Analyses of $\tau^- \rightarrow K_S \pi^- \nu_\tau$ and $\tau^- \rightarrow K^- \eta^{(\prime)} \nu_\tau$ decays

Sergi Gonzàlez-Solís

Institut de Física d'Altes Energies Universitat Autònoma de Barcelona

in collaboration with Rafel Escribano, Matthias Jamin and Pablo Roig, JHEP 1310 (2013) 039; JHEP 1409 (2014) 042;

14th International Workshop on Tau lepton physics

Beijing, 19th september 2016

Outline

Introduction

- Kπ, Kη and Kη' Form Factors
 Vector Form Factor
 - Scalar Form Factor

8 Experimental data analysis

- $\tau^- \to K^- \eta^{(\prime)} \nu_{\tau}$
- Combined analysis of $\tau^- \to K_S \pi^- \nu_\tau$ and $\tau^- \to K^- \eta \nu_\tau$

Conclusions

Decay Spectrum of the τ lepton

$\tau^- \rightarrow \nu_{\tau}$ +strange

Branching fraction	HFAG Winter 2012 fit
$\Gamma_{10} = K^- \nu_\tau$	$(0.6955\pm0.0096)\cdot10^{-2}$
$\Gamma_{16}=K^-\pi^0 u_ au$	$(0.4322 \pm 0.0149) \cdot 10^{-2}$
$\Gamma_{23} = K^- 2 \pi^0 \nu_{\tau} \ ({ m ex.} \ K^0)$	$(0.0630 \pm 0.0222) \cdot 10^{-2}$
$\Gamma_{28} = K^{-} 3 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \eta)$	$(0.0419 \pm 0.0218) \cdot 10^{-2}$
$\Gamma_{35} = \pi^- \overline{K}^0 \nu_{\tau}$	$(0.8206 \pm 0.0182) \cdot 10^{-2}$
$\Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau$	$(0.3649 \pm 0.0108) \cdot 10^{-2}$
$\Gamma_{44} = \pi^- \overline{K}{}^0 \pi^0 \pi^0 \nu_\tau$	$(0.0269 \pm 0.0230) \cdot 10^{-2}$
$\Gamma_{53}=\overline{K}^0h^-h^-h^+ u_ au$	$(0.0222\pm 0.0202)\cdot 10^{-2}$
$\Gamma_{128} = K^- \eta \nu_{\tau}$	$(0.0153 \pm 0.0008) \cdot 10^{-2}$
$\Gamma_{130}=K^-\pi^0\eta u_ au$	$(0.0048 \pm 0.0012) \cdot 10^{-2}$
$\Gamma_{132} = \pi^- \overline{K}^0 \eta \nu_\tau$	$(0.0094 \pm 0.0015) \cdot 10^{-2}$
$\Gamma_{151} = K^- \omega u_{ au}$	$(0.0410 \pm 0.0092) \cdot 10^{-2}$
$\Gamma_{801} = K^- \phi \nu_\tau (\phi \to KK)$	$(0.0037 \pm 0.0014) \cdot 10^{-2}$
$\Gamma_{802} = K^- \pi^- \pi^+ \nu_{ au} \ ({ m ex.} \ K^0, \omega)$	$(0.2923 \pm 0.0068) \cdot 10^{-2}$
$\Gamma_{803}=K^-\pi^-\pi^+\pi^0\nu_\tau~({\rm ex.}~K^0,\omega,\eta)$	$(0.0411 \pm 0.0143) \cdot 10^{-2}$
$\Gamma_{110} = X_s^- \nu_\tau$	$(2.8746 \pm 0.0498) \cdot 10^{-2}$

Mode	BaBar - Belle	
	Normalized Difference $(\#\sigma)$	
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$ (ex. K^{0})	+1.4	
$K^-\pi^+\pi^-\nu_\tau$ (ex. $K^0)$	-2.9	
$K^-K^+\pi^-\nu_{ au}$	-2.9	
$K^-K^+K^-\nu_{\tau}$	-5.4	
$\eta K^- \nu_{\tau}$	-1.0	
$\phi K^- \nu_{\tau}$	-1.3	
$\pi^{-}K_{S}^{0}K_{S}^{0}\nu_{\tau}$	-0.2	
$\pi^- K_S^0 K_S^0 \pi^0 \nu_\tau$	-1.0	

