

Measurement of the running of the fine structure constant and $\gamma-\gamma$ physics at KLOE2

Giuseppe Mandaglio (for the KLOE2 Collaboration)

University of Messina and INFN-Sez. Catania (Italy)

September 20, 2016

Outline

- New $e^+e^- \rightarrow \mu^+\mu^-\gamma$ cross section measurement
- Measurement of the $\alpha(s)$ via $e^+e^- \rightarrow \mu^+\mu^-\gamma$ process
- Extraction of Real and Imaginary part of $\Delta \alpha(s)$
- Measurement of BR($\omega \rightarrow \mu^+\mu^-$)from $e^+e^- \rightarrow \mu^+\mu^-\gamma$ process
- γγ Physics at KLOE-2
- Conclusions

$\boldsymbol{\alpha}$ running and the Vacuum Polarization

- Due to Vacuum Polarization effects $\alpha(q^2)$ is a running parameter from its value at vanishing momentum transfer to the effective q^2 .
- The "Vacuum Polarization" function Π(q²) can be "absorbed" in a redefinition of an effective charge:

$$e^{2} \rightarrow e^{2}(q^{2}) = \frac{e^{2}}{1 + (\Pi(q^{2}) - \Pi(0))};$$

$$\alpha(q^{2}) = \frac{\alpha(0)}{1 - \Delta \alpha} \Delta \alpha = -\Re e (\Pi(q^{2}) - \Pi(0))$$

 $\Delta \alpha = \Delta \alpha_{\rm I} + \Delta \alpha^{(5)}_{\rm had} + \Delta \alpha_{\rm top}$

$$\Delta \alpha_{had}^{(5)}(M_Z^2) = -\frac{\alpha M_Z^2}{3\pi} \operatorname{Re} \int_{4m_\pi^2}^{\infty} ds \frac{R(s)}{s(s - M_Z^2 - i\varepsilon)}$$

Existing measurements

Very few measurements of the running of the α coupling constant has been performed up to now, most of them in spacelike region and only one direct measument in timelike region (TOPAZ) at large 2 momentum transfer.

KLOE measurement of α(s) below 1 GeV

• Measurement of the running of the fine structure constant α in the time-like region 0.6< \sqrt{s} <0.975 GeV obtained via :

$$|\frac{\alpha(s)}{\alpha(0)}|^{2} = \frac{d\sigma_{data}(e^{+}e^{-} \to \mu^{+}\mu^{-}\gamma(\gamma))|_{ISR}/d\sqrt{s}}{d\sigma_{MC}^{0}(e^{+}e^{-} \to \mu^{+}\mu^{-}\gamma(\gamma))|_{ISR}/d\sqrt{s}} \quad : \frac{\text{data}}{\text{MC with } \alpha \text{ (s) } = \alpha \text{ (0)}}$$

FSR correction done by by using PHOKHARA MC event generator

- Statistical significance of the hadron contribution to the running $\alpha(s)$ is evaluated
- for the first time in a single experiment the real and Imaginary part of $\Delta \alpha$
- Measurement of $BR(\omega \rightarrow \mu^+\mu^-)$.

DAΦNE: A φ-Factory in Frascati (near Rome)

e^+e^- collider with $\sqrt{s} = m_{\phi} \approx 1.0195$ GeV

Integrated Luminosity

α-running and mmg cross section measurement (paper ready for submission) *based on 1.7 fb*⁻¹ of 2004-2005 KLOE data *Two-pion KLOE10 mesurement* (PLB700 (2011)102) *based on 233 pb⁻¹ of 2006 data (at 1 GeV, different event selection)*

Two-pion KLOE08 measurement (PLB670(2009)285) was based on 240pb⁻¹ of 2002 data *KLOE12 measurement* (PLB720(2013)336) based on 240 pb⁻¹ of 2002 data (from ππγ/μμγ ratio)

KLOE Detector

Drift chamber

 $\sigma_p/p = 0.4\%$ (for 90° tracks) $\sigma_{xy} \approx 150 \ \mu m, \ \sigma_z \approx 2 \ mm$ *Excellent momentum resolution*

