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SM Theory   [T. Teubner’s talk]

n QED, hadronic, EW contributions

+ ...+=

✕ ✕ ✕

+ + + ...
✕ ✕

+ + + ...

✕ ✕

QED			(5-loop)
Aoyama	et	al.	
PRL109,111808	(2012)	

Hadronic	vacuum	
polarization	(HVP)

Hadronic	light-by-light	
(Hlbl)

Electroweak	(EW)
Knecht et	al	02
Czarnecki et	al.	02

+ +	…

+ + +	…

muon’s anomalous magnetic moment

• One of the most precisely determined numbers, starting from the construction of QED.
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�
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⇤

µ µ

Hadronic light-by-light scattering contribution to the muon g� 2 from lattice QCD Masashi Hayakawa

could be estimated by purely theoretical calculation. So far, it has been calculated only based on
the hadronic picture [7, 8]. Thus the first principle calculation based on lattice QCD is particularly
desirable.

!

l1l2

Figure 1: hadronic light-by-light scattering contribution to the muon g� 2

The diagram in Fig. 1 evokes the following naive approach; we calculate repeatedly the cor-
relation function of four hadronic electromagnetic currents by lattice QCD with respect to two
independent four-momenta l1, l2 of off-shell photons, and integrate it over l1, l2. Such a task is too
difficult to accomplish with use of supercomputers available in the foreseeable future.

Here we propose a practical method to calculate the h-lbl contribution by using the lattice
(QCD + QED) simulation; we compute

⇤ quark ⌅

QCD+quenched QEDA

�
⇤

quark

⌅

QCD+quenched QEDB⇤ ⌅

quenched QEDA

, (2)

amputate the external muon lines, and project the magnetic form factor, and divide by the factor
3. In Eq. (2) the red line denotes the free photon propagator D!�(x, y) in the non-compact lat-
tice QED solved in an appropriate gauge fixing condition. The black line denotes the full quark
propagator Sf (x, y;U, u) for a given set of SU(3)C gauge configuration

�
Ux,!

⇥
and U(1)em gauge

configuration
�
ux,!

⇥
, where the sum over relevant flavors f is implicitly assumed. The blue line

represents the full muon propagator s(x, y; u). The average ⇥, ⇤ above means the one over the
unquenched SU(3)C gauge configurations and/or the quenched U(1)em gauge configurations 1 as
specified by the subscript attached to it. Since two statistically independent averages overU(1)em
gauge configurations appear in the second term, they are distinguished by the labels A, B.

1For the unquenched QCD plus quenched QED to respect the gauge invariance of QED, the electromagnetic charges
of sea quarks are assumed to be zero.
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353 / 3

aµ =
g � 2

2
= (116 592 089 ± 54 ± 33) ⇥ 10�11 BNL-E821

[Andreas Hoecker, Tau 2010, arXiv:1012.0055 [hep-ph]]

Contribution Result (⇥10�11).
QED (leptons) 116 584 718.09 ± 0.15
HVP (lo) 6 923.± 42
HVP (ho) -97.9 ± 0.9
HLBL 105.± 26
EW 154.± 2

Total SM 116 591 802 ± 42HVP(lo) ± 26HLBL ± 02 (49tot).

• 287 ± 80 or 3.6⇥ difference between experiment and SM prediction.

E989 at FNAL is to reduce the total experimental error by,
at least, a factor of four over E821, or 0.14 ppm !

Taku Izubuchi, USQCD All Hands Meeting, JLab, May 6, 2011 20

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

qp1 p2

+
qp1 p2

k

+ . . .

�µ ! �µ(q) =

✓

�µ
F1(q

2) +
i �µ⌫

q⌫

2m
F2(q

2)

◆

which results from Lorentz and gauge invariance when the muon is
on-mass-shell.

F2(0) =
g � 2

2
⌘ aµ (F1(0) = 1)

(the anomalous magnetic moment, or anomaly)

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by
expanding �µ(q2) in QED coupling constant

↵ =
e

2

4⇡
=

1

137
+ . . .

Corrections begin at O(↵); Schwinger term = ↵
2⇡ = 0.0011614 . . .

hadronic contributions ⇠ 6 ⇥ 10�5 times smaller (leading error).

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD
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(g-2)μ SM Theory prediction

n QED, EW, Hadronic contributions

n Discrepancy between EXP and SM is larger than EW!
n Currently the dominant uncertainty comes from HVP, followed by HLbL

n x4 or more accurate experiment  FNAL , J-PARC
n Goal :  sub 1% accuracy for HVP, and 

→ 10% accuracy for HLbL

EQUATIONS

N. YAMADA

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

K.	Hagiwara et	al.	,	J.	Phys.	G:	Nucl.	Part.	Phys.	38	(2011)	085003
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Near Future experiments

J-PARC g—2 schematic 

Precision for New Discoveries, June 2016 G. Marshall 23 

resonant laser ionization of 
muonium for low emittance µ+  

(~106 µ+/s) 

3 GeV proton beam 
 ( 333 uA)�

surface muon beam  
(28 MeV/c, »108/s)�

muonium production  
(300 K, 25 meV
2.3 keV/c)�

muon storage ring 
(3T, r = 33 cm, 1 ppm local)�

muon reacceleration 
(Soa, RFQ, IH, DAW, DLS) 

(thermal to 300 MeV/c)�

FNAL		E989		(2019-)
move	storage	ring	from	BNL
x4	more	precise	results,		0.14ppm

J-PARC	E34
ultra-cold	muon beam
table	top	storage	ring 7

[		Y.	Sato’s	talk		]

[	J.	Mott’s	talk		]



Hadronic Light-by-Light (HLbL) 
contributions

Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD
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Hadronic Light-by-Light

n 4pt function of EM currents
n No direct experimental data available
n Dispersive approach

EQUATIONS

N. YAMADA

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p/2 + k/2)γρS

(µ)(p/1 + k/1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)

Date: July 4, 2012.
1

Form factor :

✕
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HLbL from Models
n Model estimate with non-perturbative constraints at the chiral / 

low energy limits using anomaly :  (9—12) x 10-10  with 25-40% 
uncertainty

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 85

My own calculation: h3 ⌅ [�10, 10] GeV�2

X aµ(LbL; X) ⇥ 1011

⇥0, �, �⇤ 93.91 ± 12.40 a1, f ⇤1, f1 28.13 ± 5.63 a0, f ⇤0, f0 �5.98 ± 1.20

JN09 based on Nyffeler 09:

aLbL;had
µ = (116 ± 39) ⇥ 10�11

Summary of results
Contribution BPP HKS KN MV PdRV N/JN

⇥0, �, �⇤ 85±13 82.7±6.4 83±12 114±10 114±13 99±16
⇥,K loops �19±13 �4.5±8.1 � 0±10 �19±19 �19±13

axial vectors 2.5±1.0 1.7±1.7 � 22± 5 15±10 22± 5
scalars �6.8±2.0 � � � �7± 7 �7± 2

quark loops 21± 3 9.7±11.1 � � 2.3 21± 3

total 83±32 89.6±15.4 80±40 136±25 105±26 116±39

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 92

F.	Jegerlehner ,		x	1011
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Our Basic strategy : 
Lattice QCD+QED system

n 4pt function has too much information to parameterize (?) 
n Do Monte Carlo integration for QED two-loop with 4 pt function π(4) which  

is sampled in lattice QCD with chiral quark (Domain-Wall fermion)
n Photon & lepton part of diagram is derived either in lattice QED+QCD 

[Blum et al 2014] (stat noise from QED), or exactly derive for given loop 
momenta [L. Jin et al 2015] (no noise from QED+lepton).

l set	spacial momentum	for	
- external	EM	vertex	q

- in- and	out- muon p,	p’
q	=	p-p’

• set	time	slice	of	muon	
source(t=0),		sink(t’)	and	operator	(top)

• take	large	time	separation	for
ground	state	matrix	element

✕

(0,	p) (t’,	p’)

(top,	q)

muon

3	photons

11



Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Non-perturbative QED method [Blum et al., 2015]

Subtraction Method 12/32

• Evalutate the quark and muon propagators in the background quenched QED fields. Thus
generate all kinds of diagrams.

* quark +

QCD+quenched QEDA

�
*

quark

+

QCD+quenched QEDB

* +

quenched QEDA

= 3⇥

xsrc xsnk
y

0
, �

0
z

0
, ⌫

0
x

0
, ⇢

0

xop, µ

z, ⌫

y, � x, ⇢

Figure 7. PoS LAT2005 (2006) 353. hep-lat/0509016. One typical diagram remains after subtraction
is shown on the left, 5 others are not shown.

• After subtraction, the lowest order signal remains is O(e6) which is exact LbL diagram.

• Solved the 3-loop problem. Now we only need to compute point source propagators in
the backgrounds of QED fields.

• Lower order noise problem. The signal after subtraction is O(e6). But even after charge
conjugation average on the muon line, the noise is still O(e4).

• Unwanted higher order effects. In practice, one normally choose e = 1.

• “Disconnect diagram” problem. Noise will likely increase in larger volume.

