

R(D) and $R(D^*)$ anomalies and their phenomenological implications

Xin-Qiang Li

Central China Normal University

in collaboration with A. Pich, M. Jung, A. Celis, Y. D. Yang, X. Zhang,

based on JHEP 01 (2013) 05, JHEP 08 (2016) 054, and paper to appear soon

The 14th International Workshop on Tau Lepton Physics, Beijing, 2016/09/23

Outline

- $\triangleright R(D)$ and $R(D^*)$ anomalies
- \triangleright Solution with a charged Higgs
- ▷ Solution with a scalar leptoquark
- ▷ Conclusion and Outlook

Why B physics?

 B-hadron decays: various final states, investigate the flavour structure in fermionic sector; [Y. Amhis et al. HFAG, 1412.7515]

 BaBar, Belle, Tevatron, LHCb, and Belle-II: more and more precise data; to validate SM and NP flavor structures;

Current status of flavour anomalies

- ► While being in good agreement, NP contributions of order O(20%) to most low-energy FCNC processes are still allowed;
- ► Several intriguing deviations from the SM predictions: 2 ~ 4σ level; [T. Becher, 1607.01165; Z. Ligeti, 1606.02756; A. Crivellin, 1606.06861]

► While various cross-checks are still needed, some of them would be unambiguous NP signals! → A unified explanation within a specific NP model? [A. Crivellin, 1606.06861]

Why $B \rightarrow D^{(*)} \tau \nu_{\tau}$ decays?

► Tree-level processes: mediated by W^{\pm} in SM; sensitive to tree-level NP like RH currents, charged Higgs, lepto-quarks, ...;

• The combined WA for R(D) and $R(D^*)$ shows a 4.0 σ deviation from the SM.

Why $B \rightarrow D^{(*)} \tau \nu_{\tau}$ decays?

► 4.0σ R(D^(*)) anomaly: the most significant in B physics, and motivate many studies both within the SM and in various NP models;

Evidence for an excess of $\bar{B} \rightarrow D^{(*)}\tau^-\bar{\nu}_{\tau}$ decays BaBar Collaboration (J.P. Lees (Annecy, LAPP) *et al.*). May 2012. 8 pp. Published in **Phys.Rev.Lett**. **109** (2012) **101802** BABAR-PUB-12-012, SLAC-PUB-15028 DOI: <u>10.1103/PhysRevLett</u>. <u>109.101802</u> e-Print: <u>arXiv:1205.5442 [hep-ex] | PDF</u> References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndN ADS Abstract Service; Link to DISCOVERY; Link to PHYSICS; SI 详细记录 - Cited by 320 records Serve

- The observed tension is model independent: exclusive already over-saturates inclusive; [M. Freytsis, Z. Ligeti, J. Ruderman, 1506.08896]
 - \triangleright The data on R(D) and $R(D^*)$ imply:

 $\operatorname{Br}(\bar{B} \to D^* \tau \bar{\nu}) + \operatorname{Br}(\bar{B} \to D \tau \bar{\nu}) = (2.71 \pm 0.18)\%$

 \triangleright Including the four lightest orbitally excited D meson states:

 $\operatorname{Br}(\bar{B} \to D^{(*)}\tau\bar{\nu}) + \operatorname{Br}(\bar{B} \to D^{**}\tau\bar{\nu}) \sim 3\%$

▷ From inclusive= \sum exclusive, ~ 3 σ tension with inclusive modes; Br $(\bar{B} \to X_c \tau \bar{\nu}) = (2.42 \pm 0.05)\%$, Br $(b \to X \tau^+ \nu) = (2.41 \pm 0.23)\%$

Possible to explain the observed $R(D^{(*)})$ anomaly?

