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Why B physics?
I B-hadron decays: various final states, investigate the flavour

structure in fermionic sector; [Y. Amhis et al. HFAG, 1412.7515]

I BaBar, Belle, Tevatron, LHCb, and Belle-II: more and more
precise data; to validate SM and NP flavor structures;
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Current status of flavour anomalies
I While being in good agreement, NP contributions of order
O(20%) to most low-energy FCNC processes are still allowed;

I Several intriguing deviations from the SM predictions: 2 ∼ 4σ
level; [T. Becher, 1607.01165; Z. Ligeti, 1606.02756; A. Crivellin, 1606.06861]

see previous talks at this workshop!

I While various cross-checks are still needed, some of them would
be unambiguous NP signals! ↪→ A unified explanation within a
specific NP model? [A. Crivellin, 1606.06861]
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Why B → D(∗)τντ decays?
I Tree-level processes: mediated by W± in SM; sensitive to tree-level NP like RH

currents, charged Higgs, lepto-quarks, · · · ;

I R(D(∗)) =
Br(B→D(∗)τντ )

Br(B→D(∗)`ν`)
: uncertainties from FFs and Vcb largely cancelled;

[BaBar, 1205.5442; Belle, talk by Shigeki Hirose; LHCb, talk by Kristof De Bruyn]

. R(D)SM = 0.299± 0.003

[exp.: 0.397± 0.040± 0.028]

[D. Bigi, P. Gambino, 1606.08030]

. R(D∗)SM = 0.252± 0.003

[exp.: 0.316± 0.016± 0.010]

[S. Fajfer et al., 1203.2654]

I The combined WA for R(D) and R(D∗) shows a 4.0σ deviation from the SM.
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Why B → D(∗)τντ decays?
I 4.0σ R(D(∗)) anomaly: the most significant in B physics, and

motivate many studies both within the SM and in various NP
models;

I The observed tension is model independent: exclusive already
over-saturates inclusive; [M. Freytsis, Z. Ligeti, J. Ruderman, 1506.08896]

B The data on R(D) and R(D∗) imply:

Br(B̄ → D∗τ ν̄) + Br(B̄ → Dτν̄) = (2.71± 0.18)%

B Including the four lightest orbitally excited D meson states:

Br(B̄ → D(∗)τ ν̄) + Br(B̄ → D∗∗τ ν̄) ∼ 3%

B From inclusive=
∑

exclusive, ∼ 3σ tension with inclusive modes;

Br(B̄ → Xcτ ν̄) = (2.42± 0.05)%, Br(b→ Xτ+ν) = (2.41± 0.23)%
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Possible to explain the observed R(D(∗)) anomaly?
I Questions to be asked:

	 the observed tension can or cannot be explained within the SM?
↪→ explanations with QCD effects quite unlikely.

	 how precise should we know B → D(∗) FFs? LQCD improve-
ments! [FNAL/MILC, 1403.0635, 1503.07237; HPQCD, 1505.03925]

	 If LFU is really violated in B-meson decays, could we probe LFU
violations in Λb and Bs decays?

I Remind: LFU in purely leptonic D(s), π, and K, hadronic τ
decays already tested, and holds up to 1% level.

 these decays should put much stronger constraints on the
NP contribution! [S. Fajfer et al., 1206.1872; A. Celis et al., 1210.8443]

I Our strategy for R(D(∗)) anomaly: firstly perform a model-
indep. analysis; then specific to some NP models [2HDM and
scalar leptoquark], to see their pheno. implications;

[A. Celis et al., 1210.8443, in preparation; Xin-Qiang Li et al., 1605.09308]
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Solution with a charged Higgs

I Solutions with a charged Higgs and pheno. implications:

A. Celis, M. Jung, X. Q. Li and A. Pich, “Sensitivity to charged
scalars in B → D(∗)τντ and B → τντ decays,” JHEP 1301
(2013) 054 [arXiv:1210.8443 [hep-ph]].

