for $m_{\tilde{t}} = 180$ GeV.

ICHEP2016 limits on $m_{\tilde{t}}$ from LHC are > 800 GeV.

Event Topology

Top-pair events are classified by leptonic or hadronic decays of the 2 W-bosons and presence of b-jet(s).

Top Pair Branching Fractions

This analysis requires presence of ≥ 1 lepton ($\ell = e/\mu$) in the event, produced directly from $W \to \ell \nu$ or indirectly via $W \to \tau \nu$ decays, contributions from which are not distinguished, but summed. Events are classified based of the decays of the other W-boson: $W \to jets$ for $\ell + jets$, $W \to \ell \nu$ for $\ell \ell' + jets$, $W \to \tau_h \nu$ for $\ell \tau_h + jets$, where τ_h refers to the hadronic decays of the τ -leptons.

Analysis overview

 \geq 1 b-jets events are classified into 7 mutually exclusive final states:

• e+jets, μ+jets:

In ℓ +jets channels, 3 invariant masses from 2- and 3-jet systems, and a transverse mass distributions are fitted.

• ee+jets, μμ+jets, eμ+jets:

In $\ell\ell'$ +jets channels, the di-lepton effective mass distributions from 2 different missing transverse energy (E_T) regions are fitted. Backgrounds are smallest in the e μ +jets channel.

• $e\tau_h+jets$, $\mu\tau_h+jets$:

In $\ell\tau_h$ +jets channels, a multivariate discriminant from a boosted decision tree (BDT) output that separates jets from τ_h is fitted.

Signal significance for $\ell\tau_h$ +jets channel is used for optimization, since it has largest background and smallest number of signal events.

Data and Monte Carlo sets

Results presented here were recorded at center-of-mass energy of $\sqrt{s} = 7$ TeV, the full 2011 data sample corresponding to an integrated luminosity of $\int L = 4.6$ fb⁻¹. Reference: ATLAS Collaboration, Phys. Rev. D 92, 072005 (2015)

In 2011, ATLAS employed a 3 level trigger system: hardware based level-1 trigger, followed by software based level-2 and event filter to bring the recorded event rate to 75 KHz and 300 Hz for analysis, respectively.

This analysis uses events recorded with single lepton triggers:

- single-muon trigger with $p_T > 18$ GeV, or
- single-electron trigger with $E_T > 20$ GeV, rising to 22 GeV, during periods of high instantaneous luminosity from 2.4 to 3.7×10^{33} cm⁻² s⁻¹.

Process	Monte Carlo generators
t 	POWHEG + PYTHIA (Systematics: MCNLO/ALPGEN + HERWIG)
single-top	MCNLO + HERWIG
W/Z + jets	ALPGEN + HERWIG + JIMMY
WW/WZ/ZZ	HERWIG + JIMMY

Use common selection criteria as much as possible for uniformity:

1 muon with $p_T > 20$ GeV and/or 1 electron with $E_T > 25$ GeV

- $E_T > 20 \text{ GeV for } \tau_h$
 - Consider τ_h seeded with 1 charged track (selects 77% of τ_h)
 - τ_h overlapping with e/ μ /jet objects not double-counted as τ_h

- At least 2 jets with $E_T > 25$ GeV (including b-jet requirement)
- \geq 1 b-jet with 70% efficiency, 0.8% mis-tag rate for all channels
 - In ℓ+jets channels, anti-isolated e/μ are multi-jet backgrounds
- $\mathbb{E}_{T} > 30 \text{ GeV}$

Use common selection criteria as much as possible for uniformity:

- 1 muon with $p_T > 20$ GeV and/or 1 electron with $E_T > 25$ GeV
 - In ℓ +jets channels, $p_T > 25$ GeV for muon & 1 isolated-lepton
 - In $\ell\ell$ '+jets channels, require oppositely charged isolated e/ μ
- $E_T > 20 \text{ GeV for } \tau_h$
 - Consider τ_h seeded with 1 charged track (selects 77% of τ_h)
 - τ_h overlapping with e/ μ /jet objects not double-counted as τ_h