• To predict
$$\tau^- \rightarrow K^- \eta' \nu_{\tau}^{-1}$$

• Combined analysis² of $\tau^- \rightarrow K^- \eta \nu_{\tau}$ and $\tau^- \rightarrow K_S \pi^- \nu_{\tau}^3$ to constraint the K^* (1410) resonance parameters (mass and width)

• To study the second-class current

¹Escribano, Gonzàlez-Solís, Roig JHEP 1310 (2013) 039 $au o \pi^- \eta^{(\prime)}
u_{ au} \, {
m decays}^4$

²Escribano, Gonzàlez-Solís, Jamin, Roig JHEP 1409 (2014) 042

J(Jamin, Pich, Portolés PLB 640 (2006), Boito, Escribano, Jamin JHEP 1009 (2010) 031, Moussallam EPJ C53 (2008))
 Escribano, Gonzàlez-Solís, Roig hep-ph/1601.03989

S.Gonzàlez-Solís

TAU'16

Introduction

$\tau^- \rightarrow K^- \eta^{(\prime)} \nu_{\tau}$: Amplitude and decay width

 $\tau \xrightarrow{\nu_{\tau}} K^{-} = \sqrt[W^{-}]{K^{-}} \sqrt[W^{-}]{$

$$\langle K^{-} \eta^{(\prime)} | \bar{s} \gamma^{\mu} u | 0 \rangle = \left[(p_{\eta^{(\prime)}} - p_{\kappa})^{\mu} + \frac{\Delta_{K^{-} \eta^{(\prime)}}}{s} q^{\mu} \right] C_{K\eta^{(\prime)}}^{V} F_{+}^{K^{-} \eta^{(\prime)}}(s) + \frac{\Delta_{K\pi}}{s} q^{\mu} C_{K\eta^{(\prime)}}^{S} F_{0}^{K^{-} \eta^{(\prime)}}(s) + \frac{\Delta_{K$$

$$\frac{d\Gamma\left(\tau^{-} \to K^{-}\eta^{(\prime)}\nu_{\tau}\right)}{d\sqrt{s}} = \frac{G_{F}^{2}M_{\tau}^{3}}{32\pi^{3}s}S_{EW} \underbrace{|V_{us}}_{suppression} F_{+}^{K^{-}\eta^{(\prime)}}(0)|^{2}\left(1 - \frac{s}{M_{\tau}^{2}}\right)^{2} \\ \left\{\left(1 + \frac{2s}{M_{\tau}^{2}}\right)q_{K\eta^{(\prime)}}^{3}(s)|\widetilde{F}_{+}^{K^{-}\eta^{(\prime)}}(s)|^{2} + \frac{3\Delta_{K\eta^{(\prime)}}^{2}}{4s}q_{K\eta^{(\prime)}}(s)|\widetilde{F}_{0}^{K^{-}\eta^{(\prime)}}(s)|^{2}\right\}$$

$$F_{+}^{K^{-}\eta}(0) = F_{+}^{K^{-}\pi}(0)\cos\theta_{P}, \ F_{+}^{K^{-}\eta'}(0) = F_{+}^{K^{-}\pi}(0)\sin\theta_{P},$$

S.Gonzàlez-Solís

 $\theta_P = (-13.3 \pm 0.5)^{\circ}$ $V_{US} \cdot F_+^{K^-\pi}(0) = 0.2163(5), K_{\ell 3}$ 19 september 2016 4/26

Vector Form Factor: Resonance Chiral Theory

$$F_{+}^{K^{-}\eta}(s) = \cos\theta \left(1 + \frac{F_{V}G_{V}}{F_{\pi}^{2}}\frac{s}{M_{K^{\star}}^{2} - s} + \frac{F_{V}'G_{V}'}{F_{\pi}^{2}}\frac{s}{M_{K^{\star\prime}}^{2} - s}\right) = \cos\theta F_{+}^{K^{-}\pi^{0}}(s)$$