A. Celis, M. Jung, X. Q. Li and A. Pich, “Tree-level constraints
on a charged Higgs,” in preparation.
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The effective Lagrangian
I Leff: charged-scalar mediated semileptonic transitions (neglect

neutrino-mass-related terms):

Leff = −4GFVquqd√
2

[
q̄u (gquqd`L PL + gquqd`R PR) qd

]
[¯̀PLν`]

I Processes considered: charged-scalar contributes at tree-level;

Observable SM prediction Exp. Value

R(D) 0.284+0.010
−0.007 ± 0.014 0.379± 0.044

R(D∗) 0.252± 0.001± 0.003 0.327± 0.020†

R(Xc) 0.222± 0.004 0.225± 0.022

Br(B → τν̄τ ) (1.06+0.27
−0.24)× 10−4 (1.06± 0.20)× 10−4

Br(B0 → πτν̄τ ) 1.15+0.30
−0.27 × 10−4 ≤ 2.8× 10−4 (95% CL)

Br(Ds → τν̄τ ) (4.99± 0.20)× 10−2 (5.55± 0.24)× 10−2

Br(Ds → µν̄µ) (5.13± 0.20)× 10−3 (5.57± 0.24)× 10−3

Br(D → µν̄µ) (3.78± 0.16)× 10−4 (3.74± 0.17)× 10−4

Br(D → τν̄τ ) (1.01± 0.04)× 10−3 ≤ 1.2× 10−3 (90% CL)

Γ(K → µν̄µ)/Γ(π → µν̄µ) 1.340± 0.025 1.337± 0.003

Γ(τ → Kντ )/Γ(τ → πντ ) (6.58± 0.07)× 10−2 (6.43± 0.09)× 10−2

Br(τ → πν)/Br(π → µν) (9.784± 0.014)× 103 (9.713± 0.056)× 103

Br(τ → µντ ν̄µ)/Br(τ → eντ ν̄e) 0.9725± 0.0000 0.9764± 0.0030
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Strategy for the global fit
I CKM elements: the ones not sensitive to the charged scalar;

	 |Vud| from super-allowed 0+ → 0+ nuclear β decays;

	 |Vcb| from exclusive and inclusive semileptonic b→ c`ν̄` decays;

	 |Vub| from exclusive and inclusive semileptonic b→ u`ν̄` decays.

I Hadronic parameters: taken from the latest FLAG, HFAG and
PDG averages; [FLAG, 1607.00299; PDG 2015 version; HFAG, 1412.7515]

I Statistical analysis: choose frequentist statistics and Rfit scheme,
as implemented by CKMfitter group; [Höcker et al., 2001]

	 theo. uncertainties treated by defining allowed ranges, and with-
in the range no contribution to ∆χ2, while set to infinity outside
the range;

	 theo. errors chosen conservatively and added linearly;

	 syst. errors treated as above, while stat. errors “normally”.
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What’s new compared to A. Celis, M. Jung, X. Q. Li and A. Pich, 1210.8443?

I Both Belle and LHCb measurements are well consistent with BaBar’s, implying

now 4.0σ deviation from the SM predictions; [BaBar, 1205.5442, 1303.0571;

Belle, 1507.03233, 1603.06711, 1607.07923, 1608.06391; LHCb, 1506.08614]

I The q2 distributions dΓ(B → D(∗)τν)/dq2 also available by Belle and BaBar,

yielding additional information to distinguish NP from the SM, and different NP

models from each other; [BaBar, 1303.0571; Belle, 1507.03233]

I Constraints from the inclusive semi-leptonic decay B → Xcτν, measured at LEP,

also taken into account, providing further complementary constraints; [Freytsis,

Ligeti, Ruderman, 1506.08896; LEP, hep-ex/0112028]

I Constraints from direct charged-Higgs searches at the LHC now become avail-
able; [ATLAS, 1302.3694, 1412.6663, 1603.09203; CMS, CMS-PAS-HIG-14-
020, 1510.04252; A. G. Akeroyd et al., 1607.01320]

 combined with the LEP bound, MH± ≥ 80 GeV � mb, one can safely

integrate out MH± at µb ∼ 5 GeV, to get Heff ∝ CiOi.
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Model-independent analysis of B → D(∗)τν
I With no assumptions on flavour structure, the only observables

governed by b→ cτντ : R(D), R(D∗), R(Xc), dΓ(B → D(∗)τν)/dq2;