5 10 15 20 25 30
tsep

-0.1

0

0.1

0.2

0.3

0.4

F 2((
2π

/L
)2 )

QED (mloop=m
µ
=0.1, 243)

QED, (mloop=m
µ
=0.1, 163)

QED pert. theory, F2(0)
QCD+QED (m

π
=330 MeV)

hadronic models, F2(0)

quark-connected part of HLbL

a�1 = 1.7848 GeV, (2.7 fm)3

m
⇡

= 330 MeV, m
µ

= 190 MeV

Consistent with model
expectations (J. Bijnens)

Agreement with models accidental

O(↵2) noise, O(↵4) corrections

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD

QCD+QED method [Blum et al 2015]
2

FIG. 2. Two classes of diagrams contributing to aµ(HLbL).
On the left, all QED vertices lie on a single quark loop, The
right diagram is one of six diagrams where QED vertices are
distributed over two (or three) quark loops.

the vacuum expectation value of an operator involving
quark fields requires the inversion of the quark Dirac op-
erator Dmq

[

UQCD
]

for each gluon field (QCD configu-
ration), UQCD. The cost of inversion of this operator
for every pair of source and sink points on the lattice
is prohibitive since it requires solving the linear equa-
tion Dmq

[

UQCD
]

xr = br for Nsites number of sources,
br, where Nsites is the total number of lattice points. In
most problems, such as hadron spectroscopy, all of these
inversions are not necessary. For our problem, the corre-
lation of four electromagnetic currents must be computed
for all possible values of two independent four-momenta.
This implies (3 × 4 × Nsites)2 separate inversions, per
QCD configuration, quark species, and four-momentum
of the external photon to calculate the connected diagram
in Fig. 2, which is astronomical. Therefore, a practical
method with substantially less computational cost is in-
dispensable.
A non-perturbative QCD+QED method which treats

the photons and muon on the lattice along with the
quarks and gluons has been proposed as such a candi-
date by us. To obtain the result for the diagram in Fig. 2
the following quantity is computed [9],

⟨ψ(t′,p′) jµ(top,q)ψ(0,p)⟩HLbL

= −
∑

q=u,d,s

(Qqe)
2
∑

k

{〈

γµSq(top,−q; k)γνSq(k; top,−q)

δνρ

k̂2
G(t′,p′;−k)γρG(−k; 0,−p)

〉

QCD+QED

−⟨γµSq(top,−q; k)γνSq(k; top,−q)⟩QCD+QED

δνρ

k̂2
⟨G(t′,p′;−k)γρG(−k; 0,−p)⟩QED

}

, (1)

where ψ annihilates the state with muon quantum num-
bers, and jµ is the electromagnetic current 1 for the
quarks. k is a Euclidean four-momentum, p is a three-
momentum, each quantized in units of 2π/L. δµν/k̂2

(k̂µ ≡ 2 sin(kµ/2)) is the lattice photon propagator in

1 The point-split, exactly conserved, lattice current is used for the
internal vertices while the local current is inserted at the external
vertex.

FIG. 3. Perturbative expansion of the first term in Eq. (1)
with respect to QED. The symbols ⟨, ⟩QCD+q-QED and
⟨, ⟩q-QED represent the average over QCD+QED configura-

tions (UQCD, AQED) and that over AQED, respectively. Terms
represented by the ellipsis contain four or more internal pho-
tons and so their orders are higher than α3.

Feynman gauge. Sq and G denote Fourier transforma-
tion of D−1

mq
and D−1

mµ
, respectively, and spin and color

indices have been suppressed. One takes t′ ≫ top ≫ 0 to
project onto the muon ground state

lim
t′≫top≫0

⟨ψ(t′,p′) jµ(top,q)ψ(0,p)⟩HLbL =

⟨0|ψ(0,p′)|p′, s′⟩
2E′V

⟨p′, s′|Γµ|p, s⟩
⟨p, s|ψ(0,p)|0⟩

2EV

×e−E′(t′−top)e−Etop , (2)

where the matrix element of interest is parametrized as

⟨p′, s′|Γµ|p, s⟩ ≡

ū(p′, s′)

(

F1(q
2)γµ + i

F2(q2)

2mµ
[γµ, γν ]qν

)

u(p, s). (3)

u(p, s) is a Dirac spinor, and q = p′ − p is the space-like
four-momentum transferred by the photon. To extract
the form factors F1 and F2, Eq. (1) is traced over spins
after multiplication by one of the projectors, (1 + γt)/4
or i (1 + γt)γjγk/4, where j, k = x, y, z and k ̸= j. The
contribution to the anomaly is then found from aµ ≡
(gµ − 2)/2 = F2(0).
For now quenched QED (q-QED) is used for the QED

average in (1), implying no fermion-antifermion pair cre-
ation/annihilation via the photon. Note that only the
sea quarks need to be charged under U(1); the lepton
vacuum polarization corresponds to higher order contri-
butions which we ignore. This approximation was cho-
sen to make this first calculation computationally easier,
even though it is incomplete. We can remove it to get
the complete physical result, as discussed at the end of
this letter. The first term, expanded in q-QED, can be
reorganized as in Fig. 3, according to the number of pho-
tons exchanged between the quark loop and the open
muon line. If the second term in Eq. (1) is subtracted,

Subtraction	term

- Connected	part	only

- QED	only		calculation	consistent	
with	QED	loop	calculation	for	larger	
volume

- QED+QCD
- ball	park	of	model	values
-significant	exited	state	effects	?

unsubtracted term
- One	photon	is	treated	analytically
- other	two	sampled	stochastically
- needs	subtraction	
- use	AMA	for	error	reduction
- use	Furry’s theoretm to	reduce	α2 noise

Introduction
The hadronic vacuum polarization (HVP) contribution (O(�2))

The hadronic light-by-light (HLbL) contribution (O(�3))
aµ(HLbL) Summary/Outlook

aµ(HLbL) in 2+1f lattice QCD+QED (PRELIMINARY)

Stable as measurements increase (20 ⇥ 40 ⇥ 80 ⇥ 160 configs)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

F2(Q2)

N
um

be
r o

f M
ea

su
re

m
en

ts

Q2 = 0.11 (GeV2)
Q2 = 0.18 (GeV2)

243 lattice size

Q2 = 0.11 and 0.18 GeV2

m⇥ � 329 MeV

mµ � 190 MeV

Tom Blum (UConn / RIKEN BNL Research Center) The muon anomalous magnetic moment
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n Treat all 3 photon propagators exactly   (3 analytical photons) , which makes the 
quark loop and the lepton line connected :  

disconnected problem in Lattice QED+QCD  -> connected problem with analytic 
photon

n QED 2-loop in coordinate space. Stochastically sample, two of quark-photon 
vertex location x,y, z and xop is summed over space-time exactly

n Short separations, Min[ |x-z|,|y-z|,|x-y| ] < R ~ O(0.5) fm, which has a large 
contribution due to confinement, are summed for all pairs

n longer separations, Min[ |x-z|,|y-z|,|x-y| ]  >= R, are done stochastically with 
a probability shown above  ( Adaptive Monte Carlo sampling )

Coordinate space Point photon method 
[ Luchang Jin et al. , PRD93, 014503 (2016) ]

QEDA,QEDB

x y

0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05

0 5 10 15 20 25 30 35 40 45

P
ro

b
a
b
il
it

y

ceil(r)

32ID

Figure 3. Distribution of the r for 32ID lattice.

For simplicity, we only write local current in above formulas. In actual computation,

however, we need to compute lattice conserved current at xop to ensure the quark loop to

be finite at short distance. We can then use three local current at x, y, and z, provided that

Z3
V is multiplied to the final results. See Appendix ???.

We use domain wall action not only for quarks but for the muon as well. We compute

the muon propagators with domain wall height M5 = 1 and infinite Ls. Since all the muon

photon interactions have been explicitly included in the formula, all the muon propagators

are free field fermion propagators. To calculate these free propagators, we can use Fourier

transformations and analytical expressions. So we can enjoys the nice properties without

addition cost compare with the conventional cheaper fermions, e.g. Wilson fermion. We

also use local currents for the photon muon interactions at x′, y′, and z′.

Since we need to sum over all six different permutations of the three internal photons, all

pairs of x, y and combinations of photon polarizations should be computed separately. The

work need to be done for the muon line is proportion to M2. So for large M , the cost for

the free muon propagators can be comparable with the cost for quark propagators. In our

simulations, we usually choose M = 16, which balances the cost for muon and quarks. Also,

M = 16 is not yet too large, so the over all statistics is still roughly proportion to M2.

Above derivation take the limit that tsep → +∞. In practice, if we calculate the QED

part using lattice, we will have finite tsep, which is set to be half of the lattice time extent

11

xop

z

13



Systematic effects in QED only study

n muon loop, muon line
n a = a mµ / (106 MeV)
n L= 11.9, 8.9, 5.9 fm
n known result :  F2 = 0.371 (diamond) correctly reproduced (good 

check) 
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Figure 4.6: Plots of our results for the connected light-by-light scattering contribution in

QED to F2(0), known to be 0.371⇥ (↵/⇡)3 [9, 10], as a function of a2 expressed in GeV by

assigningmµ = 106 MeV. This is done for three choices of the physical lattice size L = 11.9 fm

(diamonds), 8.9 fm (squares) and 5.9 fm (circles). The curves shown are quadratic functions

of a2 chosen to pass through the three points for each physical volume. The coe�cients for

each of these fits are listed in Table 4.13.
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Figure 4.7: Results for F2(0) from QED-connected light-by-light scattering. These results

have been extrapolated to the a2 ! 0 limit using two methods. The upper points use the

quadratic fit to all three lattice spacings shown in Fig. 4.6, while the lower point uses a linear

fit to the two leftmost points in that figure. Here we extrapolate to infinite volume using

the linear fits shown to the two, leftmost of the three points in each case.
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FV	and	discretization	error	could	be	as	large	as	20-30	%,	
similar	discretization	error	seen	from	QCD+QED	study 14



Dramatic Improvement !
Luchang JinZero External Momentum Transfer Improvement 29/32
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Figure 20. Phys.Rev.Lett. 114 (2015) 1, 012001. arXiv:1407.2923. Compare with latest method and
result.

• 243× 64 lattice with a−1= 1.747GeV and mπ= 333MeV. mµ= 175MeV.

• For comparison, at physical point, model estimation is 0.08 ± 0.02. The agreement is
accidental, the lattice value has a strong dependence on mµ.

a=0.11	fm,	243x64	 (2.7	fm)3,	
mπ	=	329	MeV,			mμ =~	190	MeV,	e=1

more	than	x100		reduced	cost	!
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Table 4.10: Results for F2(q2) from applying the conserved and moment methods to the

the 24IL ensemble with mµa = 0.1 using a muon source-sink separation tsep = 32. As

before,
p
Var = Err

p

NconfNprop. We use the conserved current for the external photon

and local currents for the internal photons for both methods. The conserved results are for

q2 = (2⇡/L)2 while the moment methods gives a q2 = 0 result.