Questions to be asked:

- \bigcirc the observed tension can or cannot be explained within the SM? \hookrightarrow explanations with QCD effects quite unlikely.
- \bigcirc how precise should we know $B \rightarrow D^{(*)}$ FFs? LQCD improvements! [FNAL/MILC, 1403.0635, 1503.07237; HPQCD, 1505.03925]
- \circlearrowleft If LFU is really violated in B-meson decays, could we probe LFU violations in Λ_b and B_s decays?
- ▶ Remind: LFU in purely leptonic $D_{(s)}$, π , and K, hadronic τ decays already tested, and holds up to 1% level.

 \rightarrow these decays should put much stronger constraints on the NP contribution! [S. Fajfer *et al.*, 1206.1872; A. Celis *et al.*, 1210.8443]

► Our strategy for R(D^(*)) anomaly: firstly perform a modelindep. analysis; then specific to some NP models [2HDM and scalar leptoquark], to see their pheno. implications;

[A. Celis et al., 1210.8443, in preparation; Xin-Qiang Li et al., 1605.09308]

Solution with a charged Higgs

► Solutions with a charged Higgs and pheno. implications:

A. Celis, M. Jung, X. Q. Li and A. Pich, "Sensitivity to charged scalars in $B \rightarrow D^{(*)}\tau\nu_{\tau}$ and $B \rightarrow \tau\nu_{\tau}$ decays," JHEP **1301** (2013) 054 [arXiv:1210.8443 [hep-ph]].

A. Celis, M. Jung, X. Q. Li and A. Pich, "Tree-level constraints on a charged Higgs," in preparation.

The effective Lagrangian

\$\mathcal{L}_{eff}\$: charged-scalar mediated semileptonic transitions (neglect neutrino-mass-related terms):

$$\mathcal{L}_{\mathsf{eff}} = -\frac{4G_F V_{q_u q_d}}{\sqrt{2}} \left[\bar{q}_u \left(g_L^{q_u q_d \ell} \mathcal{P}_L + g_R^{q_u q_d \ell} \mathcal{P}_R \right) q_d \right] \left[\bar{\ell} \mathcal{P}_L \nu_\ell \right]$$

Processes considered: charged-scalar contributes at tree-level;

Observable	SM prediction	Exp. Value
	$0.284^{+0.010}_{-0.007} \pm 0.014$	0.379 ± 0.044
$R(D^*)$	$0.252 \pm 0.001 \pm 0.003$	$0.327\pm0.020^\dagger$
$R(X_c)$	0.222 ± 0.004	0.225 ± 0.022
$\operatorname{Br}(B \to \tau \bar{\nu}_{\tau})$	$(1.06^{+0.27}_{-0.24}) \times 10^{-4}$	$(1.06 \pm 0.20) \times 10^{-4}$
$\operatorname{Br}(B^0 \to \pi \tau \bar{\nu}_{\tau})$	$1.15^{+0.30}_{-0.27} \times 10^{-4}$	$\leq 2.8 \times 10^{-4} \; (95\% \; \mathrm{CL})$
${\rm Br}(D_s \to \tau \bar{\nu}_{\tau})$	$(4.99 \pm 0.20) \times 10^{-2}$	$(5.55 \pm 0.24) \times 10^{-2}$
$\operatorname{Br}(D_s \to \mu \bar{\nu}_{\mu})$	$(5.13 \pm 0.20) \times 10^{-3}$	$(5.57 \pm 0.24) \times 10^{-3}$
$\operatorname{Br}(D \to \mu \bar{\nu}_{\mu})$	$(3.78 \pm 0.16) \times 10^{-4}$	$(3.74 \pm 0.17) \times 10^{-4}$
$\operatorname{Br}(D \to \tau \bar{\nu}_{\tau})$	$(1.01 \pm 0.04) \times 10^{-3}$	$\leq 1.2 \times 10^{-3} (90\% \text{ CL})$
$\Gamma(K \to \mu \bar{\nu}_{\mu}) / \Gamma(\pi \to \mu \bar{\nu}_{\mu})$	1.340 ± 0.025	1.337 ± 0.003
$\Gamma(\tau \to K \nu_{\tau}) / \Gamma(\tau \to \pi \nu_{\tau})$	$(6.58 \pm 0.07) \times 10^{-2}$	$(6.43 \pm 0.09) \times 10^{-2}$
$Br(\tau \to \pi \nu)/Br(\pi \to \mu \nu)$	$(9.784 \pm 0.014) \times 10^3$	$(9.713 \pm 0.056) \times 10^3$
$\mathrm{Br}(\tau \to \mu \nu_\tau \bar{\nu}_\mu) / \mathrm{Br}(\tau \to e \nu_\tau \bar{\nu}_e)$	0.9725 ± 0.0000	0.9764 ± 0.0030

