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Muon Magnetic Moment  

•  The muon has an intrinsic magnetic moment that is 
coupled to its spin by the gyromagnetic ratio g: 

•  Interactions between the muon and virtual loops alter 
this number – X & Y could be SM or new physics: 
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Standard Model Components of gµ 
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aµ: Experiment vs Standard Model  

•  gµ normally denoted by anomalous piece aµ: 
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“Glasgow Consensus”   

Contribution Value (x 10-11) 

QED (γ + l) 116 584 718.951 ± 0.08 

Hadronic VP (lo)* 6 923 ± 42 

Hadronic VP (ho)** -98.4 ± 0.7 

Hadronic LBL§ 105 ± 26 

ElectroWeak 153.6 ± 1.0 

Total SM 116 591 802 ± 42H-LO ± 26H-LBL ± 2other (± 49tot) 

*Davier et al, Eur. Phys. J. C(2011) 71:1515; **Hagiwara et al, J. Phys. G38, 085003 (2011); §Prades et al, Lepton Moments (2010) 

Significant work 
on-going 

E821 Result (Data-taking from 1998 – 2001): 

Exp - Theory: (3.6σ) 



Fermilab Muon Campus Vision, c. 2012 
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Artist’s Impression of Muon Campus 

•  Convert Tevatron anti-proton source to produce muon 
beams for experiments such as Muon g-2 and Mu2e 

Muon g-2 

Mu2e 

Delivery Ring 



•  Muon g-2 hall complete, storage ring installed & operational 

•  Mu2e civil construction complete & building outfitting underway 

•  Conversion of accelerator complex to muon source nearing 
completion 

Fermilab Muon Campus Reality, Today  
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Muon g-2 

Mu2e Delivery Ring 

Photograph from Wilson Hall 



Muon g-2: Overall Goal 
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Requires 21 x statistics & reduction of 
key systematics with 4 major steps: 

– Transport storage ring to Fermilab 

– New experimental hall for ring 

– Modify accelerator to provide a 
high-purity, intense beam of muons 

– Upgrade injection, field, detector, 
electronics & DAQ systems for 
higher rates and lower systematics 

 

BNL Result 

Fermilab Goal 

✔
✔
75% 
Done 

80% 
Done 
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•  Reduce experimental error on aµ by factor 4 & resolve 
the long-standing E821 g-2 discrepancy 



Muon g-2: Experimental Principle 

•  Store longitudinally polarised muons in a dipole field 
•  Measure two quantities to extract aµ: 

–  magnetic field averaged over muon distribution, B 

–  anomalous precession frequency, ωa 
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Cyclotron freq. Spin precession freq. 

Larmor 
precession 

Thomas 
precession 



Muon g-2: Muon Production 
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Target 

Proton bunch 

•  120 ns wide bunch of 8 GeV  
protons from Booster & Recycler 

  
•  Fired at pion production target 

which is the same as that used for 
Tevatron Run II anti-proton 
production (Inconel (Ni-Cr))  



Muon g-2: Muon Production 
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Pions 

3.11 GeV/c 

Target 

Proton bunch 

•  Outgoing pions focused by a 
lithium lens and then momentum-
selected, centred on 3.11 GeV 

•  The pions are then collected and 
sent towards the delivery ring 



Muon g-2: Muon Production 
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Target 

Proton bunch ~µ

•  In the delivery ring, pions decay 
into negative helicity µ+  

•  Create a ~90% polarised beam 
by selecting highest energy µ+ 

•  Momentum of selected µ+ centred 
on 3.09 GeV (γ = 29.3) to reduce 
E-field effects: 

Pions 

3.11 GeV/c 

0 for γ = 29.3 



Muon g-2: Storing Muons 
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Inflector 

Storage 
ring 

R=711.2cm 

d=9cm 

B = 1.45 T 

Target 

Proton bunch ~µ

•  Storage ring: 14 m diameter 
toroidal C-magnet with 1.45 T field 

•  Inflector magnet nullifies the 
storage ring field for incoming 
muons 

 

Pions 

3.11 GeV/c 



Muon g-2: Storing Muons 
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Injection orbit 
Target 

Proton bunch ~µPions 

3.11 GeV/c 
B = 1.45 T 

Inflector 

•  Storage ring: 14 m diameter 
toroidal C-magnet with 1.45 T field 

•  Inflector magnet nullifies the 
storage ring field for incoming 
muons 

•  Muons that pass through the 
inflector are off central orbit 



Muon g-2: Storing Muons 
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Kicker  
magnets 

