

### Measurement of the Michel parameters ( $\overline{\eta}$ , $\xi \kappa$ ) in the radiative leptonic decay of $\tau$

19th Sep

Nobuhiro Shimizu for Belle collaboration The University of Tokyo, Aihara/Yokoyama lab.

Tau 2016 @中國科學院高能物理研究所

## Introduction

Michel parameters

• Assuming QFT and Lorentz invariance, amplitude of  $\tau$ 's leptonic decay is expressed as a sum of S, V and T interactions with  $g_{ij}^N$ .



Mass  $m = 0.1134289267 \pm 0.000000$ Mass  $m = 105.6583715 \pm 0.0000035$ Mean life  $\tau = (2.1969811 \pm 0.00000)$  $\tau_{\mu^+}/\tau_{\mu^-} = 1.00002 \pm 0.00008$  $c\tau = 658.6384 \text{ m}$ Magnetic moment anomaly (g-2)/2 $(g_{\mu^+} - g_{\mu^-}) / g_{\text{average}} = (-0.11 \pm$ Electric dipole moment  $d = (-0.1 \pm$ Decay parameters [b]  $\rho = 0.74979 \pm 0.00026$  $\eta = 0.057 \pm 0.034$  $\delta = 0.75047 \pm 0.00034$  $\xi P_{\mu} = 1.0009^{+0.0016}_{-0.0007} [c]$  $\mu \delta / \rho = 1.0018 \stackrel{+0.0016}{-} \stackrel{[c]}{_{-0.0007}}$  $= 1.00 \pm 0.04$  $= 0.7 \pm 0.4$  $\alpha/A = (0 \pm 4) \times 10^{-3}$  $\alpha'/A = (-10 \pm 20) \times 10^{-3}$  $(4 \pm 6) \times 10^{-3}$  $\beta'/A = (2 \pm 7) \times 10^{-3}$ 

μ

 $\overline{n} = 0.02 \pm 0.08$ 

- bilinear combinations of  $g_{ij}^N$  are experimentally observable  $\rightarrow \rho$ ,  $\eta$ ,  $\xi \delta$ ,  $\xi$ ,  $\overline{\eta}$ ,  $\xi \kappa$
- Measurement of  $\rho$ ,  $\eta$ ,  $\xi\delta$ ,  $\xi$  are already ongoing in ordinary leptonic decay  $\tau \rightarrow l\nu\overline{\nu}$ .
- Of all MPs,  $\overline{\eta}$  and  $\xi \kappa$  are measured only by the radiative leptonic decay  $\tau \to l \nu \overline{\nu} \gamma$ 
  - Small branching ratio :  $\mathcal{B}_r(\tau \to e\overline{\nu}\nu\gamma) \sim 1.75\%$ ,  $\mathcal{B}_r(\tau \to \mu\overline{\nu}\nu\gamma) \sim 0.36\%$ ,  $E_{\gamma} > 10$  MeV (CLEO experiment)

| $\bar{\eta}$ | = | $\left g_{RL}^{V}\right ^{2} + \left g_{LR}^{V}\right ^{2} + \frac{1}{8}\left(\left g_{RL}^{S} + 2g_{RL}^{T}\right ^{2} + \left g_{LR}^{S} + 2g_{LR}^{T}\right ^{2}\right) + 2\left(\left g_{RL}^{T}\right ^{2} + \left g_{LR}^{T}\right ^{2}\right)$ |        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|--------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|
| $\xi \kappa$ | = | $\left g_{RL}^{V}\right ^{2} - \left g_{LR}^{V}\right ^{2} + \frac{1}{8}\left(\left g_{RL}^{S} + 2g_{RL}^{T}\right ^{2} - \left g_{LR}^{S} + 2g_{LR}^{T}\right ^{2}\right) + 2\left(\left g_{RL}^{T}\right ^{2} - \left g_{LR}^{T}\right ^{2}\right)$ | from y | λ,                                      |

#### The purpose of this study is to measure the values of $\overline{\eta}$ , $\xi \kappa$

| MP | ρ                 | η                 | ξδ               | $\xi_h$                             | $\overline{\eta}$ | ξκ |
|----|-------------------|-------------------|------------------|-------------------------------------|-------------------|----|
| SM | 0.75              | 0                 | 0.75             | 1                                   | 0                 | 0  |
| EX | $0.747 \pm 0.010$ | $0.013 \pm 0.020$ | $0.0746\pm0.021$ | $\textbf{0.995} \pm \textbf{0.007}$ | not measured yet  |    |

PDG Chin. Phys. C38, 090001 (2014).