Strategy for the global fit

- CKM elements: the ones not sensitive to the charged scalar;
 - $\circlearrowleft~|V_{ud}|$ from super-allowed $0^+ \rightarrow 0^+$ nuclear β decays;
 - $\circlearrowleft~|V_{cb}|$ from exclusive and inclusive semileptonic $b \to c \ell \bar{\nu}_\ell$ decays;
 - \circlearrowleft $|V_{ub}|$ from exclusive and inclusive semileptonic $b \rightarrow u \ell \bar{\nu}_{\ell}$ decays.
- Hadronic parameters: taken from the latest FLAG, HFAG and PDG averages; [FLAG, 1607.00299; PDG 2015 version; HFAG, 1412.7515]
- Statistical analysis: choose frequentist statistics and Rfit scheme, as implemented by CKMfitter group; [Höcker et al., 2001]
 - \circlearrowleft theo. uncertainties treated by defining allowed ranges, and within the range no contribution to $\Delta\chi^2$, while set to infinity outside the range;
 - ♂ theo. errors chosen conservatively and added linearly;
 - \circlearrowleft syst. errors treated as above, while stat. errors "normally".

What's new compared to A. Celis, M. Jung, X. Q. Li and A. Pich, 1210.8443?

- Both Belle and LHCb measurements are well consistent with BaBar's, implying now 4.0σ deviation from the SM predictions; [BaBar, 1205.5442, 1303.0571; Belle, 1507.03233, 1603.06711, 1607.07923, 1608.06391; LHCb, 1506.08614]
- ► The q^2 distributions $d\Gamma(B \to D^{(*)}\tau\nu)/dq^2$ also available by Belle and BaBar, yielding additional information to distinguish NP from the SM, and different NP models from each other; [BaBar, 1303.0571; Belle, 1507.03233]
- Constraints from the inclusive semi-leptonic decay $B \rightarrow X_c \tau \nu$, measured at LEP, also taken into account, providing further complementary constraints; [Freytsis, Ligeti, Ruderman, 1506.08896; LEP, hep-ex/0112028]
- Constraints from direct charged-Higgs searches at the LHC now become available; [ATLAS, 1302.3694, 1412.6663, 1603.09203; CMS, CMS-PAS-HIG-14-020, 1510.04252; A. G. Akeroyd *et al.*, 1607.01320]

 \rightsquigarrow combined with the LEP bound, $M_{H^{\pm}} \geq 80 \text{ GeV} \gg m_b$, one can safely integrate out $M_{H^{\pm}}$ at $\mu_b \sim 5 \text{ GeV}$, to get $\mathcal{H}_{\text{eff}} \propto C_i O_i$.

Model-independent analysis of $B \rightarrow D^{(*)} \tau \nu$

► With no assumptions on flavour structure, the only observables governed by $b \rightarrow c\tau \nu_{\tau}$: R(D), $R(D^*)$, $R(X_c)$, $d\Gamma(B \rightarrow D^{(*)}\tau\nu)/dq^2$;

$$\delta^{\ell}_{cb} \equiv \frac{(g_L^{cb\ell} + g_R^{cb\ell})(m_B - m_D)^2}{m_{\ell}(\bar{m}_b - \bar{m}_c)} \left[scalar \right], \quad \Delta^{\ell}_{cb} \equiv \frac{(g_L^{cb\ell} - g_R^{cb\ell})m_B^2}{m_{\ell}(\bar{m}_b + \bar{m}_c)} \left[pseudo - scalar \right]$$