- At least 2 jets with $E_T > 25$ GeV (including b-jet requirement)
- \geq 1 b-jet with 70% efficiency, 0.8% mis-tag rate for all channels
 - In ℓ +jets channels, anti-isolated e/ μ are multi-jet backgrounds
- $E_T > 30 \text{ GeV}$

Use common selection criteria as much as possible for uniformity:

- 1 muon with $p_T > 20$ GeV and/or 1 electron with $E_T > 25$ GeV
 - In ℓ +jets channels, $p_T > 25$ GeV for muon & 1 isolated-lepton
 - In $\ell\ell$ '+jets channels, require oppositely charged isolated e/ μ
- $E_T > 20 \text{ GeV for } \tau_h$
 - Consider τ_h seeded with 1 charged track (selects 77% of τ_h)
 - τ_h overlapping with e/ μ /jet objects not double-counted as τ_h
 - In ℓ +jets, $\ell\ell$ '+jets channels remove events with identified τ_h
 - In $\ell \tau_h$ +jets channel, lepton & τ_h must have opposite charge
- At least 2 jets with E_T > 25 GeV (including b-jet requirement)
- \geq 1 b-jet with 70% efficiency, 0.8% mis-tag rate for all channels
 - In ℓ+jets channels, anti-isolated e/μ are multi-jet backgrounds
- $E_T > 30 \text{ GeV}$

Use common selection criteria as much as possible for uniformity:

- 1 muon with $p_T > 20$ GeV and/or 1 electron with $E_T > 25$ GeV
 - In ℓ +jets channels, $p_T > 25$ GeV for muon & 1 isolated-lepton
 - In $\ell\ell$ '+jets channels, require oppositely charged isolated e/ μ
- $E_T > 20 \text{ GeV for } \tau_h$
 - Consider τ_h seeded with 1 charged track (selects 77% of τ_h)
 - τ_h overlapping with e/ μ /jet objects not double-counted as τ_h
 - In ℓ +jets, $\ell\ell$ '+jets channels remove events with identified τ_h
 - In $\ell \tau_h$ +jets channel, lepton & τ_h must have opposite charge
- At least 2 jets with E_T > 25 GeV (including b-jet requirement)
- \geq 1 b-jet with 70% efficiency, 0.8% mis-tag rate for all channels
 - In ℓ+jets channels, anti-isolated e/μ are multi-jet backgrounds
 - In ℓ +jets channels, number of jets ≥ 4 (including b-jet)
- $E_T > 30$ GeV, except in ℓ +jets channels where $E_T > 20$ GeV

l+jets channels

Important Backgrounds:

- $W(\rightarrow \ell \nu)$ + jets modeled from MC
- $Z(\rightarrow \ell\ell)$ + jets [1 mis-identified ℓ] cross-checked with data
- Multi-jet [1 jet mis-identified as \ell] modeled from data

For events with fake \mathbb{E}_T (< 30 GeV): transverse mass (m_T) between ℓ & E_T is fitted after fixing single-top & Z+jets contributions from MC.

ℓ+jets channels

For events with $E_T > 30$ GeV: a 3D fit is performed using di-jet mass (M_{jj}) between 2 highest E_T jets not b-tagged & 2 3-jet masses (M_{b1jj}, M_{b2ii}) between 1st and 2nd highest E_T b-jet and the ones used for m_{jj}.

l+jets channels

Channel	e+jets	μ +jets
$t\bar{t} \to \ell + jets$	19710 ± 280	25090 ± 310
(MC)	(18966 ± 31)	(24233 ± 34)
$t\bar{t}$ (other)	2674 ± 30	3393 ± 30
(MC)	(2577 ± 11)	(3277 ± 16)
W+jets	4800 ± 500	5600 ± 500
(MC)	(4140 ± 70)	(5850 ± 90)
Z+jets (MC)	1900 ± 500	790 ± 200
Single top (MC)	910 ± 70	1170 ± 80
Diboson (MC)	5.0 ± 0.2	6.1 ± 0.2
Multijet	1000 ± 120	2800 ± 140
Total Background	11333±700	13700 ± 600
Signal+Background	31000 ± 800	38800 ± 700
Data	30733	40414
χ^2/ndf	188/207	218/207