• Requirement: $F_{+}^{K\pi}(s)$ vanish for $s \to \infty \Rightarrow F_V G_V + F'_V G'_V = F_{\pi}^2$

$$F_{+}^{K\pi}(s) = \frac{M_{K^{\star}}^{2} + \gamma s}{M_{K^{\star}}^{2} - s} - \frac{\gamma s}{M_{K^{\star\prime}}^{2} - s} \quad ; \quad \gamma = -\frac{F_{V}^{\prime}G_{V}}{F_{\pi}^{2}} = \frac{F_{V}G_{V}}{F_{\pi}^{2}} - 1$$

Breit-Wigner parameterization:

Vector Form Factor: Dispersive representation

• Three subtractions: helps the convergence of the form factor and suppresses the he high-energy region of the integral

$$F_{+}^{K\pi}(s) = P(s) \exp\left[\alpha_{1} \frac{s}{m_{\pi^{-}}^{2}} + \frac{1}{2} \alpha_{2} \frac{s^{2}}{m_{\pi^{-}}^{4}} + \frac{s^{3}}{\pi} \int_{s_{K\pi}}^{s_{cut}} ds' \frac{\delta^{K\pi}(s')}{(s')^{3}(s'-s-i0)}\right]$$

• $\alpha_{1} = \lambda'_{+}$ and $\alpha_{1}^{2} + \alpha_{2} = \lambda''_{+}$ low energies parameters
 $F_{+}^{K\pi}(t) = 1 + \frac{\lambda'_{+}}{M_{\pi^{-}}^{2}}t + \frac{1}{2}\frac{\lambda''_{+}}{M_{\pi^{-}}^{4}}t^{2}$

• scut: cut-off to check stability

•
$$\delta^{K\pi}(s) = \tan^{-1}\left[\frac{\operatorname{Im}F_{+}^{K\pi}(s)}{\operatorname{Re}F_{+}^{K\pi}(s)}\right]; \widetilde{F}_{+}^{K\pi}(s) = \frac{m_{K^{\star}}^{2} - \kappa_{K^{\star}}\widetilde{H}_{K\pi}(0) + \gamma s}{D(m_{K^{\star}}, \gamma_{K^{\star}})} - \frac{\gamma s}{D(m_{K^{\star\prime}}, \gamma_{K^{\star\prime}})}$$

$$D(m_n,\gamma_n) \equiv m_n^2 - s - \kappa_n Re[H_{\kappa\pi}(s)] - im_n \Gamma_n(s)$$

Scalar Form Factor

Central unitarity relation

$$\operatorname{Im} F_i(s) = \sigma_j(s) F^j(s) T^{i \to j}(s)^*$$

• Coupled channels dispersion relations (Jamin, Oller, Pich Nucl.Phys.B622 (2002))

$$\begin{aligned} F_{0}^{K\pi}(s) &= \frac{1}{\pi} \int_{s_{K\pi}}^{\infty} ds' \frac{\sigma_{K\pi}(s') F_{0}^{K\pi}(s') T_{K\pi \to K\pi}^{*}(s')}{s' - s - i\varepsilon} + \frac{1}{\pi} \int_{s_{K\eta}}^{\infty} ds' \frac{\sigma_{K\eta}(s') F_{0}^{K\eta}(s') T_{K\eta \to K\pi}^{*}(s')}{s' - s - i\varepsilon} \\ F_{0}^{K\eta}(s) &= \frac{1}{\pi} \int_{s_{K\pi}}^{\infty} ds' \frac{\sigma_{K\pi}(s') F_{0}^{K\pi}(s') T_{K\pi \to K\eta}^{*}(s')}{s' - s - i\varepsilon} + \frac{1}{\pi} \int_{s_{K\eta}}^{\infty} ds' \frac{\sigma_{K\eta}(s') F_{0}^{K\eta}(s') T_{K\eta \to K\eta}^{*}(s')}{s' - s - i\varepsilon} \end{aligned}$$

Fits to the $\tau^- \rightarrow K^- \eta \nu_{\tau}$ BaBar and Belle data

Decay dominated by the vector Form Factor (~ 96% of the BR)

Predictions for the $\tau^- \rightarrow K^- \eta' \nu_{\tau}$ decay

Decay dominated by the scalar Form Factor (~ 90% of the BR)