► For real couplings: allowed parameter spaces in $\delta^{\tau}_{cb} - \Delta^{\tau}_{cb}$ -plane;

 $\triangleright R(D^{(*)})$ yield four solutions (blue);

- $\begin{tabular}{lll} & \rhd \ d\Gamma(B \ \rightarrow \ D^{(*)}\tau\nu)/dq^2 \ \mbox{exclude two} \\ & \mbox{of them; favour the one with large} \\ & \ \Delta^{\tau}_{cb} \ (95\% \ \mbox{CL}); \end{tabular} \end{tabular}$
- \triangleright Model-independent tension with the inclusive $B \rightarrow X_c \tau \nu_{\tau}$ decay reflected by small overlap regions;

► Conclusion: the current data can be explained simultaneously by a charged scalar, but only with both $g_L^{cb\tau}$ and $g_R^{cb\tau}$ present!

Model-independent analysis of $B \to D^{(*)} \tau \nu$

• Individual fit to R(D) and $R(D^*)$ with complex couplings:

13 / 24

Cases with only $g_L^{cb\tau}$ or $g_R^{cb\tau}$ present

• Only $g_L^{cb\tau}$ present: possible to resolve R(D) and $R(D^*)$, but in conflict with the measured q^2 differential distributions;

- ▷ Dark green: fits at 95% CL; light green: at 99.7% CL;
- $$\label{eq:starsest} \begin{split} & \vdash \mbox{ Having only a real } g_L^{cb\tau} \mbox{ as the common explanation for } R(D) \\ & \mbox{ and } R(D^*) \mbox{ is now highly dis-favoured by the } q^2 \mbox{ differential distributions;} \end{split}$$

[A. Crivellin *et al.*, 1206.2634; A. Crivellin *et al.*, 1507.07567]

- ► Only g_R^{cbτ} present: does improve the fit to R(D^(*)) compared to SM, but does not yield a good fit, when combining all data;
- ► Conclusion: charged scalar alone do can explain all the data, but only with both $g_L^{cb\tau}$ and $g_R^{cb\tau}$ added simultaneously!

Scenarios without tree-level FCNCs

► The model-indep. scalar-mediated charged-current interaction:

$$\mathcal{L}_{\mathsf{eff}} = -\frac{4G_F V_{q_u q_d}}{\sqrt{2}} \left[\bar{q}_u \left(g_L^{q_u q_d \ell} \mathcal{P}_L + g_R^{q_u q_d \ell} \mathcal{P}_R \right) q_d \right] \left[\bar{\ell} \mathcal{P}_L \nu_\ell \right]$$

► Scenarios without tree-level FCNCs: g_{L,R} must be diagonal; ["Yukawa Alignment in the Two-Higgs-Doublet Model, A. Pich, P. Tuzon, 0908.1554]

$$\mathcal{L}_{Y} = -\frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u} \left[V_{\varsigma_{D}} M_{D} \mathcal{P}_{R} - \varsigma_{U} M_{U} V \mathcal{P}_{L} \right] d + \bar{\nu}_{\varsigma_{L}} M_{L} \mathcal{P}_{R} \ell \right\}$$

$$g_L^{q_u q_d l} = \varsigma_u \varsigma_l^* \, \frac{m_{q_u} m_l}{m_{H^{\pm}}^2} \,, \qquad g_R^{q_u q_d l} = -\varsigma_d \varsigma_l^* \, \frac{m_{q_d} m_l}{m_{H^{\pm}}^2}$$

Family-universal: $\varsigma_{D,U,L} \equiv \varsigma_{d,u,\ell} \mathbf{1}$, 2HDMs with NFC easily recovered;

 \hookrightarrow different decay modes are automatically connected;