 $J = \frac{1}{2}$ 

PDG summary table

# Physics motivation



**D**Observation of  $\gamma$  is equivalent to the measurement of polarization of the daughter lepton:

• coupling of  $\tau$  with the right handed daughter lepton  $\propto 1 - \xi'$ 

 $\bullet \xi' = -\xi - 4\xi \kappa + 8\xi \delta/3$ 

 $|g_{RL}^T| < 0.51$ 

 $|g_{LL}^T| \equiv 0$ 



Final piece to reveal the V - A structure!

 $\square \bar{\eta}$  gives a constraint on each term

 $\bar{\eta} = \left| g_{RL}^{V} \right|^{2} + \left| g_{LR}^{V} \right|^{2} + \frac{1}{8} \left( \left| g_{RL}^{S} + 2g_{RL}^{T} \right|^{2} + \left| g_{LR}^{S} + 2g_{LR}^{T} \right|^{2} \right) + 2 \left( \left| g_{RL}^{T} \right|^{2} + \left| g_{LR}^{T} \right|^{2} \right)$ 

| au | $\rightarrow$ | $e\nu_e\nu_\tau$ |
|----|---------------|------------------|
|    |               |                  |

| $ g_{RR}^{S}  < 0.70$<br>$ g_{LR}^{S}  < 0.99$    | $\begin{split}  g^V_{RR}  &< 0.17 \\  g^V_{LR}  &< 0.13 \end{split}$  | $\begin{aligned}  g_{RR}^T  &\equiv 0 \\  g_{LR}^T  &< 0.082 \end{aligned}$ |
|---------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $ g_{RL}^{S}  < 2.01$<br>$ g_{LL}^{S}  < 2.01$    | $\begin{split}  g_{RL}^V  &< 0.52 \\  g_{LL}^V  &< 1.005 \end{split}$ | $ g_{RL}^T  < 0.51$ $ g_{LL}^T  \equiv 0$                                   |
| $	au 	o \mu  u_\mu  u_	au$                        |                                                                       |                                                                             |
| $\left g_{\scriptscriptstyle RR}^S\right  < 0.72$ | $\left g_{\scriptscriptstyle RR}^V\right  < 0.18$                     | $ g_{RR}^T  \equiv 0$                                                       |
| $ g_{LR}^S  < 0.95$                               | $ g_{LR}^V  < 0.12$                                                   | $ g_{LR}^T  < 0.079$                                                        |

 $|g_{LL}^V| < 1.005$ 

$$\left|g_{RL}^{V}\right| < 0.52$$
  
 $\left|g_{RL}^{T}\right| < 0.51$   
 $\left|g_{RL}^{S}\right| < 2.01$   
 $\left|g_{LR}^{S}\right| < 0.95$ 

These values are not well known yet



PDG Tau decay parameters

 $|g_{LL}^S| < 2.01$ 

 $|g_{BL}^S| < 2.01 \quad |g_{BL}^V| < 0.52$ 

# Method



where  $e^{k}$  is direction of  $k = l, \gamma$  and  $n_{*}^{*}$  are known function, whose arguments are experimentally observable.

#### **D**Measurement of $\xi \kappa$ requires information of $\tau$ 's spin

#### $\Box$ We use correlation of the $\tau\tau$ pairs

• The cross section  $\frac{d\sigma}{d\Omega_{\sigma}}$  under the definite direction of spin  $(\overrightarrow{S^{-}}, \overrightarrow{S^{+}})$  is expressed as  $\frac{d\sigma}{d\Omega} = D_0 + D_{ij}S_i^-S_j^+$ :  $D_0$  spin-independent,  $D_{ij}$  spin-dependent coefficients.

PDF of signal

 $\Box$  We use  $\tau^+ \rightarrow \rho^+ (\rightarrow \pi^+ \pi^0) \bar{\nu}$  decay as a spin analyzer.