Combined analysis of $\tau^- \rightarrow K_S \pi^- \nu_\tau$ and $\tau^- \rightarrow K^- \eta \nu_\tau$

• Reason for a simultaneous fit to $\tau^- \rightarrow K_S \pi^- \nu_\tau$ and $\tau^- \rightarrow K^- \eta \nu_\tau$ Belle data

Combined analysis of $\tau^- \rightarrow K_S \pi^- \nu_\tau$ and $\tau^- \rightarrow K^- \eta \nu_\tau$

 \circ Theorists: To provide theoretical models to be fitted by experimentalists

• We relate the experimental data with the differential decay distribution from theory through

$$\frac{dN_{events}}{d\sqrt{s}} = N_{events} \Delta_{bin} \frac{1}{\Gamma_{\tau} BR(\tau \to P^- P^0 \nu_{\tau})} \frac{d\Gamma(\tau^- \to P^- P^0 \nu_{\tau})}{d\sqrt{s}}$$

$$\frac{d\Gamma\left(\tau^{-} \to P^{-}P^{0}\nu_{\tau}\right)}{d\sqrt{s}} = \frac{G_{F}^{2}M_{\tau}^{3}}{32\pi^{3}s}S_{EW}|V_{us}F_{+}^{P^{-}P^{0}}(0)|^{2}\left(1 - \frac{s}{M_{\tau}^{2}}\right)^{2} \times \left\{\left(1 + \frac{2s}{M_{\tau}^{2}}\right)q_{P^{-}P^{0}}^{3}(s)|\widetilde{F}_{+}^{P^{-}P^{0}}(s)|^{2} + \frac{3\Delta_{P^{-}P^{0}}^{2}}{4s}q_{P^{-}P^{0}}(s)|\widetilde{F}_{0}^{P^{-}P^{0}}(s)|^{2}\right\}$$

- $P^-P^0 = K_S \pi^- \rightarrow BR_{exp}^{Belle} = 0.404\%$ $N_{events} = 53113$ $\Delta_{bin} = 0.0115$ GeV/bin • $P^-P^0 = K^-\eta \rightarrow BR_{exp}^{Belle} = 1.58 \cdot 10^{-4}$ $N_{events} = 1271$ $\Delta_{bin} = 0.025$ GeV/bin • $\Gamma_{\tau} = 2.265 \cdot 10^{-12}$
- Function minimised in our fit

$$\chi^2 = \sum_{bin} \left(\frac{\mathcal{N}^{th} - \mathcal{N}^{exp}}{\sigma_{\mathcal{N}^{exp}}} \right)^2 + \sum_{K_S \pi^-, K^- \eta} \left(\frac{\bar{B}^{th} - \bar{B}^{exp}}{\sigma_{\bar{B}^{exp}}} \right)^2$$

Different choices regarding linear slopes and resonance mixing parameters ۲ $(s_{cut} = 4 \text{ GeV}^2)$

Fitted value	Reference Fit	Fit A	Fit B	Fit C
$\bar{B}_{K\pi}(\%)$	0.404 ± 0.012	0.400 ± 0.012	0.404 ± 0.012	0.397 ± 0.012
$(B_{\kappa_{\pi}}^{th})(\%)$	(0.402)	(0.394)	(0.400)	(0.394)
<i>M</i> _K ∗	892.03 ± 0.19	892.04 ± 0.19	892.03 ± 0.19	892.07 ± 0.19
Γ _{K*}	46.18 ± 0.42	46.11 ± 0.42	46.15 ± 0.42	46.13 ± 0.42
M _{K*'}	1305^{+15}_{-18}	1308 ⁺¹⁶	1305^{+15}_{-18}	1310^{+14}_{-17}
Γ _{K*′}	168 ⁺⁵²	212 ⁺⁶⁶ -54	174^{+58}_{-47}	184 ⁺⁵⁶
$\gamma_{K\pi} \times 10^2$	$= \gamma_{K\eta}$	$-3.6^{+1.1}_{-1.5}$	$-3.3^{+1.0}_{-1.3}$	$= \gamma_{K\eta}$
$\lambda'_{K\pi} \times 10^3$	23.9 ± 0.7	23.6 ± 0.7	23.8 ± 0.7	23.6 ± 0.7
$\lambda_{K\pi}^{\prime\prime} \times 10^4$	11.8 ± 0.2	11.7 ± 0.2	11.7 ± 0.2	11.6 ± 0.2
$\bar{B}_{K\eta} \times 10^4$	1.58 ± 0.10	1.62 ± 0.10	1.57 ± 0.10	1.66 ± 0.09
$(B_{Kn}^{th'}) \times 10^4$	(1.45)	(1.51)	(1.44)	(1.58)
$\gamma_{K\eta} \times 10^2$	$-3.4^{+1.0}_{-1.3}$	$-5.4^{+1.8}_{-2.6}$	$-3.9^{+1.4}_{-2.1}$	$-3.7^{+1.0}_{-1.4}$
$\lambda'_{K\eta} \times 10^3$	20.9 ± 1.5	$=\lambda'_{K\pi}$	21.2 ± 1.7	$=\lambda'_{K\pi}$
$\lambda_{Kn}'' \times 10^4$	11.1 ± 0.4	11.7 ± 0.2	11.1 ± 0.4	11.8 ± 0.2
$\chi^{2'}$ /n.d.f.	108.1/105 ~ 1.03	109.9/105 ~ 1.05	107.8/104 ~ 1.04	111.9/106 ~ 1.06