KLOE Detector

Electromagnetic Calorimeter

 $\sigma_{E}/E = 5.7\% / \sqrt{E(\text{GeV})}$ σ_{τ} = 54 ps / $\sqrt{E(\text{GeV})}$ \oplus 100 ps (Bunch length contribution subtracted from constant term) Excellent timing resolution

Event Selection

muon tracks at large angles $50^{\circ} < \theta_{\mu} < 130^{\circ}$

a) Photons at small angles

 $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

→ Photon momentum from kinematics:

 $\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_{+} + \vec{p}_{-})$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced background contamination

Main cuts

About 4.5×10^6 events pass these selection criteria.

μμγ cross section measurement

The systematic error of the

order of 1% - (green band)

0.75 0.8 0.85 0.9 0.95

0.96

0.94

0.92

0.9

0.65

0.7

Excellent agreement with NLO QED dressed cross section (with VP effects) H. Czy_z, A. Grzelinska, J.H. Khn, G. Rodrigo, Eur. Phys. J. C 39 (2005) 411.

√s (GeV)

Meas. of the running of $\alpha(s)$

 $\left|\frac{\alpha(s)}{\alpha(0)}\right|^2 = \frac{\frac{d\sigma^{ISR}}{dM_{\mu\mu}}}{\frac{d\sigma^{MC}}{dM_{\mu\mu}}}$

MC with VP removed

 $|rac{lpha(s)}{lpha(0)}|^2 = 1/(1 - \Delta lpha(s))$

 $\Delta \alpha(s) = \Delta \alpha_{lep} + \Delta \alpha_{had}$ (we neglect the top contribution)

"Theoretical prediction" (provided by the alphaQED package [1]) $\Delta \alpha_{lep}$ computed in QED with negligible error;

 $\Delta \alpha_{had}$ obtained by a compilation of data in time-like region (with 0.1% accuracy). Excellent agreement with other R compilation (Teubner / Ignatov)

$$\Delta \alpha_{had}(s) = -\left(\frac{\alpha(0)s}{3\pi}\right) Re \int_{m_{\pi}^2}^{\infty} ds' \frac{R(s')}{s'(s'-s-i\epsilon)} \qquad R(s) = \frac{\sigma_{tot}(e^+e^- \to \gamma * \to hadrons)}{\sigma_{tot}(e^+e^- \to \gamma * \to \mu^+\mu^-)}$$

[1] F. Jegerlehner, alphaQED package [version April 2012] http://www-com.physik.hu-berlin.de/ fjeger/alphaQED.tar .gz;
 F. Jegerlehner, Nuovo Cim. C 034S1 (2011) 31; Nucl. Phys. Proc. Suppl. 162 (2006) 22.

Meas. of the running of $\alpha(s)$

Systematic uncertainty is at the 1% level.

 χ^2 based statistic test for two hypotheses: no running and running due to lepton pairs only is performed.

We exclude the onlyleptonic hypothesis at 6 σ Our result is also consistent with the lepton and hadron hypothesis with a statistical significance of 0.3 ($\chi 2/ndf = 41.2/37$).

[1] F. Jegerlehner, alphaQED package [version April 2012] http://www-com.physik.hu-berlin.de/ fjeger/alphaQED.tar .gz;
 F. Jegerlehner, Nuovo Cim. C 034S1 (2011) 31; Nucl. Phys. Proc. Suppl. 162 (2006) 22.