•  $d\Gamma(\tau^+ \to \rho^+ \nu) = \mathbf{A}^+ - \overrightarrow{\mathbf{B}^+} \cdot \overrightarrow{S^+}$ 

 $\mathbf{d}\boldsymbol{\sigma}(\boldsymbol{\tau}^{-}\boldsymbol{\tau}^{+}\rightarrow(\boldsymbol{l}^{-}\boldsymbol{\nu}\overline{\boldsymbol{\nu}}\boldsymbol{\gamma})(\boldsymbol{\rho}^{+}\overline{\boldsymbol{\nu}}))$ 

 $\propto D_0 A^- A^+ + D_{ij} B^-_i B^+_i$ 

 $\overline{n}$ 

# Method

 $\Phi$  is an angle along the arc



•  $S(\vec{x})$ : the visible PDF for observable  $\vec{x}$  ( $N_{\text{dim.}} = 12$ ) •  $S(\vec{x})$  has a form:  $\vec{x} = \{P_l, \Omega_l, P_\gamma, \Omega_\gamma, P_\rho, \Omega_\rho, m_{\pi\pi}^2, \tilde{\Omega}_\pi\}$ 

# Method

■Event selection & existence of BG → the visible PDF is formulated as sum of signal and BGs

$$\bullet P_{tot}(\vec{x}) = (1 - \sum \lambda_i) \cdot \frac{S(\vec{x})\varepsilon(\vec{x})}{\int d\vec{x}S(\vec{x})\varepsilon(\vec{x})} + \sum \lambda_i \frac{B_i(\vec{x})\varepsilon(\vec{x})}{\int d\vec{x}B_i(\vec{x})\varepsilon(\vec{x})}$$

*i*: index of background

 $S(\vec{x})$ : PDF of signal

 $B_i(\vec{x})$ : PDF of *i*-th background

 $\lambda_i$ : fraction of *i*-th background component

 $\varepsilon(\vec{x})$ : selection efficiency

 $\Box \varepsilon(\vec{x})$  does not depend on  $\overline{\eta}$ ,  $\xi \kappa$  and drops when  $\mathcal{L}$  is formulated:  $\leftarrow$  no necessity of the tabulation of  $\varepsilon(\vec{x})$ 

□Normalization is evaluated by MC

- $S(\vec{x}) = A_0(\vec{x}) + A_{\overline{\eta}}(\vec{x}) \cdot \overline{\eta} + A_{\xi\kappa}(\vec{x}) \cdot \xi\kappa$
- $\int d\vec{x} S(\vec{x}) \varepsilon(\vec{x}) = \int d\vec{x} \varepsilon(\vec{x}) A_0(\vec{x}) \frac{A_0 + A_{\bar{\eta}} \overline{\eta} + A_{\bar{\xi}\kappa} \xi\kappa}{A_0} = \frac{\sigma_0 \overline{\varepsilon}}{N_{\text{sel}}} \sum_k \frac{A_0 + A_{\bar{\eta}} \overline{\eta} + A_{\bar{\xi}\kappa} \xi\kappa}{A_0}$

$$= \frac{\sigma_0 \bar{\varepsilon}}{N_{sel}} \begin{bmatrix} 1 + N_{\overline{\eta}} \cdot \overline{\eta} + N_{\xi\kappa} \cdot \xi\kappa \end{bmatrix} \begin{bmatrix} \sigma_0: al \\ N_{\overline{\eta}}, N_{\overline{\eta}} \end{bmatrix}$$

 $\sigma_0$ : absolute normalization  $N_{\overline{\eta}}, N_{\xi\kappa}$ : relative normalization