Reference fit results obtained for different values of scut ۲

Parameter	3.24	4	9	∞
$\bar{B}_{\kappa\pi}(\%)$	0.402 ± 0.013	0.404 ± 0.012	0.405 ± 0.012	0.405 ± 0.012
$(B_{\kappa\pi}^{th})(\%)$	(0.399)	(0.402)	(0.403)	(0.403)
M _{K*}	892.01 ± 0.19	892.03 ± 0.19	892.05 ± 0.19	892.05 ± 0.19
Γ _{<i>K</i>*}	46.04 ± 0.43	46.18 ± 0.42	46.27 ± 0.42	46.27 ± 0.41
M _{K*'}	1301 ⁺¹⁷	1305 ⁺¹⁵	1306 ⁺¹⁴	1306 ⁺¹⁴
Γ _{<i>K</i>*′}	207^{+73}_{-58}	168 ⁺⁵²	155 ⁺⁴⁸ -41	155 ⁺⁴⁷
$\gamma_{K\pi}$	$= \gamma_{K\eta}$	$= \gamma_{K\eta}$	= $\gamma_{K\eta}$	$= \gamma_{K\eta}$
$\lambda'_{K\pi} \times 10^3$	23.3 ± 0.8	23.9 ± 0.7	24.3 ± 0.7	24.3 ± 0.7
$\lambda_{K\pi}^{\prime\prime} \times 10^4$	11.8 ± 0.2	11.8 ± 0.2	11.7 ± 0.2	11.7 ± 0.2
$\bar{B}_{K\eta} \times 10^4$	1.57 ± 0.10	1.58 ± 0.10	1.58 ± 0.10	1.58 ± 0.10
$(B_{K\eta}^{th'}) \times 10^4$	(1.43)	(1.45)	(1.46)	(1.46)
$\gamma_{K\eta} imes 10^2$	$-4.0^{+1.3}_{-1.9}$	$-3.4^{+1.0}_{-1.3}$	$-3.2^{+0.9}_{-1.1}$	$-3.2^{+0.9}_{-1.1}$
$\lambda'_{Kn} \times 10^3$	18.6 ± 1.7	20.9 ± 1.5	22.1 ± 1.4	22.1 ± 1.4
$\lambda_{K\eta}^{\prime\prime} \times 10^4$	10.8 ± 0.3	11.1 ± 0.4	11.2 ± 0.4	11.2 ± 0.4
$\chi^{2'}$ /n.d.f.	105.8/105	108.1/105	111.0/105	111.1/105