Scenarios without tree-level FCNCs

- ► New observables involving τ : Br $(B \to \tau \nu)$, Br $(D_{d,s} \to \tau \nu)$, $\Gamma(\tau \to K\nu)/\Gamma(\tau \to \pi \nu)$, ...;
- \blacktriangleright Global fit using the available data with τ lepton: $95\%~{\rm CL}$

- \triangleright dark blue: constraints from $R(D^{(*)})$;
- \triangleright light blue: constraints from q^2 distributions;
- b dark yellow: the other measurements above, not depending on both couplings simultaneously;
- \vartriangleright red: dashed rings excluded by $D_d \to \tau \nu \text{ and incompatible with the}$ distributions;
- \triangleright joined fit still remains viable: $\chi^2 = 62.7$ for 55 dof, compared to $\chi^2 = 81.1$ for 60 dof in SM;

► Conclusion: the scenario with charged-scalar interactions can explain $B \rightarrow D^{(*)} \tau \nu$ and the remaining tree-level observables!

Solution with a scalar leptoquark

► Solutions with a scalar leptoquark and pheno. implications:

X. Q. Li, Y. D. Yang and X. Zhang, "Revisiting the one leptoquark solution to the $R(D^{(*)})$ anomalies and its phenomenological implications," arXiv:1605.09308 [hep-ph].

M. Bauer and M. Neubert, "Minimal Leptoquark Explanation for the $\mathsf{R}_{D^{(*)}}$, R_K , and $(g-2)_\mu$ Anomalies," Phys. Rev. Lett. **116** (2016) no.14, 141802 [arXiv:1511.01900 [hep-ph]].

M. Freytsis, Z. Ligeti and J. T. Ruderman, "Flavor models for $\bar{B} \rightarrow D^{(*)}\tau\bar{\nu}$," Phys. Rev. D **92** (2015) no.5, 054018 [arXiv:1506.08896 [hep-ph]].

The one scalar leptoquark scenario

► The LQ model: one single scalar LQ with $M_{\phi} \sim 1$ TeV and $(\mathbf{3}, \mathbf{1}, -\frac{1}{3})$ added to SM; [M. Bauer and M. Neubert, 1511.01900]

$$\mathcal{L}_{\phi} = (D_{\mu}\phi)^{\dagger} D_{\mu}\phi - M_{\phi}^{2} |\phi|^{2} - g_{h\phi} |\Phi|^{2} |\phi|^{2}$$

$$+ ar{Q}^c oldsymbol{\lambda}^L i au_2 L \, \phi^* + ar{u}_R^c \, oldsymbol{\lambda}^R e_R \, \phi^* + {\sf h.c.} \, ,$$

 φ interactions with fermions: rotating from the weak to the mass basis for quarks and charged leptons, to get L^φ_{int};

M. Bauer and M. Neubert, 1511.01900

LQ-mediated $b \rightarrow c \tau \bar{\nu_{\tau}}$ decays

► Total \mathcal{H}_{eff} for $b \to c\tau \bar{\nu}_{\tau}$ transitions: integrating out ϕ and performing the proper Fierz transformation;

$$\begin{aligned} \mathcal{H}_{\text{eff}} = & \frac{4G_F}{\sqrt{2}} V_{cb} \left[C_V(M_\phi) \, \bar{c} \gamma_\mu P_L b \, \bar{\tau} \gamma^\mu P_L \nu_\tau + C_S(M_\phi) \, \bar{c} P_L b \, \bar{\tau} P_L \nu_\tau \right. \\ & \left. - \frac{1}{4} C_T(M_\phi) \, \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \right] \end{aligned}$$

► C_V , C_S , C_T : the WCs at the matching scale $\mu = M_{\phi}$; the latter two need be run down to $\mu_b \sim m_b$;

$$C_V(M_{\phi}) = 1 + \frac{\lambda_{b\nu\tau}^L \lambda_{c\tau}^{L*}}{4\sqrt{2}G_F V_{cb} M_{\phi}^2}, \quad C_S(M_{\phi}) = C_T(M_{\phi}) = -\frac{\lambda_{b\nu\tau}^L \lambda_{c\tau}^{R*}}{4\sqrt{2}G_F V_{cb} M_{\phi}^2}$$