 $\sigma_0 = \int \mathrm{d}\vec{x} A_0(\vec{x})$ 

# Event selection

- □We use all data taken with  $\Upsilon(4S)$  energy: 703 fb<sup>-1</sup> □Preselection of  $\tau\tau$ 
  - 1. exactly two oppositely charged tracks
    - dr < 0.5 cm, |dz| < 2.5 cm, one  $P_t$  > 0.5 GeV/c, the other  $P_t$  > 0.1 GeV/c
  - 2. ECL cluster energy < 9 GeV
  - 3. opening angle of two tracks  $20^{\circ} < \psi < 175^{\circ}$
  - 4.  $N_{\gamma} < 5$  for  $E_{\gamma} > 80$  MeV
  - 5.  $1 \text{ GeV}/c^2 < M_{\text{missing}} < 7 \text{ GeV}/c^2$
  - 6.  $30^{\circ} < \theta_{\text{missing}} < 175^{\circ}$

In particular, the last two requirements well discriminate other physics processes like

- Bhabha  $e^+e^- \rightarrow e^+e^-$
- $e^+e^- \rightarrow \mu^+\mu^-$
- Two photon processes



## Event selection

□Final selection

•Electron:  $\frac{P_e}{P_e + P_x} > 0.9$ , Muon:  $\frac{P_{\mu}}{P_{\mu} + P_{\mu} + P_K} > 0.9$ •Pion:  $\frac{P_{\pi}}{P_{\pi} + P_{\nu}} > 0.4$ 



- • $\pi^0$  candidate: 115 MeV/ $c^2 < m_{\gamma\gamma} < 150$  MeV/ $c^2$  for  $E_{\gamma} > 80$  MeV
- • $\rho$  candidate: 0.5 GeV/ $c^2 < m_{\pi\pi} < 1.5$  GeV/ $c^2$
- $\bullet \theta_{\rho(l\gamma)} > 90^{\circ}$
- $\cos \theta_{e\gamma} > 0.9848$ ,  $\cos \theta_{\mu\gamma} > 0.9700$
- Energy of photons which are not associated with any tracks  $E_{\text{extra}\gamma} < 0.2 \text{ GeV for } \tau \rightarrow e \nu \bar{\nu} \gamma$  and

 $E_{\text{extra}\gamma} < 0.3 \text{ GeV for } \tau \rightarrow \mu \nu \bar{\nu} \gamma$ 

## $\tau \rightarrow e \nu \bar{\nu} \gamma$ candidates



 $\varepsilon^{\text{EX}} = (4.44 \pm 0.19)\%$ 

 $N_{sel}(\tau^- \to e^- \nu \bar{\nu} \gamma) = 420005$  $N_{sel}(\tau^+ \to e^+ \nu \bar{\nu} \gamma) = 412639$ 

## $\tau \rightarrow \mu \nu \bar{\nu} \gamma$ candidates

 $\tau \rightarrow \mu \ \nu \ \overline{\nu} \ \gamma$ 

 $\tau \rightarrow \mu \ \nu \ \overline{\nu} \ \gamma$ 



 $\varepsilon^{\text{EX}} = (3.40 \pm 0.15)\%$ 

$$\begin{split} N_{sel}(\tau^- \to \mu^- \nu \bar{\nu} \gamma) &= 35984 \\ N_{sel}(\tau^+ \to \mu^+ \nu \bar{\nu} \gamma) &= 36784 \end{split}$$

Analysis of the experimental data  $\Box P_{\text{tot}}(\vec{x}) = (1 - \sum \lambda_i) \cdot \frac{S(\vec{x})\varepsilon^{\text{MC}}(\vec{x})}{\int d\vec{x}S(\vec{x})\varepsilon^{\text{MC}}} + \sum \lambda_i \frac{B_i(\vec{x})\varepsilon^{\text{MC}}}{\int d\vec{x}B_i(\vec{x})\varepsilon^{\text{MC}}}$   $\varepsilon^{\text{EX}}(\vec{x}) \to \varepsilon^{\text{MC}}(\vec{x}) \cdot R(\vec{x}) \text{ with } R(\vec{x}) = \frac{\varepsilon^{\text{EX}}(\vec{x})}{\varepsilon^{\text{MC}}(\vec{x})}$ 

$$\Box P_{tot}(\vec{x}) = (1 - \sum \lambda_i) \cdot \frac{S(\vec{x})\varepsilon^{\mathrm{MC}}(\vec{x})R(\vec{x})}{\int \mathrm{d}\vec{x}S(\vec{x})\varepsilon^{\mathrm{MC}}R(\vec{x})} + \sum \lambda_i \frac{B_i(\vec{x})\varepsilon^{\mathrm{MC}}R(\vec{x})}{\int \mathrm{d}\vec{x}B_i(\vec{x})\varepsilon^{\mathrm{MC}}R(\vec{x})}$$

