

Recent Results from T2K

Alessandro Bravar on behalf of the T2K Collaboration

TAU 2016 Beijing Sept. 22, '16

The T2K Experiment

far detector Super–Kamiokande

near detectors

Off-axis: ND280 On-axis: INGRID

Neutrino Source at J-PARC

(anti-) ν beam is created in the decay in flight of π / K / μ produced by interactions of 30-GeV protons on a 90-cm long graphite rod

2.5° off-axis neutrino beam

Very narrow energy spectrum

Neutrino beam energy "tuned" to oscillation maximum

Reduced high-energy tails

E, almost independent of parent pion energy

Neutrino beam predictions rely on experimental hadro-production data (NA61) for modeling the primary proton beam interactions in the T2K target Horn focusing cancels partially the p_T dependence of the parent meson

Data Collected

Reached beam power of 420 kW

Accumulated POT - protons on target (May 27, 2016)

 15.10×10^{20} in total

 7.57×10^{20} in v mode

 $7.53 \times 10^{20} \text{ in } \overline{\text{v}} \text{ mode}$

3 Flavor Neutrino Mixing

Flavor eigenstates
$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = U_{PMNS} \left(\mathcal{G}_{12}, \mathcal{G}_{23}, \mathcal{G}_{13}, \mathcal{S}_{CP} \right) \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \text{ eigenstates}$$
 eigenstates

Pontecorvo-Maki-Nakagawa-Sakata Matrix (CKM matrix of lepton sector)

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \cdot \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{+i\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \cdot \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-i\alpha/2} & 0 \\ 0 & 0 & e^{-i\beta/2} \end{pmatrix}$$

$$\theta_{23} = 45^{0}$$
 $\theta_{13} \sim 8^{0}$ $\theta_{12} \sim 34^{0}$ SuperK (atm. ν) Daya Bay solar ν neutrinoless K2K / Minos Reno KamLAND double beta T2K T2K

$$|U|_{3\sigma}^{\rm LID} = \begin{pmatrix} 0.798 \to 0.843 & 0.517 \to 0.584 & 0.137 \to 0.158 \\ 0.232 \to 0.520 & 0.445 \to 0.697 & 0.617 \to 0.789 \\ 0.249 \to 0.529 & 0.462 \to 0.708 & 0.597 \to 0.773 \end{pmatrix}$$

Neutrino Oscillations and Time Evolution

$$\begin{split} |v_{\alpha}(t=0)\rangle &= \sum_{i}^{t} U_{\alpha i} |v_{i}\rangle & v_{\alpha} & v_{\alpha} & v_{\alpha} & v_{\alpha} \\ |v_{\alpha}(t=0)\rangle &= \sum_{i}^{t} U_{\alpha i} |v_{i}\rangle & E_{i} \approx p + \frac{m_{i}^{2}}{2p} \\ P_{\alpha \to \beta} &= \left| \left\langle v_{\beta}(t) \middle| v_{\alpha}(t=0) \right\rangle \right|^{2} = \sum_{i}^{t} \left| U_{\alpha i} U_{\beta i} \middle|^{2} + \sum_{i \neq j}^{t} U_{\alpha i} U_{\beta i}^{*} U_{\alpha i}^{*} U_{\beta i}^{*} U_{\alpha i}^{*} U_{\beta i}^{*} \right| \\ P_{\mu \to e} &= 4C_{13}^{2} S_{13}^{2} S_{23}^{2} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E} (1 + \frac{2a}{\Delta m_{31}^{2}} (1 - 2S_{13}^{2})) & \text{leading, } \theta_{13} \text{ driven} \\ &+ 8C_{13}^{2} S_{12} S_{13} S_{23} (C_{12} C_{23} \cos \delta - S_{12} S_{13} S_{23}) \cos \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \sin \frac{\Delta m_{21}^{2} L}{4E} & \text{CPC} \\ &- 8C_{13}^{2} C_{12} C_{23} S_{12} S_{13} S_{23} \sin \delta \sin \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \sin \frac{\Delta m_{21}^{2} L}{4E} & \text{CPV} \\ &+ 4S_{12}^{2} C_{13}^{2} (C_{12}^{2} C_{23}^{2} + S_{12}^{2} S_{23}^{2} S_{13}^{2} - 2C_{12} C_{23} S_{12} S_{23} S_{13} \cos \delta) \sin^{2} \frac{\Delta m_{21}^{2} L}{4E} & \text{solar} \\ &- 8C_{13}^{2} S_{13}^{2} S_{23}^{2} (1 - 2S_{13}^{2}) \frac{aL}{4E} \cos \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} & \text{matter effects} \end{split}$$