δ`cb ≡
(gcb`L + gcb`R )(mB −mD)2

m`(m̄b − m̄c)
[scalar] , ∆`

cb ≡
(gcb`L − gcb`R )m2

B

m`(m̄b + m̄c)
[pseudo− scalar]

I For real couplings: allowed parameter spaces in δτcb−∆τ
cb-plane;

B R(D(∗)) yield four solutions (blue);

B dΓ(B → D(∗)τν)/dq2 exclude two

of them; favour the one with large

∆τ
cb (95% CL);

B Model-independent tension with the

inclusive B → Xcτντ decay reflected

by small overlap regions;

I Conclusion: the current data can be explained simultaneously
by a charged scalar, but only with both gcbτL and gcbτR present!
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Model-independent analysis of B → D(∗)τν
I Individual fit to R(D) and R(D∗) with complex couplings:

I Fits including the measured q2 spectrum and B−c → τ−ν̄τ :
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Cases with only gcbτL or gcbτR present
I Only gcbτL present: possible to resolve R(D) and R(D∗), but in

conflict with the measured q2 differential distributions;

B Dark green: fits at 95% CL; light

green: at 99.7% CL;

B Having only a real gcbτL as the

common explanation for R(D)

and R(D∗) is now highly dis-

favoured by the q2 differential

distributions;

[A. Crivellin et al., 1206.2634;

A. Crivellin et al., 1507.07567]

I Only gcbτR present: does improve the fit to R(D(∗)) compared
to SM, but does not yield a good fit, when combining all data;

I Conclusion: charged scalar alone do can explain all the data,
but only with both gcbτL and gcbτR added simultaneously!
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Scenarios without tree-level FCNCs

I The model-indep. scalar-mediated charged-current interaction:

Leff = −4GFVquqd√
2

[
q̄u (gquqd`L PL + gquqd`R PR) qd

]
[¯̀PLν`]

I Scenarios without tree-level FCNCs: gL,R must be diagonal;
[“Yukawa Alignment in the Two-Higgs-Doublet Model, A. Pich, P. Tuzon, 0908.1554]

LY =−
√

2

v
H+

{
ū [V ςDMDPR − ςUMUV PL] d+ ν̄ςLMLPR`

}
gquqdlL = ςuς

∗
l

mquml

m2
H±

, gquqdlR = −ςd ς∗l
mqdml

m2
H±

I Family-universal: ςD,U,L ≡ ςd,u,`1, 2HDMs with NFC easily
recovered;

↪→ different decay modes are automatically connected;
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Scenarios without tree-level FCNCs
I New observables involving τ : Br(B → τν), Br(Dd,s → τν),

Γ(τ → Kν)/Γ(τ → πν), · · · ;

I Global fit using the available data with τ lepton: 95% CL

B dark blue: constraints from R(D(∗));

B light blue: constraints from q2

distributions;

B dark yellow: the other measurements

above, not depending on both

couplings simultaneously;

B red: dashed rings excluded by

Dd → τν and incompatible with the

distributions;

B joined fit still remains viable: χ2 =

62.7 for 55 dof, compared to χ2 =

81.1 for 60 dof in SM;

I Conclusion: the scenario with charged-scalar interactions can
explain B → D(∗)τν and the remaining tree-level observables!
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Solution with a scalar leptoquark

I Solutions with a scalar leptoquark and pheno. implications:

X. Q. Li, Y. D. Yang and X. Zhang, “Revisiting the one leptoquark solution to
the R(D(∗)) anomalies and its phenomenological implications,” arXiv:1605.09308
[hep-ph].

M. Bauer and M. Neubert, “Minimal Leptoquark Explanation for the RD(∗) ,
RK , and (g − 2)µ Anomalies,” Phys. Rev. Lett. 116 (2016) no.14, 141802
[arXiv:1511.01900 [hep-ph]].