Method F2/(↵/⇡)3 Nconf Nprop

p
Var

Conserved 0.0825(32) 12 (118 + 128)⇥ 2⇥ 7 0.65

Mom. 0.0804(15) 18 (118 + 128)⇥ 2⇥ 3 0.24

q2 = 0. Since these calculations are less computationally costly than those for QCD, we

can evaluate a number of volumes and lattice spacings (all specified with reference to the

muon mass) and examine the continuum and infinite-volume limits. We can then compare

our results, extrapolated to vanishing lattice spacing and infinite volume, with the known

result calculated in standard QED perturbation theory [9, 10]. This QED calculation serves

both as a demonstration of the capability of lattice methods to determine such light-by-light

scattering amplitudes and as a first look at the size of the finite-volume and nonzero-lattice-

spacing errors.

In Fig. 4.6 we show results for F2(0) computed for three di↵erent lattice spacings, i.e.

three di↵erent values of the input muon mass in lattice units, but keeping the linear size of

the system fixed in units of the muon mass. The data shown in Fig. 4.6 are also presented

in Table 4.11. We use two extrapolation methods to obtain the continuum limit. The first,

shown in the figure, uses a quadratic function of a2 to extrapolate to a2 = 0. The second

makes a linear extrapolation to a2 = 0 using only the two leftmost points for each of the

three values of mµL. The coe�cients for the quadratic-in-a2 fits shown in Fig. 4.6 as well as

those for the linear-in-a2 fits are given in tabular form in Tables. 4.12 and 4.13.

Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.tsep

2.2	fm

15



Mπ=170 MeV cHLbL result
[ Luchang Jin et al.,PRD93, 014503 (2016) 

]
n V=(4.6 fm)3, a = 0.14 fm, mµ=130 MeV, 23 conf
n pair-point sampling with AMA (1000 eigV, 100CG) ,

> 6000 meas/conf
• |x-y| <= 0.7fm, all pairs, x2-5 samples 

217 pairs  (10 AMA-exact)
• |x-y| > 0.7fm,  512 pairs ( 48 AMA-exact)

n 13.2 BG/Q Rack-days

within QED, arising when the internal loop is a muon, working at three values for the

lattice spacing and three volumes. By extrapolating to vanishing lattice spacing and infinite

volume we obtain a result which agrees with the analytic result within 2%, an accuracy

expected from a combination of statistical and extrapolation uncertainties.

The most successful approach uses exact, analytic formulae for the three photon prop-

agators that appear in the HLbL amplitude and the standard methods of lattice QCD. In

contrast with normal perturbative methods, much of the calculation is performed in position

space and stochastic methods are only introduced to sample position-space sums, reducing

the computational cost so that it grows proportional to the space-time volume instead of its

cube. Because of the structure of the amplitude being computed, we can identify a specific

space-time position within the hadronic part of the amplitude and use that location as the

origin to obtain the anomalous magnetic moment from what is essentially a classical spatial

moment of the quantum distribution of current.

These new methods are used to obtain a result for the cHLbL contribution to gµ−2 from

a relatively coarse, 323 × 64 ensemble with 1/a = 1.38 GeV, spatial extent L = 4.6 fm and

pion mass mπ = 171 MeV:

(gµ − 2)cHLbL

2
= (0.1054± 0.0054)(α/π)3 = (132.1± 6.8)× 10−11. (47)

which can be compared to the conventional model-dependent result for the complete HLbL

contribution to gµ−2 of (105±26)×10−11 and the difference between the current experimental

result and the standard model prediction (excluding the HLbL component) of (354± 86)×

10−11. Equation (47) shows only the statistical error. There are significant systematic errors

associated with the unphysical pion mass, the non-zero lattice spacing and the finite volume

that have been used in this calculation. These systematic errors are at present insufficiently

well understood to be reliably estimated. A particularly important systematic errors comes

from the omission of the quark-disconnected contributions, which play an important role

in the phenomenological estimates. Thus, the comparison of the result in Eq. (47) with

experiment serves only to give a context for the size of the present statistical errors.

In Section III we have presented a series of numerical tests of many of the different

methods that were explored while developing the methods that were finally used to obtain

the result in Eq. (47). We hope that some of these may be useful in the future for the efficient

calculation of other quantities that involve a combination of QED and QCD, a relatively
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Figure 8. Histograms and scatter plots for the contribution to F2 from different separations |r| =

|x− y| are shown in the left and right plots respectively, following the conventions used in similar,

previous figures. The upper two plots are obtained using the conserved version of the exact photon

method on the 32ID ensemble. The lower two plots are obtained using the moment method, but

from approximate propagators each obtained from 100 CG iterations, again on the 32ID ensemble.

with the restriction |z − x| ≥ |x − y| and |z − y| ≥ |x − y| that was described previously,

to the 24I ensemble with mµa = 0.1 in order to compare these methods with the original

subtraction calculation [17] which was carried out on the same ensemble with the same

muon mass. We compute the short distance part up to rmax = 4. For |r| ≤ 2 we compute

each independent direction two times while for 2 < |r| ≤ 4 each independent direction is

computed only once for each configuration. We take many discrete symmetries into account

when summing over the short-distance part, including independent inversions of x, y, z, t,

and exchanges of the x and y directions. For the long-distance part, we did not use the M2

method, but instead directly chose the probability distribution for the point pairs (|r| > 4):

P24IL(r) ∝
1

|r|4
e−0.1|r|. (43)

For the conserved method the propagators are computed with approximate inversions

37

r	=	min	{|x-y|,	|y-z|,|z-x|}

Strange	contribution	:	(0.0011± 0.005)	(α/π)3

Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
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z
′
, ν

′ x
′
, ρ
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xsrc xsnky
′
,σ

′
z
′
, ν
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′
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y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.
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physical Mπ=140 MeV cHLbL result
[ Luchang Jin et al. , preliminary]

n V=(5.5 fm)3, a = 0.11 fm, mµ=106 MeV, 69 conf [RBC/UKQCD]
n Two stage AMA (2000 eigV, 200CG and 400 CG)  using zMobius,      

~4500 meas/conf
n 160 BG/Q Rack-days139MeV Pion 483

× 96 Lattice 32/36
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Figure 21. 483 × 96 lattice, with a−1 = 1.73GeV, mπ = 139MeV, mµ = 106MeV. The left plot
is evaluated with z sumed over longer distance region, so the small r region includes most of the
contribution. The right plot is evaluated with z sumed over longer distance region, so the QCD finite
volume is better controlled in the small r region.

• Contribution vanishes long before reaching the boundary of the lattice.

• Suggesting the QCD finite volume effects be small in this case.

• Simply increasing the QED box will fix most of the finite volume effects.

r	=	min	{|x-y|,	|y-z|,|z-x|} r	=	max{|x-y|,	|y-z|,|z-x|}

Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ
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xop, µ

z, ν
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Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

(preliminary,	
stat	err	only)

integrand	safely	suppressed	before
reaching			r	~		L/20.6	fm

y x

aLbL, conµ = (0.0926± 0.0077)⇥
⇣↵
⇡

⌘
3

= (11.60± 0.96)⇥ 10�10,

0.7	fm 0.7	fm
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Disconnected diagrams in HLbL

n Disconnected diagrams

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach
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SU(3) hierarchies for d-HLbL

n At ms=mud limit,  following type of disconnected HLbL
diagrams survive Qu + Qd + Qs = 0

n Physical point run using similar techniques to c-HLbL.

n other diagrams  suppressed by
O(ms-mud) /3    and    O( (ms-mud)2 )

Muon g − 2 Light by Light

by Luchang Jin

xsrc xsnkz
′
,κ

′
y
′
,σ

′ x
′
, ρ

′

xop, ν

z,κ
y,σ x, ρ

Figure 1. Disconnected Light by Light diagrams. There are other possible permutations.

1 Method outline

• Use one configuration to compute 32 point source propagators and perform HVP like con-
traction. Store the average of the results, Πρ,σ

avg(r), and later we would subtract it from other
HVP like contraction computed using other configurations.

Πρ,σ
avg(r) =

1
N

∑

k=1

N

{−Tr[γρSq(xk, xk + r)γσSq(xk + r, xk)]} (1)

• Start with point source x, compute point source quark propagators and photon x→ x′.

• Compute the local current for all possible y, Πρ,σ(x, y) (subtract Πρ,σ
avg(x, y) from this value)

Πρ,σ(x, y) = −Tr[γρSq(x, y)γσSq(y, x)]−Πρ,σ
avg(y −x) (2)

• Optional subtraction: Ideally, the sum of the current over space time should be zero. Since
we use local current, this is not strictly true. But we can introduce Πρ,σ

′ (x, y) where

Πρ,σ
′ (x, y) = Πρ,σ(x, y)− δx,y

∑

y ′

Πρ,σ(x, y ′) (3)

Should try to see if this trick work for connected LbL calculation.

• Use the current computed above as a source and construct photon y→ y ′

• Use the two photons constructed above and compute the muon line with sequential source
finally contract at z ′ with local current. Note that this procedure should be performed for all
possible permutations of the three photons. The muon source and sink separation is usually
taken to be half of the lattice time extent, and the source and sink positions are chosen so
that x is in the middle of them xt = ((xsrc)t +(xsnk)t)/2.

• Use the local current at all possible z ′ construct photon z ′→ z

1

68

Figure 5.1: Leading order diagram, survives in SU(3) limit.
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Figure 5.2: Next to leading order diagrams. O(ms �ml), vanishes in SU(3) limit.
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diagrams, the signal has to come from a subtle gluon interactions between the two quark

loops, which can only be discovered by gauge averaging. As a result, although the signal

should be exponentially suppresed when |r| = |x � z| become large just as the connected

diagram, the noise remains constant for arbitrary |r|. Since the formula involve summation

over r, one can expect a lot of noises come from the large |r| region, and will become larger

if we increase the volume. However, the independence of these two loops also provide some

benefit. The contraction at y position will not depend on the position of z, thus the M2 trick

can be applied without recomputing the muon part. So, we obtained order M2 combinations

of samples with no additional cost, where M is the number of point source quark propagators
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Figure 5.3: Even higher order diagrams.
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computed for each configuration.