Central  orbit 

Injection orbit 

R

R

Target 

Proton bunch ~µPions 

3.11 GeV/c 
B = 1.45 T 

Inflector 

•  Storage ring: 14 m diameter 
toroidal C-magnet with 1.45 T field 

•  Inflector magnet nullifies the 
storage ring field for incoming 
muons 

•  Muons that pass through the 
inflector are off central orbit 

•  Kicker magnets move the orbit to 
the centre of the storage ring 



Muon g-2: Storing Muons 
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Electric Quadrupoles 

Target 

Proton bunch ~µPions 

3.11 GeV/c 
B = 1.45 T 

Inflector 

•  Storage ring: 14 m diameter 
toroidal C-magnet with 1.45 T field 

•  Inflector magnet nullifies the 
storage ring field for incoming 
muons 

•  Muons that pass through the 
inflector are off central orbit 

•  Kicker magnets move the orbit to 
the centre of the storage ring 

•  Muons focussed vertically with 
electrostatic quadrupoles 



•  Regularly map field inside 
vacuum chamber with 
NMR probe trolley 

•  Monitor field during data-
taking with fixed probes 
and interpolate 

Measuring the Magnetic Field 
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NMR trolley in vacuum chamber 

•  BNL E821 result averaged 
around azimuth was good 
to 1 – 2 ppm 

•  We’re shimming finer to 
improve this 

BNL Field 



Magnet Reassembly at Fermilab 
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Bottom yoke pieces Bringing in super-conducting coils 

SC coils installed Top yoke pieces 
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First Magnetic Field Measurement 
•  Magnet achieved full power September 2015 with peak-

peak variation of 1400 ppm: 

•  We care about the field weighted by muon distribution 

•  For 70 ppb uncertainty, we need a uniform field to relax 
constraints on measuring the muon distribution 

•  The goal is 50 ppm after first round of rough shimming  
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1400 ppm 

50 ppm 

Dipole Field Oct 2015 

Goal 



Magnetic Design & Shimming Tools 
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•  C-shaped design with 1.45 T dipole field between poles 



Magnetic Design & Shimming Tools 

20 James Mott        Tau2016, Beijing       20th September 2016 

•  C-shaped design with 1.45 T dipole field between poles 

•  Many “knobs” for calibration: 
–  72 Poles 

•  Shaping & homogeneity 



Magnetic Design & Shimming Tools 
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•  C-shaped design with 1.45 T dipole field between poles 

•  Many “knobs” for calibration: 
–  72 Poles 

•  Shaping & homogeneity  
–  864 Wedges 

•   Quadrupole asymmetry 



Magnetic Design & Shimming Tools 
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•  C-shaped design with 1.45 T dipole field between poles 

•  Many “knobs” for calibration: 
–  72 Poles 

•  Shaping & homogeneity  
–  864 Wedges 

•   Quadrupole asymmetry 
–  48 Iron Top Hats 

•  Change effective µ 



Magnetic Design & Shimming Tools 
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•  Many “knobs” for calibration: 
–  72 Poles 

•  Shaping & homogeneity  
–  864 Wedges 

•   Quadrupole asymmetry 
–  48 Iron Top Hats 

•  Change effective µ 
–  144 Edge Shims 

•  Quad/sextapole asymmetry 
–  8000 Surface Iron Foils 

•  Local changes of effective µ 
–  100 Active Surface Coils 

•  Control current to add ring-wide 
average field moments  

•  C-shaped design with 1.45 T dipole field between poles 

Edge shims & 
surface coils/foils 



Shimming & Field Measurements 

•  Field in storage volume is 
measured using pulsed 
proton NMR 

•  Shimming trolley contains 
array of probes that map 
whole storage volume 

•  Extracted frequency gives 
10 ppB single shot 
measurement precision 
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Early stages of shimming: 



Shimming in Action 

25 

+
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Poles Top hats & wedges Surface foils 

•  Progress towards a uniform field from Oct ‘15 to July ’16: 



Rough Shimming Result 
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50  

ppm 

~1400  

ppm 

Oct 2015 à Aug 2016 

Goal 

•  August 2016: completed addition of surface foils & 
achieved 50 ppm goal for rough shimming: 