M. Freytsis, Z. Ligeti and J. T. Ruderman, “Flavor models for B̄ → D(∗)τ ν̄,”

Phys. Rev. D 92 (2015) no.5, 054018 [arXiv:1506.08896 [hep-ph]].
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The one scalar leptoquark scenario
I The LQ model: one single scalar LQ with Mφ ∼ 1 TeV and

(3,1,−1
3) added to SM; [M. Bauer and M. Neubert, 1511.01900]

Lφ = (Dµφ)†Dµφ−M2
φ |φ|

2 − ghφ |Φ|2|φ|2

+ Q̄cλLiτ2Lφ
∗ + ūcR λReR φ

∗ + h.c. ,

I φ interactions with fermions: rotating from the weak to the
mass basis for quarks and charged leptons, to get Lφint;

Lφint = ūcLλ
L
ullLφ

∗ − d̄cLλ
L
dννLφ

∗ + ūcRλ
R
ullRφ

∗ + h.c. ,
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I Both tree- and loop-level four-fermion operators (ūidj)(ν̄`), (ūiuj)(`
+`−) and

(d̄idj)(ν̄ν) generated; ↪→ B̄ → D(∗)τ ν̄τ , B−c → τ−ν̄τ (γ), B → Xcτ ν̄τ ,

D0 → µ+µ−, D+ → π+µ+µ−, B → Xsνν̄, B → K(∗)νν̄, K → πνν̄, (g−2)µ;

[M. Bauer and M. Neubert, 1511.01900]
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LQ-mediated b→ cτ ν̄τ decays
I Total Heff for b → cτ ν̄τ transitions: integrating out φ and

performing the proper Fierz transformation;

Heff =
4GF√

2
Vcb

[
CV (Mφ) c̄γµPLb τ̄γ

µPLντ + CS(Mφ) c̄PLb τ̄PLντ

−
1

4
CT (Mφ) c̄σµνPLb τ̄σ

µνPLντ

]
I CV , CS , CT : the WCs at the matching scale µ = Mφ; the

latter two need be run down to µb ∼ mb;

CV (Mφ) = 1 +
λLbντ λ

L∗
cτ

4
√

2GFVcbM
2
φ

, CS(Mφ) = CT (Mφ) = −
λLbντ λ

R∗
cτ

4
√

2GFVcbM
2
φ

I Four best-fit solutions for R(D(∗)) along with acceptable q2

spectra: Mφ = 1 TeV; [M. Freytsis, Z. Ligeti, J. T. Ruderman, 1506.08896]

(λLbντ λ
L∗
cτ , λ

L
bντ

λR∗cτ ) = (C′′SR , C
′′
SL

) =


( 0.35, −0.03), PA

( 0.96, 2.41), PB

(−5.74, 0.03), PC

(−6.34, −2.39), PD
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LQ-mediated b→ cτ ν̄τ decays

I Solution PA: explain in a natural way three of the most striking anomalies of

particle physics, while satisfying the other low-energy constraints without fine-

tuning; [M. Bauer and M. Neubert, 1511.01900]

One Leptoquark to Rule Them All: 
A Minimal Explanation for Rn＜串）， RK and (g-2)µ 

Martin Bauerαand Matthias Neubertb,c 
α Institut fur Theoretische Physik, Uniυersitat Heidelberg, Philosophenweg 16, 691 20 Heidelberg, Germαny 

b PRISMA Cluster of Excellence & MITP, Johαnnes Gutenberg University, 55099 Mαinz, Germαny 
cDepαrtment of Physics & LEPP, Cornell University, Ithαcαy NY 14853, U.S.A . 

We show that by adding a single new scalar particle to the Standard Model, a Te V-scale leptoquark 
with the quantum numbers of a right-handed down quark, one can explain in a natural way three of 
the most striking anomalies of particle physics: the violation of lepton universality in B • [(g+g 
decays, the enhanced B • n <* )TD decay rates, and the anomalous magnetic moment of t he muon. 
Constraints from other precision measurements in the flavor sector can be satisfied without fine­
t uning. Our model predicts enhanced B • [((*)vD decay rates and a new-physics contribution to 
Bs -Bs mixing close to t he current central fit value. 