5.2 Infinite volume limit

Normally, the finite volume e↵ects in lattice QCD calculations are exponentially suppressed

by L, the linear size of the lattice volume times m⇡, the energy of lowest energy eigen-state

of QCD. For example, the points x, y, z, which appears in Eq. (3.6), are directly connected

to on the quark loop. The finite volume e↵ects introduced when limiting these points in a

finite size lattice are exponentially suppressed. However, in the light-by-light calculation,

there are also QED finite volume e↵ects. The QED finite volume e↵ects enter only through

Eq. (3.7), which include everything except the quark loop. We repeat the equation below:

G⇢�(x, y, z, xsnk, xsrc) =
X

x0,y0,z0

G⇢⇢0(x, x
0)G��0(y, y0)G0(z, z0)

·
h

Sµ (xsnk, x
0) �⇢0Sµ(x

0, z0)�0Sµ(z
0, y0)��0Sµ (y

0, xsrc)

+Sµ (xsnk, z
0) �0Sµ(z

0, x0)�⇢0Sµ(x
0, y0)��0Sµ (y

0, xsrc)

+four other permutations
i

. (5.1)

The summation variables x0, y0, z0 in above equation can move freely along the muon line,

only connected to the quark loop by massless photons. Thus, Eq. (5.1), when evaluated

(ms-mud)0

(ms-mud)/3 (ms-mud)2
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139 MeV Pion, connected and 
disconnected LbL results (preliminary)

n left: connected,  right : leading disconnected

n Using AMA with 2,000 zMobius low modes, AMA

139MeV Pion 483
× 96 Lattice 21/32
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Figure 15. 483 × 96 lattice, with a−1 = 1.73GeV, mπ = 139MeV, mµ = 106MeV. Left: connected
diagrams contribution. Right: leading disconnected diagrams contribution.

• We use Lanczos, AMA, and zMobius techniques to speed up the computations.

• 65 configurations are used. They each are separated by 20 MD time units.
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• We use Lanczos, AMA, and zMobius techniques to speed up the computations.

• 65 configurations are used. They each are separated by 20 MD time units.
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(	Preliminary,		statistical	error	only	)
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Systematic errors

n Missing disconnected diagrams 
→ compute them

n Finite volume 

n Discretization error
→ a scaling study for 1/a = 2.7 GeV, 64 cube lattice 

at physical quark mass is proposed to ALCC at Argonne

n ...
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QCD box in QED box

n FV from quark is exponentially suppressed  ~ exp( - Mπ LQCD)   
n Dominant FV effects would be from  photon
n Let photon and muon propagate in larger (or infinite) box than that 

of quark

n We could examine different lepton/photon in the off-line manner 
e.g.  QED_L (Hayakwa-Uno 2008) with larger box, 
Twisting Averaging [Lehner TI LATTICE14] or 
Infinite Vol. Photon propagators    [C. Lehner, L.Jin, TI LATTICE15]

[Maintz group,  LATTICE16]

Finite Volume Effects - QCD box inside QED box 29/36

QCD Box

QED Box

x
′

y
′

z
′

x

y
z

xop

Figure 19. QCD box inside QED box illustration.

∑

r

[

∑

z,xop

1
2

x⃗op× ūs′(0) iF⃗
(

0; x=−
r

2
, y = +

r

2
; z, xop

)

us(0)

]

(36)

• The integrand decreases exponentially if one of r, z, or xop become large. The fact that
the sum is limited within the lattice only has exponentially suppressed effect. We have use
the moment method to take q→0 limit, eliminating that part of the “finite volume” effect.

• However, the integrand have implicit sum over x′, y ′, and z ′. Major finite volume effects
result from these three variables are limited within lattice.

• Solution: do not limit x′, y ′, and z ′ within the QCD box. We can sum over x′, y ′, and
z ′ in much larger QED boxes. We are also working on numerical strategies to compute
the sum in infinite volume. This way, we can capture the major part of the finite volume
effects with the QCD lattice just large enough to contain the quark loop.
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QED box in QCD box (contd.)

n Mπ=420 MeV, mµ=330 MeV, 1/a=1.7 GeV
n (16)3 = (1.8 fm)3 QCD box in (24)3= (2.7 fm)3 QED box

423MeV Pion 163
× 32 Lattice V.S. 243

× 64 Lattice 30/36

Ensemble mπ L QCD Size QED Size
F2(q2 = 0)
(α/π)3

16I 3.87 163× 32 163× 32 0.1158(8)
24I 5.81 243× 64 243× 64 0.2144(27)

16I-24 163× 32 243× 64 0.1674(22)

Table 4. arXiv:1511.05198. Finite volume effects studies. a−1 = 1.747 GeV, mπ = 423 MeV,
mµ = 332MeV.

• Large finite volume effects with these ensembles and muon mass.

• Increasing the QED box size help reducing the finite volume effect, but haven’t completely
fixed the problem.

• Suggesting significant QCD finite volume effect.

• The histogram plot may help us further investigating this QCD finite volume effect.
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the opposite of this choice, which can provide more information about QCD finite-volume

e↵ects:

Z0(x, y, z) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

3 if |x� y| > |x� z| and |x� y| > |y � z|
3/2 if |x� y| = |x� z| > |y � z| or |x� y| = |y � z| > |x� z|
1 if |x� y| = |x� z| = |y � z|
0 otherwise

.(5.2)

With this choice, in the small r region, the distances between x, y, z are all short, so the

QCD finite volume e↵ects should be small. The right plot of Figure 5.5 suggest that it is

indeed the case. In the small r region, where we control the QCD finite volume e↵ects,

the result from the 16I QCD/24 QED calculation agrees very well with 24I. However, as |r|
becomes larger, the quark loop evaluated in 16I is a↵ected by the boundary and begins to

deviate from the 24I results. Note because we use periodic boundary conditions for the quark

propagators, the maximum spatial separation between source and sink in any direction is 8

for quark propagators on the 16I lattice.

Figure 5.5: The plots show histograms of the contribution to F2 from di↵erent separations

|r| = |x � y|. The sum of all these points gives the final result for F2. The vertical lines at

|r| = 5 in the plots indicate the value of rmax. The left plot is evaluated with Z, so the small

r region includes most of the contribution. The right plot is evaluated with Z0 in place of Z,

so the QCD finite volume is better controlled in the small r region.
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Summary 

n Lattice calculation for g-2 calculation is improved very rapidly
n HLbL including leading disconnected diagrams : 

Many orders of magnitudes improvements
->  8 % stat error in connected,  13 % stat error in leading disconnected
• coordinate-space integral using analytic photon propagator with adaptive 

probability (point photon method)
• config-by-config conserved external current 
• take moment of relative coordinate to directly take q→0
• AMA, zMobius, 2000 low modes

n Still large systematic errors (missing disconnected, FV, discr. error, ... )
n Also direct 4pt method [Mainz group] and Dispersive analysis [ Colangelo

et al. 2014, 2015, Pauk&Vanderhaeghen 2014 ]
n Goal : HVP sub 1%,  HLbL 10% error 

24

(preliminary,	con+L-discon,		stat	err	only)



Future plans

n (discretization error) Nf=2+1 DWF/ Mobius ensemble at 
physical point, L=5.5 fm, a=0.083 fm, (64)3 at Mira, 
ALCC @Argonne  started to run

n (FV study)   QCD box in QED box at physical point
n Subleading Disconnected diagrams
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Lattice QCD method [Blum, 2003]

+
Using lattice QCD and continuum, 1-volume pQED

aµ(HVP) =
⇣
↵

⇡

⌘2
Z 1

0
dq2 f (q2) ⇧̂(q2)

f (q2) is known, ⇧̂(q2) is subtracted HVP, ⇧̂(q2) = ⇧(q2) � ⇧(0),
computed directly on the lattice

⇧µ⌫(q) =

Z
e iqxhjµ(x)j⌫(0)i jµ(x) =

X

i

Q
i

 ̄(x)�µ
 (x)

= ⇧(q2)(qµq⌫ � q2�µ⌫)

14

HVP from Lattice�

n  Analytically continue to Euclidean/space-like momentum K2 = - q2 >0 

n  Vector current  2pt function 

 

 

n  Low Q2, or long distance, part of �(Q2)  is   relevant for g-2 

  

 

 

 

	�

[	T.	Blum	PRL91	(2003)	052001	]�
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n  Dispersive approach from R-ratio  R(s) 
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Current conservation, subtraction, 
and coordinate space representation�

n  Current conservation =>  transverse tensor 

 

 

n  Coordinate space  vector 2 pt Green function C(t) is directly 

related to subtracted �(Q2)   [  Bernecker-Meyer 2011, ... ]� 

 

n  g-2 value is also related to C(t) with know kernel w(t) from QED. 