- **The difference of the efficiencies b.t.w MC and EX is taken account by the correction factors**  $R(\vec{x})$ .
- $\Box R(\vec{x}) = R_{trg} \qquad \dots \text{ trigger efficiency correction} \\ \times R_l(P_l, \cos\theta_l) \qquad \dots \text{ lepton efficiency correction} \\ \times R_\gamma(P_\gamma, \cos\theta_\gamma) \qquad \dots \text{ photon efficiency correction} \\ \times R_\pi(P_\pi, \cos\theta_\pi) \qquad \dots \text{ pion efficiency correction} \\ \times R_{\pi^0}(P_{\pi^0}, \cos\theta_{\pi^0}) \qquad \dots \text{ neutral pion efficiency correction}$

# Analysis of the experimental data

### $\square R_l(P_l, \cos\theta_l) \equiv R_{\rm rec} \cdot R_{LID}$

- •reconstruction efficiency correction is taken using  $\tau \rightarrow \pi \pi \pi \nu$
- •lepton ID efficiency correction is estimated from two photon events:  $e^+e^- \rightarrow e^+e^-l^+l^-$
- $\square R_{\pi}(P_{\pi}, \cos\theta_{\pi}) \equiv R_{\rm rec} \cdot R_{\pi ID}$ 
  - •pion ID efficiency correction is estimated from  $D^{*+} \rightarrow D^0 \pi^+$  decay

## $\square R_{\gamma}(P_{\gamma}, \cos\theta_{\gamma}), R_{\pi^{0}}(P_{\pi^{0}}, \cos\theta_{\pi^{0}})$

•photon and  $\pi^0$  efficiency corrections are taken from a comparison between  $\tau \to \pi \pi^0 \nu$  and  $\tau \to \pi \nu$  decays

#### $\Box R_{\rm trg}$

•trigger reconstruction efficiency correction is extracted based on the independent neutral and charged signal information

## Evaluation of systematic uncertainties

 $au 
ightarrow e 
u \overline{\nu} \gamma$ 

 $au o \mu \nu \overline{\nu} \gamma$ 

| Item                              | $\sigma^e_{ar\eta}$ | $\sigma^e_{\xi\kappa}$ | $\sigma^{\mu}_{ar{\eta}}$ | $\sigma^{\mu}_{\xi\kappa}$ |
|-----------------------------------|---------------------|------------------------|---------------------------|----------------------------|
| Relative normalizations           | 4.2                 | 0.94                   | 0.15                      | 0.04                       |
| Absolute normalizations           | 1.0                 | 0.01                   | 0.03                      | 0.001                      |
| Description of the background PDF | 2.5                 | 0.24                   | 0.67                      | 0.22                       |
| Input of branching ratio          | 3.8                 | 0.05                   | 0.25                      | 0.01                       |
| Effect of cluster merge in ECL    | 2.2                 | 0.46                   | 0.02                      | 0.06                       |
| Detector resolution               | 0.74                | 0.20                   | 0.22                      | 0.02                       |
| Correction factor $R$             | 1.9                 | 0.14                   | 0.04                      | 0.04                       |
| Beam energy spread                | negligible          | negligible             | negligible                | negligible                 |
| Total                             | 7.0                 | 1.1                    | 0.76                      | 0.24                       |

# Evaluation of systematic uncertainties

- □Input of branching ratio
  - Uncertainties from existing Br values
  - •the error is taken from the PDG values
  - the selected fractions  $\delta \lambda_i / \lambda_i$  are varied and movement of fitted MPs are evaluated

#### Interpretation Interpretation

- •The uncertainty comes from finite number of MC events
- •The errors from the normalizations are estimated based on a central limiting theorem:  $\delta N^2 = Var(A/A_0)/N_{MC}$

#### **D**Correction factor tables $R(\vec{x})$

•The effect of the error of  $R(\delta R)$  is estimated by varying the R values and observing the shift of MPs.