I Question: these four best-fit solutions could be discriminated from each oth-
er using the low-energy processes mediated by the same quark-level b → cτντ
transition?

↪→ in addition to B̄ → D(∗)τ ν̄τ , we shall examine the scalar LQ effects on

B−c → τ−ν̄τ , B−c → γτ−ν̄τ and B → Xcτ ν̄τ decays.
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The purely leptonic B−c → τ−ν̄τ decay

I The decay width with LQ-exchanged contribution:

Γ(B−c → τ−ν̄τ ) =
G2
F

8π
|Vcb|2f2

Bc
m3
Bc

m2
τ

m2
Bc

(
1−

m2
τ

m2
Bc

)2

∣∣∣∣∣CV − CS m2
Bc

mτ
[
mb(µb) +mc(µb)

] ∣∣∣∣∣
2

I Numerical results with the four best-fit solutions:

Γ(B−c → τ−ν̄τ ) =



2.22× 10−2 ΓBc , SM

2.45× 10−2 ΓBc , PA

1.33 ΓBc , PB

2.39× 10−2 ΓBc , PC

1.31 ΓBc , PD

I Conclusion: Clearly, PB and PD already excluded by B−c →
τ−ν̄τ , because the predicted decay widths have already overshot
the total width. ↪→ need only consider solutions PA and PC !
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Comparison between PA and PC
I Heff with fitted values of the effective couplings in PA and PC :

Hfit =
4GF√

2
Vcb


[

1 +

(
0.129 for PA

−2.117 for PC

)]
︸ ︷︷ ︸

Cfit
V

c̄γµPLb τ̄γ
µPLντ

+

(
0.018 for PA

−0.018 for PC

)
︸ ︷︷ ︸

Cfit
S

c̄PLb τ̄PLντ

+

(
−0.002 for PA

0.002 for PC

)
︸ ︷︷ ︸

Cfit
T

c̄σµνPLb τ̄σ
µνPLντ


I Cfit

V : nearly same absolute values but with opposite signs, enhance SM by ∼ 12%;

I Cfit
S and Cfit

T : same (tiny) values but with opposite signs;

I Conclusion: it should be difficult to discriminate PA from PC ;
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Some other decay modes considered:
I The radiative leptionic decay B−c → γτν̄τ :
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I The inclusive semileptonic B → Xcτ−ν̄τ decay:
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I The other observables in B̄ → D(∗)τντ : q2 distribution of R(D) and R(D∗),

polarizations of τ and D∗, and lepton forward-backward asymmetry;

I Conclusion: these observables are enhanced by the scalar LQ contribution, but

difficult to distinguish between the two solutions PA and PC .
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Conclusion and outlook
I R(D) and R(D∗) anomalies: BaBar, Belle and LHCb results consistent with each

other; The latest 2016 WA has now a 4.0σ deviation from the SM predictions

(Remind: theoretical predictions are on solid footing; first NP signal?);

I The current data can be explained by a charged scalar, but only when both gcbτL

and gcbτR couplings are considered simultaneously;

I In scenarios without tree-level FCNCs [like A2HDM: A. Celis, M. Jung, X. Q. Li

and A. Pich, 1210.8443]: R(D), R(D∗) and the other low-energy processes can

be consistently explained; however, the allowed regions are severely constrained;

I The current flavour anomalies can be explained by adding just one scalar lep-

toquark; we have discussed its effects on B(B−c → τ−ν̄τ ), B(B−c → γτ−ν̄τ ),

RD(∗) (q2), dB(B̄ → D(∗)τ ν̄τ )/dq2, B(B̄ → Xcτ ν̄τ );

I Very interesting to study the inclusive B̄ → Xcτ ν̄τ , and the semileptonic Λb and

Bs decays, · · · ;

Thank You for Your Attention!
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