 

 

 

 

Approaches to the long-distance noise problem:

I HPQCD 2016: only uses lattice data up to 0.5fm–1.5fm,
beyond that multi-exponentials from fit

I RBC in progress: improved stochastic estimator

-40

-20

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40  45

a µ
 1

010

T

48 Z2 sources/config
Multi-step AMA with 2000-mode LMA (same cost)

0

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40  45

∆
 a
µ
 1

010

T

48 Z2 sources/config
Multi-step AMA with 2000-mode LMA (same cost)

19 / 35

8	

RBC/UKQCD	

Chiral	Ladce	quark	DWF	

physical	point	

Quark	Propagator	Low	Mode	(A2A)	

using	All-Mode	Averaging	(AMA)	
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48 Z2 sources/config
Multi-step AMA with 2000-mode LMA (same cost)
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n Check consistency between Lattice and R-ratio
n Short distance from Lattice, Long distance from R-ratio :   

error <= 1 %  at tlat/exp = 2fm

2.2	fm

28
2016	:	Disconnected,		charm,		QED,	isospin	breaking	effects	are	being	included

(	RBC/UKQCD	C.	Lehner et	al,		also	other	collaborations	)

0.7	%	error	



Backup slides
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n Fermion’s energy in the external magnetic field:

n Magnetic moment and spin gl : Lande g-factor
gl’s deviation from tree level value, 2 :

n

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e s⃗l

2ml
(2)

al =
gl − 2

2
(3)

aµ = (11 659 182.8 ± 4.9) × 10−10(4)

(5)

Date: July 4, 2012.
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Form factor :

After quantum correction ⇒

2 N. YAMADA

V (x) = −µ⃗l · B⃗(9)

µ⃗l = gl
e

2ml
S⃗l(10)

al =
gl − 2

2
(11)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(12)

F1(q
2) = 1, F2(q

2) = 0(13)

F1(0) = 1, F2(0) = al(14)

al = F2(0)(15)

Anomalous magnetic moment

BS

30

Formulation

! Magnetic property of lepton can be studied through examining its scattering
by a static magnetic field.
The amplitude can be represented as:

eū(p′′)

[
γµ F1(q

2) +
i

2m
σµν qν F2(q

2)

]
u(p′)Ae

µ(q⃗)

p′p′′

q

! The anomalous magnetic moment is the static limit of the magnetic form
factor F2(q

2):

aℓ = F2(0) = Z2M, M = lim
q2→0

Tr(Pν(p, q)Γ
ν)

where Γν is the proper vertex function with the external lepton on the mass
shell, and Pν(p, q) is the magnetic projection operator.
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Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′
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z, ν

y,σ x, ρ

xsrc xsnky
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xsrc xsnky
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z
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, ν

′ x
′
, ρ
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xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

Conserved current & moment method

n [conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex 
(external current)  is set to be conserved current (other three are local currents). All possible 
insertion are made to realize conservation of external currents config-by-config.

n [moment method , q2→0] By exploiting the translational covariance for fixed external 
momentum of lepton and external EM field, q->0 limit value is directly computed via the first 
moment of the relative coordinate, xop – (x+y)/2,  one could show

to directly get F2(0) without extrapolation.
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ū(p′)Γµ(p′, p)u(p) = ū(p′)
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Mπ=170 MeV cHLbL result (contd.)

“Exact” ... q = 2pi / L, 
“Conserved (current)” ... q=2pi/L, 3 diagrams
“Mom” ... moment method q->0, with AMA

Method F2/(α/π)3 Nconf Nprop

√
Var rmax SD LD ind-pair

Exact 0.0693(218) 47 58 + 8× 16 2.04 3 −0.0152(17) 0.0845(218) 0.0186

Conserved 0.1022(137) 13 (58 + 8× 16)× 7 1.78 3 0.0637(34) 0.0385(114) 0.0093

Mom. (approx) 0.0994(29) 23 (217 + 512) × 2× 4 1.08 5 0.0791(18) 0.0203(26) 0.0028

Mom. (corr) 0.0060(43) 23 (10 + 48) × 2× 4 0.44 2 0.0024(6) 0.0036(44) 0.0045

Mom. (tot) 0.1054(54) 23

Table VIII. Results from three variants of the exact photon method obtained from the 32ID ensem-

ble. The first row, labeled “Exact”, corresponds to the row labeled 32ID in Tab. VI. The second

row, labeled “Conserved” is similar except all three arrangements of the vertices x, y and z are

combined insuring that the external current is conserved on each configuration. The final three

rows are obtained from the moment method and are explained in the text.

while the preceding two rows “Mom. (approx)” and “Mom. (corr)” show separately the

approximate AMA results and the needed correction term. The “SD” and “LD” columns

give the results from the pairs with |r| ≤ rmax and |r| > rmax, respectively. The “ind-

pair” column gives the error that would be expected if the long-distance pairs were truly

independent. Note that the quantity F2(q2) is computed at q2 = (2π/L)2 for the first two

rows and at q2 = 0 for the final three rows. The final error shown for the moment method

on the fifth line of Tab. VIII is obtained by applying the jackknife method to the sum of

the approximate AMA result and the AMA correction term. The resulting error is similar

to what would be found were the statistical error on the approximate and correction terms

computed separately and added in quadrature.

We should emphasize that the moment-method result given in the final line of Tab. VIII

is the most important numerical result presented in this paper. It provides the cHLbL

contribution (calculated directly at q2 = 0) to g − 2 for the muon with a 5% statistical

accuracy for the case of a pion with mπ = 171 MeV using a (4.6 fm)3 spatial volume but

with a relatively coarse lattice spacing a with 1/a = 1.378 GeV. More information about the

conserved and moment method calculations presented in Tab. VIII can be found in Fig. 8

where histograms and scatter plots are presented as functions of the separation of the two

stochastically chosen points x and y.

As a final topic in this section we apply the conserved method and the moment method,
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• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.
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Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.
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Direct 4pt calculation for selected 
kinematical range

[ J. Green et al. Mainz group, Phys. Rev. Lek 115, 222003( 2015)] 
n Compute connected contribution of 4 pt function in momentum space
n Forward amplitudes related to γ*(Q1)γ*(Q2) -> hadron cross section via 

dispersion relation

n solid curve: model prediction
n π0 exchange is seen to be not dominant,

possibly due to heavy quark mass 
in the simulation (Mπ = 324 MeV) 

n disconnected quark diagram loop
in progress in 2016
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for some fixed functions f

1,2

and all values of {µ
a

}
and X

4

. The contact terms are present when two or
three lattice conserved currents coincide, and serve to
ensure that the conserved-current relations hold, e.g.,

�(X4)
µ4 ⇧lat

µ1µ2µ3µ4
= 0, where �(X)

µ

is the backward lat-
tice derivative.

The fully-connected contribution to Eq. (12) is evalu-
ated using the method of sequential propagators. First,
a point-source propagator is computed from X

3

. Then,
it is combined with the function f

1

or f

2

to form the
source for a new (sequential) propagator. These sequen-
tial propagators are then used to form sources for double-
sequential propagators that depend on both f

1

and f

2

.
Finally, the fully-connected contraction is formed using
all three kinds of propagators; this is illustrated in Fig. 2.
For generic complex f

1

and f

2

, this requires one point-
source, 16 sequential and 32 double-sequential propaga-
tors, although these counts can be reduced in various spe-
cial cases. We have verified that in our implementation
the four-point function matches the lattice perturbation
theory calculation if the gauge link variables are set to
unity, and that the conserved-current conditions hold on
each gauge configuration.

For evaluating the momentum-space correlator, we set
the functions to be plane waves, f

a

(X) = e

�iPa·X and
compute the Fourier modes with respect to X

4

. Thus,
⇧E

µ1µ2µ3µ4
(P

4

;P
1

, P

2

) can be evaluated e�ciently at fixed
P

1,2

for all P
4

available on the lattice.

FIG. 4. The dependence of the amplitude M
TT

on ⌫, both
photon virtualities being fixed at 0.377 GeV2, at three dif-
ferent pion masses. The dashed and dotted curves show the
⇡0 and ⇡0 + ⌘0 contributions (there is no ⌘ meson in two-
flavor QCD), the solid curve includes all single-meson and
⇡+⇡� contributions, and the dash-dotted curves additionally
include the high-energy contribution for the case of real pho-
tons at the physical pion mass.

IV. RESULTS

We have used three lattice QCD ensembles with two
degenerate flavors of non-perturbatively O(a) improved
Wilson quarks and a plaquette gauge action. The en-
sembles are at a single lattice spacing a = 0.063fm [16],
correspond to pion masses m

⇡

= 451, 324 and 277MeV,
and are respectively of spatial linear size 32, 48 and 48,
the time direction being twice as long; see [17] for more
details. Only the up and down quark contributions to
the electromagnetic current are included. The local vec-
tor current J

l

µ

is renormalized non-perturbatively [18].
The results shown here were obtained using fairly low
statistics, with a maximum of 300 samples.
Due to the finite volume of the lattice, the momenta

take discrete values. The subtracted forward scatter-
ing amplitude, M

TT

(�Q

2

1

,�Q

2

2

, ⌫)�M
TT

(�Q

2

1

,�Q

2

2

, 0)
(which is even in ⌫), is obtained by linearly interpolating
the second term between the available Q

2

2

to match the
first term. It is shown in Fig. 3 at fixed pion mass and
fixed Q

2

1

, and also in Fig. 4 with both photon virtualities
fixed. For the latter, linear interpolation in Q

2

2

was also
used in the first term, except for the points at maximal
⌫. At fixed ⌫, the amplitude tends to decrease as the
virtualities are increased, at fixed virtualities it tends to
increase with |⌫|, and at fixed kinematics we do not find
a significant dependence on the pion mass.

We compare the lattice data with results from the sum
rule, Eq. (10), using a phenomenological model for the
transverse �

⇤
�

⇤ ! hadrons cross section, �
0

+ �

2

, based
on Ref. [8]. We include pseudoscalar, scalar, axial-vector,
and tensor mesons, as well as ⇡

+

⇡

� states [19] (using
scalar QED dressed with form factors). The �

⇤
�

⇤ !
meson form factors have not been measured experi-

Mhad (�
⇤(Q1)�

⇤(Q2) ! �⇤(Q1)�
⇤(Q2))

$ �0,2 (�
⇤(Q1)�

⇤(Q2) ! had.)

Direct calculation of hadronic light-by-light scattering Jeremy Green

we compute the local-conserved-conserved-conserved four-point function. In position space:

Ppos
µ1µ2µ3µ4(x1,x2,0,x4) =

D
Jl

µ3
(0)

h
Jc

µ1
(x1)Jc

µ2
(x2)Jc

µ4
(x4)+dµ1µ2dx1x2Tµ1(x1)Jc

µ4
(x4)

+dµ1µ4dx1x4Tµ4(x4)Jc
µ2
(x2)+dµ2µ4dx2x4Tµ4(x4)Jc

µ1
(x1)

+dµ1µ4dµ2µ4dx1x4dx2x4Jc
µ4
(x4)

iE
,

(2.2)

where the contact terms ensure that this satisfies the conserved-current Ward identities using the
backward lattice derivative D,

Dx1
µ1

Ppos
µ1µ2µ3µ4 = Dx2

µ2
Ppos

µ1µ2µ3µ4 = Dx4
µ4

Ppos
µ1µ2µ3µ4 = 0. (2.3)

In our implementation, we have verified that these hold on each gauge configuration.