Systematics

Syst. errors	$\sigma_{\mu\mu\gamma}$	$ \alpha(s)/\alpha(0) ^2$		
Trigger	< 0.1%			
Tracking	s dep. (0.5% at $\rho\text{-peak})$			
Particle ID	< 0.1%			
Background subtraction	s dep. (0.1% at ρ -peak)			
M_{TRK}	0.4%			
σ_{MTRK}	s dep. (0.05% at ρ -peak)			
Acceptance	s dep. (0.3% at $\rho\text{-peak})$			
Software Trigger	0.1%			
Luminosity	0.3%			
$\Delta \alpha_{had}$ dep. (Normalization)	-	0.2%		
FSR treatment	0.2%			
Rad. function H	-	0.5%		
Total systematic error	s dep. (0.7% at $\rho{\rm -peak})$	(0.9% at ρ -peak)		

Re and Im. part of \Delta \alpha(s)

In the contribution to the running of α , the imaginary part is usually neglected. This approximation is not sufficient in the presence of resonances like the ρ meson, where the accuracy of the cross section measurements reaches the order of (or even less than) 1%.

work in collaboration with Fred Jegerlehner

Imaginary part of $\Delta \alpha(s)$

$$Im\Delta\alpha = -\frac{\alpha}{3}R(s)$$

Results obtained for the 2π contribution to $\Delta \alpha$ by using KLOE pion form factor [1] (red full circles) and the ones obtained by using the R_{had}(s) compilation [2] with the 2π channel only and removing KLOE data (blue solid line).

[1] Phys. Lett. B 720, 336 (2013)

[2] F. Jegerlehner, http://www-com.physik.hu-berlin.de/ fjeger/alphaQED.tar.gz;

F. Jegerlehner, Nuovo Cim. C 034S1 (2011) 31; Nucl. Phys. Proc. Suppl. 162 (2006) 22.

Real part of $\Delta \alpha(s)$

$$Re \Delta \alpha = 1 - \sqrt{|\alpha(0)/\alpha(s)|^2 - (Im \Delta \alpha)^2}.$$

Experimental $\text{Re}\Delta\alpha$ in comparison with theoretical prediction with leptonic contribution only and with leptonic and hadronic contributions.

Excellent agreement for Re $\Delta \alpha(s)$ has been obtained with the databased compilation.

[pdg] K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update.

Fit of Re $\Delta \alpha(s)$

contributions, where the hadronic contribution is parametrized as a sum of $\rho(770), \omega(782) \text{ and } \phi(1020)$ resonances components and a non resonant term (param. with a pol1).

0.02 0.015 0.01 0.005 -0.005

 $F_{\pi}(s) = BW_{\rho(s)}^{GS} = \frac{M_{\rho}^{2}(1 + d\Gamma_{\rho}/M_{\rho})}{M_{\rho}^{2} - s + f(s) - iM_{\rho}\Gamma_{\rho}(s)}$ For ρ , neglecting interference with ω and high exc. stat. of ρ

 Γ_{ω} , M_{ϕ} , Γ_{ϕ} , and BR($\phi \rightarrow e^+e^-$)BR($\phi \rightarrow \mu^+\mu^-$) fixed to PDG values [pdg]

We fit Re
$$\Delta \alpha$$
 by a sum of the leptonic and hadronic

χ² / ndf 36.85 / 31 0.2165 Prob 0.025 -0.01 0.7 0.75 0.8 0.85 0.65 06 √s. GeV

$$Re \,\Delta\alpha_{V=\omega,\phi} = \frac{3\sqrt{BR(V \to e^+e^-) \cdot BR(V \to \mu^+\mu^-)}}{\alpha M_V} \frac{s(s - M_V^2)}{(s - M_V^2)^2 + M^2 \Gamma_V^2} \quad \text{For } \omega,$$

Ø

Thanks to F. Ignatov for useful discussions.

Result from the fit

 775 ± 6

 146 ± 9

 782.7 ± 1.0

 $(4.3 \pm 1.8) \cdot 10^{-9}$

1.19

PDG

 775.26 ± 0.25

 147 ± 0.9

 782.65 ± 0.12

 $(6.5 \pm 2.3) \cdot 10^{-9}$

Fit of Re $\Delta \alpha(s)$

Assuming lepton universality and multiplying for the phase space correction

0

0

Parameter

 M_{ρ} , MeV

 Γ_{ρ} , MeV

 M_{ω} , MeV

 χ^2/ndf

 $BR(\omega \rightarrow \mu^+ \mu^-)BR(\omega \rightarrow e^+ e^-)$

$$\xi = \left(1 + 2\frac{m_{\mu}^2}{m_{\omega}^2}\right) \left(1 - 4\frac{m_{\mu}^2}{m_{\omega}^2}\right)^{1/2}$$
$$BR(\omega \to \mu^+ \mu^-) =$$
$$= (6.6 \pm 1.4_{stat} \pm 1.7_{syst}) \cdot 10^{-5}$$
$$(9.0 \pm 3.1) \cdot 10^{-5} \text{ from PDG}$$

Inclusion of omega/rho interference don't change the result (within the error).