► Four best-fit solutions for $R(D^{(*)})$ along with acceptable q^2 spectra: $M_{\phi} = 1$ TeV; [M. Freytsis, Z. Ligeti, J. T. Ruderman, 1506.08896]

$$(\lambda_{b\nu_{\tau}}^{L}\lambda_{c\tau}^{L*},\lambda_{b\nu_{\tau}}^{L}\lambda_{c\tau}^{R*}) = (C_{S_{R}}^{\prime\prime},C_{S_{L}}^{\prime\prime}) = \begin{cases} (0.35, -0.03), P_{A} \\ (0.96, 2.41), P_{B} \\ (-5.74, 0.03), P_{C} \\ (-6.34, -2.39), P_{D} \end{cases}$$

LQ-mediated $b \rightarrow c \tau \bar{\nu_{\tau}}$ decays

Solution P_A: explain in a natural way three of the most striking anomalies of particle physics, while satisfying the other low-energy constraints without fine-tuning;
[M. Bauer and M. Neubert, 1511.01900]

One Leptoquark to Rule Them All: A Minimal Explanation for $R_{D^{(*)}}, R_K$ and $(g-2)_{\mu}$

Martin Bauer^a and Matthias Neubert^{b,c}

^a Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany ^bPRISMA Cluster of Excellence & MITP, Johannes Gutenberg University, 55099 Mainz, Germany ^c Department of Physics & LEPP, Cornell University, Ithaca, NY 14853, U.S.A.

We show that by adding a single new scalar particle to the Standard Model, a TeV-scale leptoquark with the quantum numbers of a right-handed down quark, one can explain in a natural way three of the most striking anomalies of particle physics: the violation of lepton universality in $\vec{B} \rightarrow K \ell^+ \ell^$ decays, the enhanced $\vec{B} \rightarrow D^{(*)} \tau \bar{\nu}$ decay rates, and the anomalous magnetic moment of the muon. Constraints from other precision measurements in the flavor sector can be satisfied without finetuning. Our model predicts enhanced $\vec{B} \rightarrow \vec{K}^{(*)} \nu \bar{\nu}$ decay rates and a new-physics contribution to $B_{\sigma} - \vec{B}_{\sigma}$ mixing close to the current central fit value.

• Question: these four best-fit solutions could be discriminated from each other using the low-energy processes mediated by the same quark-level $b \rightarrow c\tau \nu_{\tau}$ transition?

 \hookrightarrow in addition to $\bar{B} \to D^{(*)} \tau \bar{\nu}_{\tau}$, we shall examine the scalar LQ effects on $B_c^- \to \tau^- \bar{\nu}_{\tau}$, $B_c^- \to \gamma \tau^- \bar{\nu}_{\tau}$ and $B \to X_c \tau \bar{\nu}_{\tau}$ decays.

The purely leptonic $B_c^- \rightarrow \tau^- \bar{\nu}_{\tau}$ decay

► The decay width with LQ-exchanged contribution:

$$\Gamma(B_c^- \to \tau^- \bar{\nu}_\tau) = \frac{G_F^2}{8\pi} |V_{cb}|^2 f_{B_c}^2 m_{B_c}^3 \frac{m_\tau^2}{m_{B_c}^2} \left(1 - \frac{m_\tau^2}{m_{B_c}^2}\right)^2 \\ \left| C_V - C_S \frac{m_{B_c}^2}{m_\tau [m_b(\mu_b) + m_c(\mu_b)]} \right|^2$$

Numerical results with the four best-fit solutions:

$$\Gamma(B_c^- \to \tau^- \bar{\nu}_{\tau}) = \begin{cases} 2.22 \times 10^{-2} \Gamma_{B_c}, & \text{SM} \\ 2.45 \times 10^{-2} \Gamma_{B_c}, & P_A \\ & & 1.33 \Gamma_{B_c}, & P_B \\ 2.39 \times 10^{-2} \Gamma_{B_c}, & P_C \\ & & & 1.31 \Gamma_{B_c}, & P_D \end{cases}$$

► Conclusion: Clearly, P_B and P_D already excluded by $B_c^- \rightarrow \tau^- \bar{\nu}_{\tau}$, because the predicted decay widths have already overshot the total width. \hookrightarrow need only consider solutions P_A and P_C !