Figure 2: The five classes of quark contractions for four-point functions. In this work, we compute only the
leftmost, fully-connected set of contractions.

There are five classes of quark contractions (Fig. 2) required to evaluate the four-point func-
tion. We evaluate only the fully-connected ones, with fixed kernels summed over x1 and x2:

Ppos0

µ1µ2µ3µ4(x4; f1, f2) = Â
x1,x2

f1(x2) f2(x2)Ppos
µ1µ2µ3µ4(x1,x2,0,x4). (2.4)

Using fixed kernels allows this to be evaluated using the combination of a point-source propagator
from the origin, and single- and double-sequential propagators that contain one or both of the
kernels. If we define Jµ(x) and Tµ(x) to be the point-split insertions in Eq. (2.1), then these three
kinds of propagators are

S0(x) ⌘ S(x,0), S f µ ⌘ S

Â
x

f (x)Jµ(x)S0

�
,

S f µ;gn ⌘ S

Â
x

f (x)Jµ(x)Sgn +Â
x

g(x)Jn(x)S f µ +dµn Â
x

f (x)g(x)Tµ(x)S0

�
,

(2.5)

and, noting that Jµ(x) is g5-antihermitian and Tµ(x) is g5-hermitian, the connected four-point
function is obtained as

Ppos0,conn
µ1µ2µ3µ4(x4; f1, f2) = �

D
Tr
⇣

gµ3g5

h
S†

f ⇤
1 µ1; f ⇤

2 µ2
g5Jµ4(x4)S0 +S†

0g5Jµ4(x4)S f1µ1; f2;µ2

�S†
f ⇤
2 µ2

g5Jµ4(x4)S f1µ1 �S†
f ⇤
1 µ1

g5Jµ4(x4)S f2µ2

+dµ1µ4 f1(x4)
�
S†

0g5Tµ4(x4)S f2µ2 �S†
f ⇤
2 µ2

g5Tµ4(x4)S0
�

+dµ2µ4 f2(x4)
�
S†

0g5Tµ4(x4)S f1µ1 �S†
f ⇤
1 µ1

g5Tµ4(x4)S0
�

+dµ1µ4dµ2µ4 f1(x4) f2(x4)S†
0g5Jµ4(x4)S0

i⌘E
.

(2.6)

3

Q1

Q2

Q1

Q2
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Dispersive approach for HLbL
[ Colangelo et al. 2014, 2015, Pauk&Vanderhaeghen 2014 ]

n Using crossing symmetry, gauge invariance, 138 form factors are 
reduced 12 relevant for HLbL

n π0, η,η’ exchange,  pion-loop (exactly scalar QED with pion Form 
factor)

n other contribution is neglected

and the ˆ

⇧

i

are needed for the reduced kinematics

s = (q1 + q2)
2, t = q2

2 , u = q2
1 , q2

1 , q2
2 , q2

3 = (q1 + q2)
2, k2

= q2
4 = 0. (4.20)

The explicit result of the trace calculation and the contraction of the Lorentz indices is given in App. E.1.
We can reduce the number of terms contributing to (g � 2)

µ

further by using the symmetry under the
exchange of the momenta q1 $ �q2: the loop integration measure and the product of propagators are invariant
under this transformation, while the kernels ˆT

i

transform under q1 $ �q2 as

ˆT1  ! ˆT1, ˆT2  ! ˆT3, ˆT4  ! ˆT4, ˆT5  ! ˆT6,

ˆT7  ! ˆT8, ˆT9  ! ˆT12, ˆT10  ! ˆT13, ˆT11  ! ˆT14,

ˆT15  ! ˆT15, ˆT16  ! ˆT16, ˆT17  ! ˆT18, ˆT19  ! � ˆT19. (4.21)

For the reduced kinematics (4.20) the exchange q1 $ �q2 is equivalent to the crossing transformation t $ u,
q2
1 $ q2

2 . With the help of the crossing relations of the scalar functions ⇧

i

, it is easy to check that the ˆ

⇧

i

transform analogously to the kernels ˆT
i

, i.e.

ˆ

⇧1  ! ˆ

⇧1, ˆ

⇧2  ! ˆ

⇧3, ˆ

⇧4  ! ˆ

⇧4, ˆ

⇧5  ! ˆ

⇧6,

ˆ

⇧7  ! ˆ

⇧8, ˆ

⇧9  ! ˆ

⇧12, ˆ

⇧10  ! ˆ

⇧13, ˆ

⇧11  ! ˆ

⇧14,

ˆ

⇧15  ! ˆ

⇧15, ˆ

⇧16  ! ˆ

⇧16, ˆ

⇧17  ! ˆ

⇧18, ˆ

⇧19  ! �ˆ

⇧19. (4.22)

Therefore, it is convenient to write the HLbL contribution to (g � 2)

µ

as a sum of 12 terms:

aHLbL
µ

= �e6

Z

d4q1

(2⇡)

4

d4q2

(2⇡)

4

1

q2
1q2

2(q1 + q2)
2

1

(p + q1)
2 �m2

µ

1

(p� q2)
2 �m2

µ

⇥
12
X

j=1

⇠
j

ˆT
ij (q1, q2; p)

ˆ

⇧

ij (q1, q2,�q1 � q2), (4.23)

where

{i
j

|j = 1, . . . , 12} = {1, 2, 4, 5, 7, 9, 10, 14, 15, 16, 17, 19},

{⇠
j

|j = 1, . . . , 12} = {1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1}. (4.24)

Note that the first two terms in this sum correspond to the well-known result for the pion-pole contribution [19]
(up to conventions: exchange of ˆT1 and ˆT2, the explicit factor ⇠2 = 2, and symmetrization of ˆT1).

In (4.23), the integrand depends on the five scalar products q2
1 , q2

2 , q1·q2, p·q1, and p·q2, where the dependence
on the last two is given explicitly (the scalar functions only depend on q2

1 , q2
2 , and q1 · q2). Therefore, five of

the eight integrals can be performed without knowledge of the scalar functions. The same integrals as in the
case of the pion-pole contribution occur [3, 19], which have been solved with the technique of Gegenbauer
polynomials [50]. This method has been applied before to the full HLbL contribution in the context of vector-
meson-dominance and hidden-local-symmetry models [51, 52].

We perform a Wick rotation of the momenta q1, q2, and p (see Sect. 4.4) and denote the Wick-rotated
Euclidean momenta by capital letters Q1, Q2, and P . Note that Q2

1 = �q2
1 , Q2

2 = �q2
2 , P 2

= �m2
µ

. Since aHLbL
µ

is a pure number, it does not depend on the direction of the momentum P of the muon, hence we can take the
angular average by integrating over the four-dimensional hypersphere:

aHLbL
µ

=

Z

d⌦4(P )

2⇡2
aHLbL

µ

. (4.25)

21

Digression: why we disagree with Arkady

=
Fπ0γ∗γ∗(q2

1 , q
2
2)Fπ0γ∗γ∗(q2

3 , q
2
4)

s − M2
π

Separation into subproblems:

1 Dispersive reconstruction of the full HLbL tensor ⇒ Mandelstam variables s, t, u and

general, fixed virtualities q2
i

2 Perform limit q4 → 0, then momentum integrals in g − 2

↪→ pion pole completely unambiguous in this framework

M. Hoferichter (Institute for Nuclear Theory) HLbL scattering: a dispersive approach Seattle, September 29, 2015 11

Setting up the dispersive calculation: ππ intermediate states

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

In JHEP 2014 paper

ΠFsQED
µνλσ = F V

π

(

q2
1

)

F V
π

(

q2
2

)

F V
π

(

q2
3

)

×

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

Separate contribution with two simultaneous cuts

Analytic properties like the box diagram in sQED

Triangle and bulb required by gauge invariance

Multiplication with vector form factor F V
π gives correct q2-dependence ⇒ FsQED

Claim: FsQED is not an approximation Ππ-box
µνλσ = ΠFsQED

µνλσ

M. Hoferichter (Institute for Nuclear Theory) HLbL scattering: a dispersive approach Seattle, September 29, 2015 12
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Continuum Infinite Volume
( a.k.a HVP way )               .  

n One could also use infinite volume/continuum lepton&photon
diagram in coordinate space
[ J. Green et al. Mainz group, LAT16 proceedings]

n Techniques in continuum model calculation [ Knect Nyffeler 2002; 
Jegerlehner Nyffeler 2009 ] : angle average over muon momentum, 
and carry out angle of two virtual photons 

Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD

x,μ y,λ0,	ν

x,μ z,	ν
y,λ

p
ρ’σ’

4

In summary,

L(x1, x2) =
X

m,l

l+mX

k=|l�m|
step=2

(�1)kC
k

(x̂1x̂2) (31)

⇥
Z

dQ1dQ2
4Z1Z2

m

2
Q1Q2X1X2

(�Z1Z2)l

l + 1
J

k+1(Q1X1)Jk+1(Q2X2) (32)

⇥

✓(1�Q2/Q1)

Q

2
1

✓
Q2

Q1

◆
m

+
✓(1�Q1/Q2)

Q

2
2

✓
Q1

Q2

◆
m

�
(33)

=
X

m,l

l+mX

k=|l�m|
step=2

(�1)k+l4C
k

(x̂1x̂2)

(l + 1)M2
X1X2

(34)

⇥
h Z

Q1>Q2

dQ1dQ2
(Z1Z2)l+1

Q

6
1Q

4
2

✓
Q2

Q1

◆
m

J

k+1(Q1X1)Jk+1(Q2X2) (35)