χ² / ndf 36.85 / 31

γγ physics at KLOE2

LET station (LYSO crystals) @ 2 m from the IP, in one of the QCALT wedges It should detect final-state particles of about 200 MeV

HET station (scintillator strips) @ 11 m from the IP DAFNE bending dipoles used as spectrometer Energy acceptance for final-state particles expected in the range 410-490 MeV

vy physics

• $X = \pi^0, \eta, (\eta')$

 p_1

 $-\Gamma(X \rightarrow \gamma \gamma)$

 p_2

- Transition form factors $F_{Xy^*y^*}(q_1^2,q_2^2)$

Main goal at present is the precision measurement of the π^0 width [Rev.Mod.Phys. 85 (2013) 49] using meson production yy from scattering O(10⁴) π^0 expected with 5 fb⁻¹ with HET

DA Φ NE and KLOE2 operation

Peak Luminosity L_{peak} = 2.21 • 10³²cm⁻²s⁻¹ Max daily delivery: 13.4 pb⁻¹ Max daily acquired: 11.0 pb⁻¹

From November 2014 KLOE2 acquired an integrated luminosity of ~ 2.4 fb⁻¹ (DA Φ NE delivered 3 fb⁻¹)

Performance and operation stability still improving and the goal to acquire 5 fb⁻¹ by the end of 2017 appears feasible.

HET rates

HET-Rate = KLOE-Trigger-Rate x (c L + $a_{e/p} I_{a/p}^2$)

HET rate dominated by single-arm Bhabha scattering. Particles from intra-bunch scattering give in average 24% contribution for e⁻ and 4% for e⁺ (average, Jan 2016) It is the ideal device to provide fast, reliable feedbacks on the machine operation

HET stations are completely noiseless

The timeline of the counting rate for electron AND positron stations shows only 2 visible contributions : from luminosity and from Touschek particles

Machine background reaches a maximal relative contribution of 30% for electron and 6% for positron beams

The total rate dominated by Bhabha scattering is at the level of 500-600 kHz

The rate of uncorrelated time-coincidences between KLOE and HET requires full reconstruction of a large fraction of the KLOE triggers

We have pre-filtered candidates of single- π^0 production from $\gamma\gamma$ scattering and a total of 450 pb⁻¹ are being analysed

Conclusion

- Measurement of the hadronic contribution to the running of α with ISR differential cross section $d\sigma(e^+e^- \rightarrow \mu^+\mu^-\gamma)/d\sqrt{s}$ in the 0.6 0.98 GeV Mµµ invariant mass range at 1.7 fb⁻¹ has been presented.
- Clear contribution of the $\rho-\omega$ interference to the photon propagator with more than 5σ statistical significance.
- Imaginary and Real part of $\Delta \alpha$ extracted with KLOE data.
- By a fit of the real part of $\Delta \alpha(s)$ and assuming lepton universality the branching ratio of $\omega \rightarrow \mu^+\mu^-$ has been extracted.
- The upgraded detector, KLOE-2, has already collected 2.4 fb⁻¹ demonstrating the feasibility of the goal to record 5 fb⁻¹ by the end of 2017.
- The analysis of meson production from $\gamma\gamma$ exploiting the KLOE-2 tagging system has been started. The goal is to improve to the percent level the precision of the π^0 radiative width and obtain the first measurement of the TFF at low momentum transfer.