S/B

1.7

1.8

ll'+jets channels

Important Backgrounds:

- $Z(\rightarrow \ell \ell')$ + jets modeled from MC templates, but very small in eµ
- Multi-jet [jets mis-identified as ℓ] modeled from same sign data

Single-top, Di-boson modeled from MC

Fit di-lepton mass in 2 separate bins (30 < ₹_T < 60 GeV, ₹_T > 60 GeV) to account for varying amounts of Z + jets in different E_T regions.

ll'+jets channels

Channel	$\mu\mu$ +jets	ee+jets	$e\mu$ +jets
$\overline{t}\overline{t}$	2890 ± 80	1000 ± 40	2640 ± 50
(MC)	(2536 ± 11)	(903 ± 6)	(2420 ± 11)
Z+jets	1380 ± 50	379 ± 11	13± 4
(MC)	(1267 ± 8)	(385 ± 11)	(13 ± 4)
Single top (MC)	86± 8	36± 7	98± 9
Diboson (MC)	22 ± 1	8.1 ± 0.5	3.3 ± 0.3
Fake leptons	17 ± 10	17± 8	19±10
Total Background	1430 ± 50	442 ± 15	136 ± 12
Signal+Background	4400 ± 100	1440 ± 40	2770 ± 80
Data	4102	1447	2848
χ^2/ndf	35/34	31/34	58/49
S/B	2.1	2.3	19.4

lth+jets channels

Important Backgrounds:

- $t\overline{t} \rightarrow \ell + jets$ (jets mis-identified as τ_h)
- $Z / t\overline{t} \rightarrow \ell \ell + jets (\ell mis-identified as \tau_h)$
- W+jets, multi-jets (one jet mis-identified as ℓ and another jet as τ_h)

Separate templates for τ_h (MC), gluon/quark-jets (Data) are validated by a fit to BDT output that separates jets from τ_h using MC ensemble.

lth+jets channels

Fit data to obtain signal τ_h contribution

Region 1 ($20 \le E_T^{\tau} \le 35 \text{ GeV}$)

Region 2 (35 \leq E_T \leq 100 GeV)

lth+jets channels

Signal τ_h composition

Channel	Region 1	Region 2
$t\bar{t} \to \ell \tau_{\rm had} + {\rm jets}$	611.5 ± 5.4	621.4 ± 5.4
$t\bar{t} \to \ell\ell + \mathrm{jets}$	13.0 ± 0.7	13.0 ± 0.7
Z + jets	54.5 ± 3.3	45.3 ± 3.0
Single Top	23.6 ± 2.3	27.1 ± 2.4
Dibosons	1.5 ± 0.2	2.2 ± 0.3
Total	705.2 ± 6.8	709.5 ± 6.8

Ns : # of signal events

 $B_{non-t\bar{t}}$: τ_h from other sources

 $B_{\ell epton}$: ℓ mis-identified as τ_h

$$N_{t\overline{t}}^{fitted}=N_S^{fitted}$$
 - $B_{non-t\overline{t}}$ - $B_{\ell epton}$ is in good agreement with $N_{t\overline{t}}^{MC}$

	$N_{tar{t}}^{ ext{MC}}$	$B_{\text{non } t\bar{t} \ \tau}$	B_{lepton}	$N_S^{ m Fitted}$	$N_{tar{t}}^{ m Fitted}$
$20 < E_{ m T}^{ au} < 35 { m ~GeV}$	611 ± 5	76.2 ± 3.5	17.1 ± 1.1	N/A	N/A
$35 < E_{\mathrm{T}}^{\tau} < 100 \; \mathrm{GeV}$	621 ± 5	69.5 ± 3.3	17.6 ± 1.1	N/A	N/A
Combined E_{T}^{τ} bins	1232 ± 8	146 ± 5	34.8 ± 1.5	$1460 \pm 60 \; (\chi^2/\text{ndf} = 0.69)$	1280 ± 60