•  Now installing vacuum chambers & detector systems 

RMS (ppm) p-p (ppm) 
FNAL (Rough shimmed) 10 75 
BNL (Typical scan) 30 230 



Measuring the precession frequency, ωa 

•  We measure ωa using 24 
electromagnetic calorimeters 
placed around the storage 
ring 

 
•  The highest energy positrons 

are correlated with the muon 
spin in our polarised sample 
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•  As the µ+ spin precesses 
towards and away from the 
calorimeters the number of 
high energy e+ is 
modulated by ωa 

Calorimeters 



Extracting ωa from the calorimeter data  
•  Arrival-time spectrum from previous experiment (E821): 
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Time % 100 µs 

    0 – 100 µs 
 
100 – 200 µs 
 
200 – 300 µs 
 
300 – 400 µs 
 
400 – 500 µs 
 
500 – 600 µs 

 
600 – 700 µs 



Calorimeter Design 
•  24 calorimeters: each is array of 6 x 9 PbF2 crystals - 2.5 

x 2.5 cm2 x 14 cm (15X0) 
•  Readout by SiPMs to 800 MHz WFDs (1296 channels) 
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28 channel prototype tested at SLAC 



Calorimeter Performance 
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See NIM A 783 (2015), pp 12–21 for details 

σt ~ 25 ps 

Temporal 
separation at 5 ns 

σE/E ~ 2.8% @ 2 GeV 

Energy Resolution Timing Resolution 

Electron pile-up  Position from Energy Deposit 



•  A non-destructive measurement with 
a resolution of 1 mm.   

Measuring the Muon Distribution 
•  We need to measure the muon distribution to calculate: 

–  Average magnetic field 
–  Pitch correction (vertical betatron motion) 
–  E-field correction (not all muons at magic mom) 

•  We do this with three trackers around the ring 

31 James Mott        Tau2016, Beijing       20th September 2016 

hy2i
hx2

ei

hBiµ�dist

Reconstructed 
decay position  

Trackers 



Tracker Design 
•  Each tracker has 8 modules that sit in front of calorimeter 
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Single straw resolution 
~ 180 µm 

•  Each module has 128 straws 
in four layers 

Top down view of ring section 



Muon g-2: Current Schedule 
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MC-1	(GPP)	

FY19FY18FY14 FY15 FY16 FY17

g-2	Cryo	Plant	(AIP)	
Ring	Assembly	

Shim	Field	
Prep	Vacuum	Chambers/Install	

Construct/Install	Sub-systems	

Accelerator	ModificaEons	

Ring	cold	&	ready	for	opera1ons	

Experiment	ready	for	opera1ons	
Accelerator	ready	for	opera1ons	

Ring	Cold	
Detector/DAQ	
Commission	

Beam	
Tune-up	

Physics	ProducEon	Running	

Analysis	Tools	Development	
Mock	Data	

2nd	Results	

Full	Running	Intensity	

Construc1on	(Project	&	Muon	Campus):	

Opera1ons	(Laboratory):	

Analysis	(Collabora1on):	

1-2	x	BNL	sta1s1cs	

~5-10	x	BNL	
21	x	BNL	

Final	Results	

1st	Results	



Take-home messages 

•  The Muon g-2 experiment will reduce error by a factor of 4 
compared to the previous Muon g-2 (BNL E821) 

•  The storage ring magnet has been operational for a year 
and our rough shimming targets have been achieved 

•  Beamline commissioning begins in April 2017, with real 
data collection starting Autumn 2017 

•  We anticipate a result with the same precision as E821 by 
mid-2018 

•  We expect to report three results with 100%, 50% and 25% 
of the E821 uncertainty 
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Extra Slides 
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Goal:  140 ppb 
Expected Improvement 
7.5 σ if same central values

Key:   More muons per fill & more fills per hour 

Key:  Finer shimming of magnet and refined monitoring 

Key:   Modern detectors/electronics/DAQ/calibration 

Improvements over E821 
Increase statistics:   x 21 
Reduce systematics:   x 2 (ωp)  and  x 3 (ωa) 
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Systematic Errors on ωa (ppb) 

Ring 
Team 

Detector 
Team 

Detector 
Team 
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Systematic Errors on ωp (ppb) 

Brookhaven E821 FNAL 



Absolute calibration of the field 
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State-of-the-art Laser-based calibration system 

Front Panel Prisms 

10-4 / h demonstrated 
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