## Evaluation of systematic uncertainties

- Effect of the detector resolution is estimated by turning on/off the unfolding with the resolution function.
- The effect of the beam energy spread is evaluated by varying the  $\sqrt{s}$  values based on the uncertainties when we calculate PDFs:  $S(\vec{x})$  and  $B(\vec{x})$ .

## Result

- **D**ue to the poor sensitivity of  $\tau \rightarrow e \nu \bar{\nu} \gamma$  events,  $\bar{\eta}$  is extracted from only  $\tau \rightarrow \mu \nu \bar{\nu} \gamma$  events
- $\Box(\xi\kappa)^e$  is fitted by fixing  $\bar{\eta} = \bar{\eta}_{SM} = 0$ .
- $\Box \bar{\eta}^{\mu}$  and  $(\xi \kappa)^{\mu}$  are fitted simultaneously

$$(\xi\kappa)^{(e)} = -0.5 \pm 0.8 \pm 1.1,$$
  
 $\bar{\eta}^{\mu} = -2.0 \pm 1.5 \pm 0.8,$   
 $(\xi\kappa)^{(\mu)} = 0.8 \pm 0.5 \pm 0.2,$ 

The first error is statistical and the second is systematic.

 $\xi \kappa$  are naively combined:

 $\xi\kappa = 0.6 \pm 0.5$ 

Fit contour for  $\tau \rightarrow \mu \nu \bar{\nu} \gamma$   $\xi \kappa^2_{1.5}$  (-2.0, 0.8) 0.5 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5  $1\sigma$  to  $3\sigma$  statistical deviations from inner to outer side -26 -5 -4 -3 -2 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -1 -1 -1 -2 -1 -2 -1 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -2 -1 -2 -1 -2 -2 -1 -2 -1 -2 -2 -1 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

**D**Correlation between  $\bar{\eta}^{\mu}$  and  $(\xi \kappa)^{\mu}$  is small (~7%)

η

# Conclusion

- **D**We present the first measurement of the Michel parameter  $\bar{\eta}$  and  $\xi \kappa$  in radiative leptonic decay  $\tau \rightarrow l \nu \bar{\nu} \gamma$  using all 703 fb<sup>-1</sup> available Belle data.
- **D**Both  $\bar{\eta}$  and  $\xi \kappa$  are important to constrain general couplings of  $\tau$  into leptons
- The  $\bar{\eta}$  is obtained only from  $\tau \rightarrow \mu v \bar{v} \gamma$  mode due to the poor sensitivity of electron mode while the  $\xi \kappa$  is obtained using both modes
- The results:  $(\xi \kappa)^{(e)} = -0.5 \pm 0.8 \pm 1.1,$  $\bar{\eta}^{\mu} = -2.0 \pm 1.5 \pm 0.8,$  $(\xi \kappa)^{(\mu)} = 0.8 \pm 0.5 \pm 0.2,$
- □The statistical uncertainty is larger than the systematic. The Belle II experiment (×50 stat.) allows us to do further precision tests.
- □The conference paper (BELLE-CONF#1610) will be submitted on arxiv.

## Thank you!



OS 6D

19

## Belle experiment

#### □KEKB accelerator

- ee collider located at Tsukuba, Ibaraki, Japan
- Energy asymmetry:  $(E_{e^-}, E_{e^+}) = (8.0, 3.5) \text{ GeV}, \sqrt{s} = E_{\Upsilon(4S)} = 10.58 \text{ GeV}$
- *B*-factory: collects *ee* collision data for 12 years.
- Total integrated luminosity:  $1ab^{-1}$ :  $\Upsilon(4S) \rightarrow o(10^9) BB$ -pairs,  $\tau\tau$ -pairs

#### □Belle detector

- 1.5 T magnetic field
- Vertexing
  - double sided silicon strip detector
- Momentum tracking
  - drift chamber (He +  $C_2H_5$ )
- Calorimeter
  - $\gamma$ : CsI(TI): 16X<sub>0</sub>
- Particle Identifications
  - TOF (time of flight) counter
  - aerogel Cherenkov counter
  - $\frac{dE}{dx}$  using drift chamber
  - $K_L$ ,  $\mu$ : RPC/Fe sandwich