6 independent parameters govern oscillation

 θ_{12} , θ_{23} , θ_{13} , δ_{cp} , Δm_{12}^2 , Δm_{23}^2 , Δm_{13}^2

v_e Appearance and Oscillation Parameters

 $\sin^2 2\theta_{13}$ and $\sin^2 \theta_{23}$

leading terms

"octant" dependence, whether $\theta_{23} > 45^{\circ}$, $\theta_{23} = 45^{\circ}$, or $\theta_{23} < 45^{\circ}$

$$\delta_{CP}$$
: +- 27% effect at T2K for θ_{23} = 45°

$$\delta_{\rm CP} = \sim -\pi/2 \text{: enhances } P \Big(v_\mu \to v_e \Big)$$
 suppresses $P \Big(\overline{v}_\mu \to \overline{v}_e \Big)$

$$\delta_{\rm CP}$$
 = ~+ π /2: suppresses $P(v_{\mu} \rightarrow v_{e})$ enhances $P(\bar{v}_{\mu} \rightarrow \bar{v}_{e})$

mass ordering

mass hierarchy: +-10% effect at T2K

normal: enhances $P\!\left(v_{\mu}\!\to\!v_{e}\right)$ suppresses $P\!\left(\overline{v}_{\mu}\!\to\!\overline{v}_{e}\right)$

inverted: suppresses $P(v_{\mu} \rightarrow v_{e})$

enhances $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$

Neutrino Oscillation Analysis Overview

$$N_{FD} \sim \Phi_{FD}(E_{\nu}) \cdot \sigma_{FD}(E_{\nu}) \cdot \varepsilon_{FD} \cdot P(\nu_{\mu} \rightarrow \nu_{e})$$

Observed rate of ν_{μ} and ν_{e} constrains the oscillation probability P. Depends on:

Neutrino flux prediction Neutrino cross-section model

Far Detector selection & efficiency

Reduce the error on the rate of ν_{μ} with the near detector measurements.

$$N_{ND} \sim \Phi_{ND}(E_{\nu}) \cdot \sigma_{ND}(E_{\nu}) \cdot \varepsilon_{ND}$$

Neutrino flux prediction Neutrino cross-section model

Near Detector selection & efficiency

Oscillation Analysis Strategy

data driven

In the latest analysis, the ν_{μ} , $\overline{\nu}_{\mu}$, ν_{e} , and $\overline{\nu}_{e}$ samples are fit simultaneously to maximize the sensitivity to the oscillation parameters

10

Sources of Systematic Uncertainties

Neutrino flux

Neutrino interactions

Near Detector response

Far Detector response

Neutrino Flux Predictions

T2K, PRD87 (2013) 012001

Data driven (NA61) FLUKA/Geant3 based neutrino beam simulation

Significant wrong sign component in antineutrino mode increases in event rate due to lower antineutrino cross section

Intrinsic electron neutrino component ~0.5% near the peak

Absolute Neutrino Flux Uncertainties

Beamline related uncertainties

proton beam profile off-axis angle horn current and field

Hadron interaction model uncertainties

NA61 uncertainties

re-interactions

secondary hadron production

At T2K peak energy, flux uncertainty has decreased to ~10%

Dominant flux uncertainties stem from hadron interactions

Uncertainties are comparable for neutrino mode and antineutrino mode operation

Replica target data from NA61/SHINE is being incorporated in the T2K flux prediction

→ reduce further systematics

The ND280 Near Detector

Constrains neutrino flux before oscillations (CC ν_{μ} and $\overline{\nu_{\mu}}$ data)

Measures neutrino interactions on scintillator (CH) and water targets

0.2 T magnetic field

Plastic scintillator detectors (FGD, POD, ECALs, SMRD)

Time Projection Chambers better than 10% dE/dx resolution

Muon momentum, sign from curvature in magnetic field

10% momentum resolution at 1 GeV/c

Neutrino Interactions

Oscillation probability depends on neutrino energy.

In T2K energy range, dominant process is Charged-Current Quasi-Elastic

Neutrino energy from measured lepton momentum and angle

$$E_{\nu}^{QE} = \frac{m_p^2 - {m'}_n^2 - m_{\mu}^2 + 2m'_n E_{\mu}}{2(m'_n - E_{\mu} + p_{\mu} \cos \theta_{\mu})}$$

2-body kinematics and assumes the target nucleon is at rest

Additional significant processes:

CCQE-like multi-nucleon interaction

Charged-current single pion production ($CC1\pi$)

Neutral-current single pion production (NC1 π)

Improved Neutrino Interaction Model

Most recent NEUT generator tuned to external data (MiniBooNE and MINERvA)

Improved CCQE description: nuclear effects (Fermi Gas + RPA) nuclear correlations (MEC – 2p2h) final state interactions (FSI)

Resonant π production retuned

Tensions with some data sets remain. Cross-section model uncertainties come from underlying model parameters and normalization.