SPARE SLIDES

Luminosity:

KLOE measures \mathcal{L} with Bhabha scattering $55^{\circ} < \theta < 125^{\circ}$; acollinearity $< 9^{\circ}$; $p \ge 400 \text{ MeV}$ $\int \mathcal{L} dt = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$

Generator used for σ_{eff} : BABAYAGA (Pavia) NPB758 (2006) 22

New version (BABAYAGA@NLO) gives 0.7% decrease in cros. sect., and better accuracy:0.1% Systematics on Luminosity:

TOTAL 0.1 % th \oplus 0.3% exp = 0.3%

Eur.Phys.J.C47:589-596,2006

Luminosity:

Parameter	Result from the fit	Result from the fit with $\rho - \omega$ interf.	PDG	То
M_{ρ}, MeV	775 ± 6	778 ± 7	775.26 ± 0.25	
$\Gamma_{\rho}, \text{MeV}$	146 ± 9	147 ± 10	147 ± 0.9	
$M_{\omega},{ m MeV}$	782.7 ± 1.0	783.4 ± 0.8	782.65 ± 0.12	$\delta \frac{s}{M^2}$
$BR(\omega \to \mu^+ \mu^-) BR(\omega \to e^+ e^-)$	$(4.3\pm 1.8)\cdot 10^{-9}$	$(4.4 \pm 1.8) \cdot 10^{-9}$	$(6.5\pm2.3)\cdot10^{-9}$	Μū
χ^2/ndf	1.19	1.15	-	

To study interf. effect we add: $\frac{s}{M_{\omega}^2} BW_{\omega}(s) BW_{\rho}^{GS}$

KLOE-2 contribution to a^{LbL}

- Measurement of $\Gamma(P \rightarrow \gamma \gamma)$
- Transition form factors $F_{P\gamma^*\gamma^*}(q_1^2,q_2^2)$:
 - input for the calculation of the Light-by-Light contribution to g-2 of the muon

KLOE-2 contribution to a LbL

By including KLOE-2 \rightarrow a reduction of a factor 2 in the error of $a_{\mu}^{\pi 0}$! In addition the measurement of $\Gamma(\pi_{0} \rightarrow \gamma \gamma)$ will constrain $F_{\pi 0}(q^{2}=0)$ (which is now obtained by WZW model 1/4 πf_{π} w/o error). ~1% st. accuracy with 1 year of data taking. A0: CELLO, CLEO, PDG; A1: CELLO, CLEO, PrimEx;

A2 : CELLO, CLEO, PrimEx, KLOE-2;

B1 : CELLO, CLEO, BaBar, PrimEx;

B2 : CELLO, CLEO, BaBar, PrimEx, KLOE-2;

Model	Data	χ^2 /d.o.f.		Parameters		$a_{\mu}^{\mathrm{LbyL};\pi^0} \times 10^{11}$
VMD	A0	6.6/19	$M_V = 0.778(18) \text{ GeV}$	$F_{\pi} = 0.0924(28) \text{ GeV}$		(57.2±4.0).w
VMD	A1	6.6/19	$M_V = 0.776(13) \text{ GeV}$	$F_{\pi} = 0.0919(13) \text{ GeV}$		$(57.7 \pm 2.1)_{JN}$
VMD	A2	7.5/27	$M_V = 0.778(11) \text{ GeV}$	$F_{\pi} = 0.0923(4) \text{ GeV}$		$(57.3 \pm 1.1)_{JN}$
LMD+V, $h_1 \neq 0$	B1	18/35	$\bar{h}_5 = 6.44(22) \text{ GeV}^4$	$\bar{h}_7 = -14.92(21) \text{ GeV}^6$	$h_1 = -0.17(2) \text{ GeV}^2$	$(72.4 \pm 1.6)^*_{JN}$
LMD+V, $h_1 \neq 0$	B2	19/43	$\bar{h}_5 = 6.47(21) \text{ GeV}^4$	$\bar{h}_7 = -14.84(7) \text{ GeV}^6$	$h_1 = -0.17(2) \text{ GeV}^2$	$(71.8 \pm 0.7)^*_{JN}$