+

Z

Q2>Q1

dQ1dQ2
(Z1Z2)l+1

Q

4
1Q

6
2

✓
Q1

Q2

◆
m

J

k+1(Q1X1)Jk+1(Q2X2)
i

(36)

where

Z

i

=
Q

2
i

+ 2m2 �
p

(Q2
i

+ 2m2)2 � 4m2
Q

2
i

2mQ

i

(37)

=
2mQ

i

Q

2
i

+ 2m2 +
p

(Q2
i

+ 2m2)2 � 4m2
Q

2
i

(38)

It seems L(x1, x2) = L(x2, x1) I am puzzled why this is not x1 $,�x2, perhaps

indicating some mistake or a funny convention in Fourier transform. Also there

may be a way to make this nested 2 dim integral as a product of two 1-dim

integral, but can’t find so far.,

III. LBL

Proj⇢�(p) =
1

48m
(
/

p+m)[�⇢

, �

�](
/

p+m) , (39)

Lepµ⌫�(p; q1, q2) =
1

q

2
1q

2
2(q1 + q2)2

⇥ 1

(p� q1)2 �m

2

1

(p� q1 � q2)2 �m

2

⇥ �

µ(
/

p�
/

q

1
+m)�⌫(

/

p�
/

q

1
�

/

q

2
+m)��

, (40)

F̂2(0) = �ie

6

Z
d

4
q1

(2⇡)4

Z
d

4
q2

(2⇡)4
tr


Proj⇢�(p)Lepµ⌫�(p; q1, q2)

@

@k

⇢

⇧
µ⌫��

(q1, q2, q3)

�
.

(41)
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Can Lattice produce a counter part ?
[ J. Bijnens ]

Status of the
muon g-2

light by light
contribution

Johan Bijnens

Overview

HLbL
General
properties

π
0-exchange

π-loop
Quark-loop
Summary

Future

Conclusions

14/48

π
0 exchange

Which momentum regimes important studied: JB and

J. Prades, Mod. Phys. Lett. A 22 (2007) 767 [hep-ph/0702170]

aµ =

∫

dl1dl2a
LL
µ with li = log(Pi/GeV )

 0.1
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 7e-10

aµ
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P2

aµ
LL(VMD)
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LL(KN)

Which momentum regions do what:
volume under the plot ∝ aµ
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Hadronic Vacuum Polarization (HVP) 
contribution to g-2

37



Leading order of hadronic contribution 
(HVP)

n Hadronic vacuum polarization (HVP)

quark’s EM current : 
n Optical Theorem 

n Analycity

38

Vμ Vν

Vµ =
X

f

Qf f̄�µf

= (q2gµ� � qµq�)�V (q
2)

Im�V (s) =
s

4⇥�
⇤
tot

(e+e� ! X)

�V (s)��V (0) =
k2

⇥

Z 1

4m2
⇡

ds
Im�V (s)

s(s� k2 � i�)

Dispersion relations and VP insertions in g � 2

Starting point:
� Optical Theorem (unitarity) for the photon propagator

Im�⇤⇥(s) =
s

4⇤�
⌅tot(e+e� ⇥ anything)

� Analyticity (causality), may be expressed in form of a so–called (subtracted)
dispersion relation

�⇤⇥(k
2) � �⇤⇥(0) =

k2

⇤

⌅�

0

ds
Im�⇤⇥(s)

s (s � k2 � i⇧)
.

� �
had ⇥

�
� had
� (q2)

�

had

2

� ⇥had
tot (q2)
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Leading order of hadronic contribution 
(HVP)

n Hadronic vacuum polarization (HVP) 

×

Hagiwara,	et	al.
J.Phys.	G38,085003
(2011)

r w
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HVP from experimental data

n From experimental e+ e- total cross section  
σtotal(e+e-) and dispersion relation

time like   q2 = s >= 4 mπ
2

EQUATIONS

N. YAMADA

aHVP
µ =

1

4π2

∫ ∞

4m2
π

dsK(s)σtotal(s)(1)

Πµν(q
2) =

∫
d4x

(2π)4
e−iq·x⟨0|T [jµ(x)jν(0)]|0⟩|0⟩(2)

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p2 + k2)γρS

(µ)(p1 + k1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(3)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](4)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(5)

Breakdown

aSM
µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

Date: July 10, 2012.
1

✕

aHVP,LO
µ = (694.91± 4.27)⇥ 10�10

aHVP,HO
µ = (�9.84± 0.07)⇥ 10�10

“Trick” applies to higher order hadronic VP contributions

h e h h h
µ

�

h

a) b) c) d)

Kinoshita, Nizic, Okamoto 1985, Krause 1996, ...
as well as to analytic calculations of higher order diagrams like

Ia Ib Ic Id
µ

�1

�2
�3 �1

�2
�1 �2

�1

3–loop: Hoang et al 95, 4–loop: Broadhurst, Kataev, Tarasov 93, Kinoshita et al
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[		~	0.6	%	err	]
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F. Jegerlehner FCCP2015 summary
including BES-III 

Jegerlehner FCCP2015 summary (⌧ $ e+e�):

150 200 250

excl. �
NSK (e+e�)
177.8 ± 6.9

[3.3 �]

NSK+KLOE (e+e�)
173.8 ± 6.6

[3.9 �]

NSK+BaBar (e+e�)
181.7 ± 6.3

[3.1 �]

NSK+BESIII (e+e�)
177.6 ± 6.8

[3.4 �]

ALL (e+e�)
177.8 ± 6.2

[3.5 �]

incl. �
NSK (e+e�+�)
178.1 ± 5.9

[3.6 �]

NSK+KLOE (e+e�+�)
174.1 ± 5.6

[4.1 �]

NSK+BaBar (e+e�+�)
182.0 ± 5.4

[3.3 �]

NSK+BESIII (e+e�+�)
177.9 ± 5.8

[3.7 �]

ALL (e+e�+�)
178.1 ± 5.3

[3.8 �]

experiment
BNL-E821 (world average)
208.9 ± 6.3

aµ⇥1010-11659000best

3.8�

F. Jegerlehner FCCP 2015, Capri, Sept. 10-12, 2015 11
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Lattice QCD method [Blum, 2003]

+
Using lattice QCD and continuum, 1-volume pQED

aµ(HVP) =
⇣
↵

⇡

⌘2
Z 1

0
dq2 f (q2) ⇧̂(q2)

f (q2) is known, ⇧̂(q2) is subtracted HVP, ⇧̂(q2) = ⇧(q2) � ⇧(0),
computed directly on the lattice

⇧µ⌫(q) =

Z
e iqxhjµ(x)j⌫(0)i jµ(x) =

X

i

Q
i

 ̄(x)�µ
 (x)

= ⇧(q2)(qµq⌫ � q2�µ⌫)

14

HVP from Lattice�

n  Analytically continue to Euclidean/space-like momentum K2 = - q2 >0 

n  Vector current  2pt function 

 

 

n  Low Q2, or long distance, part of �(Q2)  is   relevant for g-2 

  

 

 

 

	�

[	T.	Blum	PRL91	(2003)	052001	]�
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(plan B) Interplays between lattice 
and dispersive approach  g-2�

n  Dispersive approach from R-ratio  R(s) 
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also	[	ETMC,	Mainz,	...	]	� 45	
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Current conservation, subtraction, 
and coordinate space representation�

n  Current conservation =>  transverse tensor 

 

 

n  Coordinate space  vector 2 pt Green function C(t) is directly 

related to subtracted �(Q2)   [  Bernecker-Meyer 2011, ... ]� 

 

n  g-2 value is also related to C(t) with know kernel w(t) from QED. 

 

 

 

 

Approaches to the long-distance noise problem:

I HPQCD 2016: only uses lattice data up to 0.5fm–1.5fm,
beyond that multi-exponentials from fit

I RBC in progress: improved stochastic estimator
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8	

RBC/UKQCD	

Chiral	Ladce	quark	DWF	

physical	point	

Quark	Propagator	Low	Mode	(A2A)	

using	All-Mode	Averaging	(AMA)	
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48 Z2 sources/config
Multi-step AMA with 2000-mode LMA (same cost)
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(plan B)   Interplay between 
Lattice and Experiment

n Check consistency between Lattice and R-ratio
n Short distance from Lattice, Long distance from R-ratio :   

error <= 1%  at tlat/exp = 2fm

2.2	fm
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disconnected quark loop contribution �

n  [ C. Lehner et al. (RBC/UKQCD 2015,  arXiv:1512.09054,  PRL) ] 

n  Very challenging calculation due to statistical noise  

n  Small contribution,  vanishes in SU(3) limit,  

    Qu+Qd+Qs = 0 

n  Use low mode of quark propagator, treat it exactly  

     ( all-to-all propagator with sparse random source ) 

n  First non-zero signal  Leading isospin breaking correction to the HVP

•    Main obstacle in implementing this method (in general): , 
➡many diagrams have to be computed 
➡including the 3-pt, 4-pt functions and the disconnected ones (beyond el-quenched) 

• Computation with Nf=2 O(a) improved Wilson configurations, …

(a) (b) (c) (d) (e)

X

(f)

X

(g)

X

(h)

X

(i)

Figure 1: Contributions to the leading isospin breaking e↵ects to the connected part of the HVP.