Expected number of events at the far detector is tuned using a binned likelihood fit to the ND280 data (in bins of p_{μ} and θ_{μ}) taking into account

variations in the flux model parameters cross-section model parameters

ND280 detector uncertainties

Neutrino interactions separated in CC0 π , CC1 π , CCN π (# of outgoing π s) NEW interactions in ND280 H₂0 target included

ND280 Constraints for Far Detector

neutrino mode example

The data is in better agreement after the flux and ND280 constraints

	single ring μ -like $\Delta N_{_{SK}}/N_{_{SK}}$		single ring e-like $\Delta N_{sk}/N_{sk}$	
Systematic uncertainty	pre-fit	post-fit	pre-fit	post-fit
flux and cross section	10.9 %	2.5 %	11.4 %	2.7 %
Total	12.1 %	4.9 %	11.9 %	5.2 %

T2K Typical Events (Far Detector)

background for v_e appearance: intrinsic v_e component in initial beam merged π^0 rings from NC interactions

ν_{μ} / $\overline{\nu}_{\mu}$ Disappearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \sim 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)$$

135 events observed (135.8 ev. expected*)

66 events observed (64.2 ev. expected*)

*with $\sin^2\theta_{23} = 0.528$, $|\Delta m^2_{32}| = 2.509 \ 10^{-3} \times eV^2$, $\delta_{CP} = -1.601$ from the fit to the ν_{μ} , $\overline{\nu}_{\mu}$, ν_{e} , and $\overline{\nu}_{e}$ samples and $\sin^2\theta_{13} = 0.0217$ from PDG2015

θ_{23} and $|\Delta m^2_{32}|$

Normal Hierarchy

$\left| \Delta m_{32}^2 \right| = \left[2.34, 2.75 \right] \times 10^{-3} \text{ eV}^2 \text{ at } 90\% \text{ CL}$

$$\sin^2 \theta_{23} = [0.42, 0.61]$$
 at 90% CL

$$|\Delta \bar{m}_{32}^2| = [2.34, 2.75] \times 10^{-3} \text{ eV}^2 \text{ at } 90\% \text{ CL}$$

$$\sin^2 \overline{\theta}_{23} = [0.32, 0.70]$$
 at 90% CL

Inverted Hierarchy

θ_{23} and $|\Delta m^2_{32}|$

	NH	IH	
$\sin^2\! heta_{23}$	$0.532^{+0.046}_{-0.068}$	$0.534^{+0.043}_{-0.066}$	
$ \Delta m_{32}^2 [10^{-3} \text{eV}^2]$	$2.545^{+0.081}_{-0.084}$	$2.510^{+0.081}_{-0.083}$	

v_e Far Detector Selection

v_e / $\overline{v_e}$ Appearance

32 events observed

4 events observed

	expected r	observed			
	$\delta_{\rm CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$	$\delta_{CP} = \pi$	
v_{e}	28.7	24.2	19.6	24.1	32
$v_{\rm e}$	6.0	6.9	7.8	6.8	4

θ_{13} vs δ_{CP}

T2K-only result consistent with reactor measurements

Favors the $\delta_{\rm CP} \sim$ - $\pi/2$ region

normal hierarchy: $\delta_{CP} = [-3.13, -0.39] [-179^{\circ}, -22^{\circ}]$ at 90% CL

inverted hierarchy: δ_{CP} = [-2.09, -0.74] [-120°, -42°] at 90% CL

T2K to T2K-II

Proposal to extend T2K run to 20×10^{21} POT Currently approved to 7.8×10^{21} POT

J-PARC main ring power supply upgrade is approved (reduce cycle from 2.48 sec to 1.3 sec)

Accelerator and beam line upgrade aiming at > 700 kW operation ND280 upgrades under discussion

Physics Potential of T2K-II

arXiv:1607.08004

50% increase in effective POT reduction of systematic errors

 $3\ \sigma$ sensitivity to CP violation for favorable (and currently favored) parameters

precise measurement of θ_{23} (to 1.7° or better)

Conclusions

Accumulated ~ 15×10^{20} protons on target (POT) equally split in v-mode and v-mode Beam power continuously increasing (420 kW at the end of run 7)

Fully joint analysis across all modes of oscillation v_μ / v_μ disappearance and v_e / v_e appearance

Near detector and NA61 hadroproduction data used to constrain rate at far det. water target and "wrong sign" from ND280

Data prefer maximal θ_{23} mixing, $\delta_{CP} \sim -\pi/2$, normal hierarchy

```
"maximal" \nu_{\mu} / \overline{\nu}_{\mu} disappearance, "large" \nu_{e} appearance, "small" \overline{\nu}_{e} appearance \delta_{\text{CP}} = [-3.13, -0.39] at 90% CL (NH) \delta_{\text{CP}} = [-2.09, -0.74] at 90% CL (IH)
```

Accelerator upgrade approved, aiming for > 700 kW operation

additional material

Cross-Section Tuning

Cross-section model is propagated to far detector rate

Parameters control CCQE model, multi-nucleon and resonance model Some cross-section parameters (2p2h on C and O, M_A^{RES}) changed significantly compared to external prior values In general error on parameters is decreased

Flux Tuning

Muon neutrino / antineutrino flux correlates to electron neutrino / antineutrino flux

Increased flux preferred with new cross-section model
 → predicted flux at far detector is generally increased