Central results including the largest variation of scut

$$\begin{array}{c} M_{K^{*-}(892)} = 892.03 \pm 0.19 \text{ MeV} \\ \Gamma_{K^{*-}(892)} = 46.18 \pm 0.44 \text{ MeV} \end{array} \right\} \text{no gain} \\ M_{K^{*-}(1410)} = 1305^{+16}_{-18} \text{ MeV} \\ \Gamma_{K^{*-}(1410)} = 168^{+65}_{-59} \text{ MeV} \end{array} \right\} \text{improvement} \\ \overline{\Gamma}_{K^{*-}(1410)} = 168^{+65}_{-59} \text{ MeV} \end{array} \right\} \text{improvement} \\ \overline{\Gamma}_{K^{*-}(1410)} = 168^{+65}_{-59} \text{ MeV} \end{array} \right\} \text{improvement} \\ \overline{\Gamma}_{K^{*-}(1410)} = 168^{+65}_{-59} \text{ MeV} \end{aligned} \\ \overline{\Gamma}_{K^{*-}(1410)} = 168^{+65}_{-14} \cdot 10^{-2} \\ \overline{B}_{K\pi} = (0.0404 \pm 0.012)\% \\ \overline{B}_{K\eta} = (1.58 \pm 0.10) \cdot 10^{-4} \\ \chi^{2}/d.o.f = 108.1/105 = 1.03 \end{aligned} \\ \begin{array}{c} \overline{\Gamma}_{K^{*}(1410)} [\text{MeV}] \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \overline{\Gamma}_{K^{*}(1410)} [\text{MeV}] \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \overline{\Gamma}_{K^{*}(1410)} [\text{MeV}] \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \overline{\Gamma}_{K^{*}(1410)} [\text{MeV}] \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \overline{\Gamma}_{K^{*}(1410)} [\text{MeV}] \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \overline{\Gamma}_{K^{*}(1410)} [\text{MeV}] \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \overline{\Gamma}_{K^{*}(1410)} [\text{MeV}] \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \overline{\Gamma}_{K^{*}(1410)} [\text{MeV}] \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \overline{\Gamma}_{K^{*}(1410)} [\text{MeV}] \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \overline{\Gamma}_{K^{*}(1410)} [\text{MeV}] \\ \hline \end{array} \\ \end{array}$$

Central results including the largest variation of scut

Prospects of improvement

- Call 1: to release $\tau^- \rightarrow K^- \eta \nu_{\tau}$ acceptance corrected
- Call 2: to provide $\tau^- \rightarrow K^- \pi^0 \nu_\tau$ data (acceptance corrected)

Phys.Rev. D76 (2007) 051104

Determination of resonance parameters

To look for a zero of the propagator in the complex plane

$$\begin{split} M_{K^*}^2 - s_{\text{pole}} &- \frac{3}{2} M_{K^*}^2 \operatorname{Re} \widetilde{H}_{K\pi}(s_{\text{pole}}) - i M_{K^*} \Gamma_{K^*}(s_{\text{pole}}) = 0; \ s_{\text{pole}} = (M_{\text{phys}} - \frac{i}{2} \Gamma_{\text{phys}})^2 \\ M_{K_{1410}^*} &= 1378(24) \operatorname{MeV}, \ \Gamma_{K_{1410}^*} = 197(70) \operatorname{MeV} \Rightarrow \operatorname{Model} \\ M_{K_{1410}^*} &= 1305_{-18}^{+16} \operatorname{MeV}, \ \Gamma_{K_{1410}^*} = 168_{-59}^{+65} \operatorname{MeV} \Rightarrow \operatorname{Pole} \end{split}$$