Comparison between P_A and P_C

• \mathcal{H}_{eff} with fitted values of the effective couplings in P_A and P_C :

$$\begin{split} \mathcal{H}_{\rm fit} = & \frac{4G_F}{\sqrt{2}} V_{cb} \left\{ \underbrace{ \left[1 + \begin{pmatrix} 0.129 & \text{for } P_A \\ -2.117 & \text{for } P_C \end{pmatrix} \right]}_{C_V^{\rm fit}} \bar{c} \gamma_\mu P_L b \, \bar{\tau} \gamma^\mu P_L \nu_\tau \\ & + \underbrace{ \begin{pmatrix} 0.018 & \text{for } P_A \\ -0.018 & \text{for } P_C \end{pmatrix}}_{C_S^{\rm fit}} \bar{c} P_L b \, \bar{\tau} P_L \nu_\tau \\ & + \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \\ & \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \\ & \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \\ & \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \\ & \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \\ & \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \\ & \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \\ & \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \\ & \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \\ & \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \\ & \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \\ & \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L b \, \bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau \\ & \underbrace{ \begin{pmatrix} -0.002 & \text{for } P_A \\ 0.002 & \text{for } P_C \end{pmatrix}}_{C_T^{\rm fit}} \bar{c} \sigma_{\mu\nu} P_L \bar{c} \sigma^{\mu\nu} P_L$$

- C_V^{fit} : nearly same absolute values but with opposite signs, enhance SM by $\sim 12\%$;
- C_S^{fit} and C_T^{fit} : same (tiny) values but with opposite signs;
- Conclusion: it should be difficult to discriminate P_A from P_C ;

Some other decay modes considered:

► The other observables in $\overline{B} \to D^{(*)} \tau \nu_{\tau}$: q^2 distribution of R(D) and $R(D^*)$, polarizations of τ and D^* , and lepton forward-backward asymmetry;

0.000

• Conclusion: these observables are enhanced by the scalar LQ contribution, but difficult to distinguish between the two solutions P_A and P_C .

1.00

Conclusion and outlook

- R(D) and R(D*) anomalies: BaBar, Belle and LHCb results consistent with each other; The latest 2016 WA has now a 4.0σ deviation from the SM predictions (Remind: theoretical predictions are on solid footing; first NP signal?);
- The current data can be explained by a charged scalar, but only when both g^{cbτ}_L and g^{cbτ}_R couplings are considered simultaneously;
- ► In scenarios without tree-level FCNCs [like A2HDM: A. Celis, M. Jung, X. Q. Li and A. Pich, 1210.8443]: R(D), R(D*) and the other low-energy processes can be consistently explained; however, the allowed regions are severely constrained;
- ► The current flavour anomalies can be explained by adding just one scalar leptoquark; we have discussed its effects on $\mathcal{B}(B_c^- \to \tau^- \bar{\nu}_\tau)$, $\mathcal{B}(B_c^- \to \gamma \tau^- \bar{\nu}_\tau)$, $R_{D^{(*)}}(q^2)$, $d\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu}_\tau)/dq^2$, $\mathcal{B}(\bar{B} \to X_c\tau\bar{\nu}_\tau)$;
- ► Very interesting to study the inclusive $\bar{B} \rightarrow X_c \tau \bar{\nu}_{\tau}$, and the semileptonic Λ_b and B_s decays, ...;

Thank You for Your Attention!