Measuring cross-section & BR

Definitions

 $\mathcal{A} \cdot \epsilon$: acceptance \times efficiency

- $N_{\mu j} = (\text{observed number of } t\bar{t} \to \mu + \text{jets}) / \mathcal{A} \cdot \epsilon_{\mu j}$
- $N_{ej} = (\text{observed number of } t\bar{t} \to e + \text{jets})/\mathcal{A} \cdot \epsilon_{ej}$
- $N_{\mu\mu}$ = (observed number of $t\bar{t} \to \mu\mu$ +jets) $/\mathcal{A} \cdot \epsilon_{\mu\mu}$
- N_{ee} = (observed number of $t\bar{t} \rightarrow e + e + jets) / A \cdot \epsilon_{ee}$
- $N_{e\mu}$ = (observed number of $t\bar{t} \rightarrow e + \mu + \text{jets}$) $/\mathcal{A} \cdot \epsilon_{e\mu}$
- $N_{\tau} = \text{(observed number of } t\bar{t} \to \ell + \tau_h + \text{jets)} / \mathcal{A} \cdot \epsilon_{\ell\tau}$
- \bullet $N_j = N_{\mu j} + N_{ej}$
- $\bullet \ \ N_{\ell} = N_{\mu\mu} + N_{ee} + N_{e\mu}$
- B_{μ} : top quark branching ratio to $\mu\nu_{\mu}(\nu_{\tau}) + X$
- \mathbf{B}_e : top quark branching ratio to $e\nu_e(\nu_{\tau}) + X$
- B_{τ} : top quark branching ratio to $\tau_h \nu_{\tau} + X$
- B_j : top quark branching ratio to jets
- B_{ℓ} : $B_{\mu} + B_{e}$

	e+jets	, ,	•	$\mu\mu$ +jets		•
$\mathcal{A}_{ch} \cdot \epsilon_{ch}(\%)$	14.02 ± 0.02	17.88 ± 0.02	7.09 ± 0.04	19.74 ± 0.08	9.50 ± 0.04	4.36 ± 0.02

Measuring cross-section & BR

Calculate B.R. and cross section

Note that B_{μ} and B_{e} include events coming from τ leptons decaying leptonically. With these definitions the following relations hold:

$$\mathbf{N}_{j} = 2\sigma_{t\bar{t}} \cdot \mathbf{B}_{\ell} \cdot \mathbf{B}_{j} \cdot \mathcal{L} \tag{1}$$

$$\mathbf{N}_{\ell} = \sigma_{t\bar{t}} \cdot \mathbf{B}_{\ell}^{2} \cdot \mathcal{L} \tag{2}$$

$$\mathbf{N}_{\tau} = 2\sigma_{t\bar{t}} \cdot \mathbf{B}_{\ell} \cdot \mathbf{B}_{\tau} \cdot \mathcal{L} \tag{3}$$

$$\mathbf{B}_{j} + \mathbf{B}_{\ell} + \mathbf{B}_{\tau} = 1 \tag{4}$$

where \mathcal{L} is the integrated luminosity. Solving four equations with four unknowns:

$$\mathbf{B}_j = \mathbf{N}_j / (\mathbf{N}_j + 2N_\ell + \mathbf{N}_\tau) \tag{5}$$

$$\mathbf{B}_{\ell} = 2\mathbf{N}_{\ell}/(\mathbf{N}_{j} + 2N_{\ell} + \mathbf{N}_{\tau}) \tag{6}$$

$$\mathbf{B}_{\tau} = \mathbf{N}_{\tau} / (\mathbf{N}_{j} + 2\mathbf{N}_{\ell} + \mathbf{N}_{\tau}) \tag{7}$$

$$\sigma_{t\bar{t}} \cdot \mathcal{L} = (N_j + 2N_\ell + N_\tau)^2 / 4N_\ell \tag{8}$$