$I(J^P) = \frac{1}{2}(1^-)$

K*(1410) MASS

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT VALUE (MeV) DOCUMENT ID TECN CHG COMMENT 1414±15 OUR AVERAGE Error includes scale factor of 1.3. 232± 21 OUR AVERAGE Error includes scale factor of 1.1. 1380 + 21 + 19ASTON 88 LASS 0 $11 \ K^- p \rightarrow K^- \pi^+$ $176 \pm 52 \pm 22$ 11 $K^- p \rightarrow$ ASTON 88 LASS 0 11 $K^- p \rightarrow \overline{K}^0 \pi^+ \pi$ 87 LASS 0 $240 \pm 18 \pm 12$ $1420 \pm 7 \pm 10$ ASTON ASTON 87 LASS 0 11 $K^- p \rightarrow i$ • • • We do not use the following data for averages, fits, limits, etc. • • • • • • We do not use the following data for averages, fits, limits, etc. • • • $1276 + 72 \\ - 77 \\ -$ $\tau^- \rightarrow K_c^0 \pi^- \nu_{\tau}$ 198^{+}_{-} $^{61}_{87}$ 1,2 BOITO 3,4 BOITO $\tau^- \rightarrow K_c^0 \pi$ 09 RVUE 09 RVUE $11 K^- \rho \rightarrow \overline{K}^0 \pi^- \rho$ LASS -11 $K^- p \rightarrow 1$ 1367 ± 54 BIRD 89 LASS - 114 ± 101 BIRD 89 8.25 $K^- p \rightarrow \overline{K}^0 2\pi$ HBC 1474 ± 25 82B HBC 0 275 ± 65 BAUBILLIER 82B 0 8.25 $K^- p \rightarrow$ BAUBILLIER $6 K^- \rho \rightarrow \overline{K}^0 \pi^+ \pi^-$ MPS 0 $6 K^- p \rightarrow \overline{K}$ 1500 ± 30 80 MPS 0 500 ± 100 ETKIN 80 ETKIN ³ From the pole position of the $K\pi$ vector form factor in the complex s-¹ From the pole position of the $K\pi$ vector form factor in the complex s-plane and EPIFANOV 07 data. EPIFANOV 07 data. ⁴Systematic uncertainties not estimated. ²Systematic uncertainties not estimated.

S.Gonzàlez-Solís

TAU'16

K*(1410) WIDTH

Applications of the $K\pi$ **Form Factors**

 Dispersive representation of the Kπ form factor suited to describe both τ → Kπν_τ and K_{ℓ3} decays

• $K_{\ell 3}$ decays are the main route towards the determination of $|V_{us}|^2$

$$\Gamma_{K_{\ell3}} \propto |V_{us}|^2 |F_+(0)|^2 I_{K_{\ell3}}, \quad I_{K_{\ell3}} = \frac{1}{m_K^8} \int dt(p.s.) \left[\widetilde{F}_+(t)^2 + \eta(t, m_\ell) \widetilde{F}_0(t)^2 \right]$$

ChPT, lattice RChT+ dispersion relations
S.González-Solís TAU'16 19 september 2016 20/26

Conclusions

Conclusions

- $K\pi$ Vector Form Factor from dispersion relations with subtractions
 - First detailed analysis of $\tau^- \rightarrow K^- \eta^{(\prime)} \nu_{\tau}$ decays
 - Combined analysis of the decays $\tau^- \rightarrow K_S \pi^- \nu_\tau$ and $\tau^- \rightarrow K^- \eta \nu_\tau$

- Prospects of improvement:
 - To provide $\tau^- \rightarrow K^- \eta \nu_{\tau}$ acceptance corrected
 - To release $\tau^- \to K^- \pi^0 \nu_\tau$ (acceptance corrected) to access isospin violations

Hadronic Matrix Element

Taking the divergence we obtain on the L.H.S

$$\langle 0|\partial_{\mu}(\bar{s}\gamma^{\mu}u)|K^{+}\eta^{(\prime)}\rangle = i(m_{s}-m_{u})\langle 0|\bar{s}u|K^{+}\eta^{(\prime)}\rangle = i\Delta_{K\pi}C_{K^{-}\eta^{(\prime)}}^{S}F_{0}^{K^{-}\eta^{(\prime)}}(s)$$
(1)

where $\Delta_{PQ} = M_P^2 - M_Q^2$, $C_{K^-\eta}^S = 1/\sqrt{6}$, $C_{K^-\eta'}^S = 2/\sqrt{3}$

on the R.H.S (vector current not conserved)

$$iq_{\mu}\langle K^{-}\eta^{(\prime)}|\bar{s}\gamma^{\mu}u|0\rangle = iC_{K\eta^{(\prime)}}^{V}\left[(m_{\eta^{(\prime)}}^{2} - m_{K^{-}}^{2})F_{+}^{K^{-}\eta^{(\prime)}}(s) - sF_{-}^{K^{-}\eta^{(\prime)}}(s)\right]$$
(2)