(a) (b)

Figure 2: Some examples of the disconnected contributions which are part of the leading isospin breaking
e↵ects to the connected part of the HVP, beyond electro-quenched approximation.
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0
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In this case, only diagrams in Figure 1 contribute.
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O(mu �md)

•    In the phenomenological determination of              , correctly applied IB correction 
resolved the discrepancy between           and     data   [Jegerlehner,Szafron ‘11] 

•    R123 method [arXiv:1303.4896] for computing leading isospin breaking corrections(LIBE) 
➡Applied to the connected pat of the HVP   

•    Main advantage w. respect to simulating QED+QCD: 
➡Diagrams obtained individually (before multiplying with               ,                         coeff.) 
➡No extrapolation in 

• Leading isospin breaking correction (electro-quenched approximation):

O(↵em)

ahad,LO
µ

↵em

e+e� ⌧

The Leading Order Hadronic Vacuum Polarization

Quark-connected piece with > 90% of the con-
tribution with by far dominant part from up and
down quark loops (Below focus on light contri-
bution only)

Quark-disconnected piece with ⇡ 1.5% of the
contribution (1/5 suppression already through
charge factors); arXiv:1512.09054, accepted for
PRL

QED and isospin-breaking corrections, esti-
mated at the few-per-cent level
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Disconnected Contribution to HVP (C. Lehner) [Blum et al., 2015a]

Low mode separation crucial since light- strange don’t cancel

contributions above m
s

suppressed

(sparse) random sources e↵ective for high modes

⇧(q2) � ⇧(0) =
X

t

✓
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Partial contribution of lattice data for t ≤ T

FIG. 5. The sum of LT and FT defined in Eqs. (13) and (14)

has a plateau from which we read o� aHVP (LO) DISC
µ . The

lower panel compares the partial sums LT for all values of
T with our final result for aHVP (LO) DISC

µ with its statistical
error band.

we report our final result

a

HVP (LO) DISC
µ = �9.6(3.3)(2.3) ⇥ 10�10

, (15)

where the first error is statistical and the second system-
atic.

Before concluding, we note that our result appears to
be dominated by very low energy scales. This is not sur-
prising since the signal is expressed explicitly as di↵er-
ence of light-quark and strange-quark Dirac propagators.
We therefore expect energy scales significantly above the
strange mass to be suppressed. We already observed this
above in the dominance of low modes of the Dirac opera-
tor for our signal. Furthermore, our result is statistically
consistent with the one-loop ChPT two-pion contribution
of Fig. 6.

CONCLUSION

We have presented the first ab-initio calculation of the
hadronic vacuum polarization disconnected contribution
to the muon anomalous magnetic moment at physical
pion mass. We were able to obtain our result with modest

-8
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 (C
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LT for 323 x 64 lattice
LT for 483 x 96 lattice

LT for 643 x 128 lattice
LT for 963 x 192 lattice

FIG. 6. The leading-order pion-loop contribution in finite-
volume ChPT as function of volume.

computational e↵ort utilizing a refined noise-reduction
technique explained above. This computation addresses
one of the major challenges for a first-principles lattice
QCD computation of a

HVP
µ at percent or sub-percent pre-

cision, necessary to match the anticipated reduction in
experimental uncertainty. The uncertainty of the result
presented here is already slightly below the current ex-
perimental precision and can be reduced further by a
straightforward numerical e↵ort.
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�(9.6 ± 3.3) ⇥ 10�10 or about 1.5% of total at 3 � level

18

HVP quark-disconnected contribution

First results at physical pion mass with a statistical signal
RBC/UKQCD arXiv:1512.09054, accepted by PRL

Statistics is clearly the bottleneck

New stochastic estimator allowed us to get result

aHVP (LO) DISC
µ = �9.6(3.3)stat(2.3)sys ⇥ 10�10 (13)

from 20 configurations at physical pion mass and 45
propagators/configuration.
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HVP Summary and future prospects

• HVP on Lattice is rapidly progress
• Statistic error is well control 

(low mode, AMA... )
• Disconnected diagram is managed

• Systematic errors

Ø Finite Volume ( ππ model ? )
Ø EM Isospin, ud mass difference
Ø charm
Ø discretization error

• (Plan-B)
Interplay between Lattice and R-ratio ?

46
Hartmut	Wittig Hadronic	contributions	to	(g–2) 43

Summary	on aµ
hvp

a(s) hvp
µ · 1010

a(c) hvp
µ · 1010

light	(u,d) ≈	90%
strange	(s) 	≈		8%
charm	(c) 	≈		2%

Individual	flavour	contribu6ons:

ahvp
µ · 1010

Hartmut	Wittig Hadronic	contributions	to	(g–2) 43

Summary	on aµ
hvp

a(s) hvp
µ · 1010

a(c) hvp
µ · 1010

light	(u,d) ≈	90%
strange	(s) 	≈		8%
charm	(c) 	≈		2%

Individual	flavour	contribu6ons:

ahvp
µ · 1010

[H.	Wittig,	LAT16]



Sub-percent accuracy on Physical point

n now on-physical point (Mπ=135 MeV), 
a few lattice spacing  a-1 = 1.7 and 2.4 GeV, V~(5.5 fm)3  

47

Physics measurements ‘‘Detectors’’

• Measurements physical observables on the vacuum ensemble.

⌥O� =

�
DUµ Prob[Uµ] ⇥ O[Uµ]

• Could do Analysis on many configurations independently (trivial parallel jobs) �⌅
could also use PC Clusters

• We made hadron operator (EW operators) from quark, and let the quark propagates on
each of the generated QCD configuration (by solving the Dirac Eq)

• Obtain hadron mass or QCD matrix elements of operators

u

d

µ�

⇤̄µ

W

⟨0|d̄�5u(0)|⌅⟩ eipx⇥
2E
⟨⌅|ū�mu�5d|0⟩ ×GFVudmµ⇤̄(1− �5)µ

M(⌅ ⇤ µ⇤) ⇥ if⇥qµ�GFVudmµ(⇤µ)L

= ⇧⌅(q)|ū�µ�5d(0)|0⌃�GFVudmµ(⇤µ)L

Taku Izubuchi, QCD Structure, Wuhan, October 9, 2012 6

π	+ →			μ+ +	ν μ	



Sub-percent accuracy on Physical point

n now adding on-physical point (Mπ=135 MeV), 
2 lattice spacing  a-1 = 1.7 and 2.4 GeV, V~(5.5 fm)3  !

48

6

Simplest Matrix Elements:  fπ and fK

s̄

K+

u

Kl2
leptons

( %)

( . )e

63

1 6 10e
5

#

n o

o

n
+

+ -

f
:

70 80 90 100 110 120 130 140 150

2000 quench 137.0(11.0)

2007 127.0( 4.0)

2008 124.1( 7.8)

2010 124.0( 5.4)

2014 130.2( 0.9)

2013 FLAG 130.2( 1.4)

RBC/UKQCD f
:

fK
100 110 120 130 140 150 160 170

2000 quench 156.0( 8.0)

2007 157.0( 5.0)

2008 149.6( 7.3)

2010 149.0( 4.5)

2014 155.5( 0.8)

2013 FLAG 156.3( 0.9)

RBC/UKQCD fK

• Inputs are mπ, mK and m�

• Use SU(2) ChPT to extrapolate

• Now have ensembles with essentially 
physical quark masses (few percent) 
arXiv:1411.7017 (RBC-UKQCD)

• fπ and fK are predictions

[	R.	Mawhinney ]	



(plan B) Interplays between lattice and 
dispersive approach  g-2

n R-Ratio error  ~ 0.6%, HPQCD error ~ 2%
n Goal would be ~ 0.2 %
n Dispersive approach from R-ratio  R(s)
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also	[	ETMC,	Mainz,	...	] 49



n Can we combine dispersive & lattice and get more precise (g-2)HVP 
than both ?      [ 2011 Bernecker Meyer ]

n Inverse Fourier trans to Euclidean vector correlator
n Relevant for g-2   Q2 = (mµ/2)2 = 0.0025 GeV2

n It may be interesting to think 
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0 10 20 30 40 50

0

0.05

0.1

0.15

0.2

P
2
 = 0.1 GeV

2

Black	:	R-ratio	,	alpha	QED	(Jegerlehner)
Red	:	Lattice	(DWF)

2.2	fm

50



AMA+MADWF(fastPV)+zMobius accelerations
n We utilize  complexified 5d hopping term of Mobius action [Brower, Neff, Orginos], 

zMobius,  for a better approximation of the sign function.

n 1/a~2 GeV, Ls=48 Shamir ~  Ls=24 Mobius (b=1.5, c=0.5) ~ Ls=10 zMobius (b_s, c_s
complex varying) ~5 times saving for cost AND memory

n The even/odd preconditioning is optimized (sym2 precondition) to suppress the growth of 
condition number due to order of magnitudes hierarchy of b_s, c_s [also Neff found this]

n Fast Pauli Villars (mf=1) solve, needed for the exact solve of AMA via MADWF (Yin, 
Mawhinney) is speed up by a factor of 4 or more by Fourier acceleration in 5D  
[Edward, Heller]

n All in all, sloppy solve compared to the traditional CG is 160 times faster on the physical 
point 48 cube case. And ~100 and 200 times for the 32 cube, Mpi=170 MeV, 140, in this 
proposal (1,200 eigenV for 32cube) .

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012 Ls |eps(48cube) – eps(zMobius)|

6 0.0124

8 0.00127

10 0.000110

12 8.05e-6
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n O(imp) has smaller error
O(appx) need to be cheap & not to be too 
accurate 
NG suppresses the bulk part of noise cheaply

Expensive		:		infrequently	measured	 Cheap			:	 frequently	measured	

Lattice	
Symmetry

Covariant Approximation Averaging ( CAA ) 
a new class of Error reduction techniques

[ Blum,	TI,	Shintani PRD	88	(2013)	094503	]

Original

unbiased
imporved

ensemble

ensemble	

e

e

+

New	bias-free	estimator	even	without	covariant
approximation	by	a	stochastic	choice	of	source
location	for	the	exact/rest	computation	is	now
available		:					Appendix	D		of		arXiv:1402.0244	
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Examples of Covariant Approximations 
(contd.)

n All Mode Averaging
AMA
Sloppy CG  or
Polynomial 
approximations

0 0.5 1 1.5 2 2.5

1

10

100

1000

Figure 3: Polynomial approximation of 1/�, Npoly = 10, the mini-max approximation for
the relative error, for � � [0.052, 1.672].

8

accuracy	control	:
• low	mode	part	:	#	of	eig-mode
• mid-high	mode	:		degree	of	poly.If	quark	mass	is	heavy,	e.g.	 ~	strange,	

low	mode	isolation	may	be	unneccesary 53