Systematic Uncertainties

Relative uncertainties (%)

	$\sigma_{t \overline{t}}$	B_j	B_{ℓ}	B_{τ}
μ uncertainty	1.3	0.15	0.6	0.5
e uncertainty	1.1	0.15	0.5	0.5
Jet energy scale	-6.9/+4.9	-1.6/+1.4	-1.9/+2.7	-3.8/+4.3
Jet energy resolution	1.2	0.3	0.8	0.7
ISR/FSR	2.0	0.3	1.3	4.0
MC generator	3.6	0.6	0.8	1.9
PDF	2.9	0.3	0.1	0.3
b-tag	-1.3/+5.0	0.3	1.0	1.5
τ identification	0.5	0.15	1.1	3.5
au background correction	0.2	< 0.1	< 0.1	2.5
W+jets HF content	-4.1/+2.7	-1.0/+0.7	-1.1/+2.3	-1.3/+2.1
Total	-9.7/+9.2	-2.1/+1.8	-3.4/+4.2	-7.1/+7.6
Luminosity	1.8	< 0.1	< 0.1	< 0.1

Results

	N_{ej}	$N_{\mu j}$	N_{ee}	$N_{\mu\mu}$	$N_{e\mu}$	$N_{\ell au}$
	N	$ ilde{\ell}_j$		$N_{\ell\ell}$		
Measured	30.62 ± 0.26	30.57 ± 0.29	3.06 ± 0.12	3.19 ± 0.10	6.06 ± 0.12	6.39 ± 0.30
	61.19	± 0.40		12.31 ± 0.20		
SM	30.40 ± 1.2	30.40 ± 1.2	2.86 ± 0.11	2.86 ± 0.11	5.72 ± 0.20	6.39 ± 0.25
NNLO+NNLL	60.64	1 ± 2.4		10.95 ± 0.44		

The $N_{\ell x}$ are in units of events/pb⁻¹.

	Measured	SM	LEP
	(top quark)		(W)
$\sigma_{t \overline{t}}$	$178 \pm 3 \text{ (stat.)} \pm 16 \text{ (syst.)} \pm 3 \text{ (lumi.) pb}$	$177.3 \pm 9.0^{+4.6}_{-6.0} \text{ pb}$	
B_j	$66.5 \pm 0.4 \text{ (stat.)} \pm 1.3 \text{ (syst.)}$	67.51 ± 0.07	67.48 ± 0.28
B_e	$13.3 \pm 0.4 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$	12.72 ± 0.01	12.70 ± 0.20
B_{μ}	$13.4 \pm 0.3 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$	12.72 ± 0.01	12.60 ± 0.18
$B_{ au}$	$7.0 \pm 0.3 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$	7.05 ± 0.01	7.20 ± 0.13

Summary

- A single parameter fit to ℓ + jets, $\ell\ell'$ + jets and $\ell\tau_h$ + jets yields a cross-section of $\sigma_{t\bar{t}} = 178 \pm 17$ pb, in good agreement with SM prediction of $\sigma_{t\bar{t}} = 177.3 \pm 9.0^{+4.6}_{-6.0}$ pb using NNLO + NNLL.
- This analysis is the first measurement of top quark hadronic and semi leptonic branching ratios. Branching ratio measurements have smaller systematic uncertainties than cross-section measurements because of cancellation in ratios. The precision ranges from 2.3% for $t \rightarrow$ jets to 7.6% for $t \rightarrow \tau_h + X$.
- The measured branching ratio \mathcal{B}_{τ} will vary by more than the observed uncertainty if the $\mathcal{B}(\tilde{t} \to b \, \nu_{\tau} \, \tilde{\tau})$ times the production crosssection of the \tilde{t} -quark is > 3% of that of pair production of t-quark.