• Equating eqs. (1,2) allows us to relate $F_{-}^{K^{-}\eta^{(\prime)}}(s)$ with $F_{0}^{K^{-}\eta^{(\prime)}}(s)$ as

$$F_{-}^{K^{-}\eta^{(\prime)}}(s) = -\frac{\Delta_{K^{-}\eta^{(\prime)}}}{s} \left[\frac{C_{K\eta^{(\prime)}}^{S}}{C_{K\eta^{(\prime)}}^{V}} \frac{\Delta_{K\pi}}{\Delta_{K^{-}\eta^{(\prime)}}} F_{0}^{K^{-}\eta^{(\prime)}}(s) + F_{+}^{K^{-}\eta^{(\prime)}}(s) \right]$$
(3)

• The hadronic matrix element finally reads $(q^{\mu} = (p_{\eta^{(\prime)}} + p_{K^-})^{\mu} + \text{ and } q^2 = s)$

$$\left[(p_{\eta^{(\prime)}} - p_{\kappa})^{\mu} + \frac{\Delta_{\kappa^{-}\eta^{(\prime)}}}{s} q^{\mu} \right] C_{\kappa^{\eta^{(\prime)}}}^{V} F_{+}^{\kappa^{-}\eta^{(\prime)}}(s) + \frac{\Delta_{\kappa^{\pi}}}{s} q^{\mu} C_{\kappa^{\eta^{(\prime)}}}^{S} F_{0}^{\kappa^{-}\eta^{(\prime)}}(s)$$
(4)

Predictions for the $\tau^- \rightarrow K^- \eta^{(\prime)} \nu_{\tau}$ decays

	$s_{\rm cut} = 3.24 \ { m GeV}^2$	$s_{\rm cut} = 4 \ { m GeV}^2$	$s_{\rm cut} = 9 \ {\rm GeV}^2$	$s_{\rm cut} \rightarrow \infty$
m_{K^*} [MeV]	943.32 ± 0.59	943.41 ± 0.58	943.48 ± 0.57	943.49 ± 0.57
γ_{K^*} [MeV]	66.61 ± 0.88	66.72 ± 0.86	66.82 ± 0.85	66.82 ± 0.85
<i>m_{K'*}</i> [MeV]	1407 ± 44	1374 ± 30	1362 ± 26	1362 ± 26
$\gamma_{K'^*}$ [MeV]	325 ± 149	240 ± 100	216 ± 86	215 ± 86
$\gamma \times 10^2$	-5.2 ± 2.0	-3.9 ± 1.5	-3.5 ± 1.3	-3.5 ± 1.3
$\lambda'_+ \times 10^3$	24.31 ± 0.74	24.66 ± 0.69	24.94 ± 0.68	24.96 ± 0.67
$\lambda_+''\times 10^4$	12.04 ± 0.20	11.99 ± 0.19	11.96 ± 0.19	11.96 ± 0.19
$\chi^2/n.d.f.$	74.2/79	75.7/79	77.2/79	77.3/79

• $\tau^- \rightarrow K_S \pi^- \nu_\tau$ Fit results (Boito-Escribano-Jamin Eur.Phys.J. C59 (2009))

• Our $K\pi$ system is $K^-\pi^0$ instead of $K_S\pi^-$

Mass difference (~ 10 MeV) strongly correlated with λ'₊ and λ''₊

• No $\tau^- \to K^- \pi^0 \nu_{\tau}$ data available. We fit $\tau^- \to K_S \pi^- \nu_{\tau}$ data using $K^- \pi^0$ masses

Parameter	Best fit with $K^{-}\pi^{0}$ masses	Best fit
$\lambda'_{+} \times 10^{3}$	22.2 ± 0.9	24.7 ± 0.8
$\lambda_{+}^{\prime\prime} \times 10^4$	10.3 ± 0.2	12.0 ± 0.2
M _{K*} (MeV)	892.1 ± 0.6	892.0 ± 0.9
Γ _{K*} (MeV)	46.2 ± 0.5	46.2 ± 0.4
M _{K*} , (GeV)	1.28 ± 0.07	1.28 ± 0.07
Г _{K*} , (GeV)	$0.16^{+0.10}_{-0.07}$	0.20+0.06
γ	-0.03 ± 0.02	-0.04 ± 0.02

$K\pi$ scattering phase

Predictions for the $\tau^- \rightarrow K^- \eta \nu_{\tau}$ decay

