

Muon g-2 Experiment at Fermilab State of the Experiment

James Mott, Boston University for the Muon g-2 Collaboration Tau2016, Beijing, China 20th September 2016

Muon Magnetic Moment

• The muon has an intrinsic magnetic moment that is coupled to its spin by the gyromagnetic ratio g:

$$\vec{\mu} = g \frac{e}{2m_{\mu}} \vec{S}$$

 Interactions between the muon and virtual loops alter this number – X & Y could be SM or new physics:

Standard Model Components of g_u

a_µ: Experiment vs Standard Model

		×
Contribution	Value (x 10 ⁻¹¹)	γŝ
QED (γ + I)	116 584 718.951 ± 0.08	M. March
Hadronic VP (lo)*	6 923 ±42	Significant work
Hadronic VP (ho)**	-98.4 ± 0.7	on-going
Hadronic LBL§	105 ±26	YÈ
ElectroWeak	153.6 ± 1.0	
Total SM	116 591 802 ± 42_{H-LO} ± 26_{H-LBL} ± 2_{other} (± 49_{tot})	
E821 Result (Data	-taking from 1998 – 2001):	μ
$a_{\mu}^{exp} = 11$	$6592089(54)_{st}(33)_{sy}(63)_{tot}$	$\times 10^{-11}$
Exp - Theory: 🛆	$a_{\mu}^{(\text{today})} = (287 \pm 80) \times 10^{-1}$	<u>1</u> (3.6σ)

*Davier et al, Eur. Phys. J. C(2011) 71:1515; **Hagiwara et al, J. Phys. G38, 085003 (2011); [§]Prades et al, Lepton Moments (2010) James Mott Tau2016, Beijing 20th September 2016

Fermilab Muon Campus Vision, c. 2012

• Convert Tevatron anti-proton source to produce muon beams for experiments such as Muon g-2 and Mu2e

Artist's Impression of Muon Campus

Fermilab Muon Campus Reality, Today

Photograph from Wilson Hall

- Muon g-2 hall complete, storage ring installed & operational
- Mu2e civil construction complete & building outfitting underway
- Conversion of accelerator complex to muon source nearing completion

Muon g-2: Overall Goal

• Reduce experimental error on a_{μ} by factor 4 & resolve the long-standing E821 g-2 discrepancy

Requires 21 x statistics & reduction of key systematics with 4 major steps:

Transport storage ring to Fermilab

New experimental hall for ring

⁷⁵% Modify accelerator to provide a high-purity, intense beam of muons

⁸⁰/_{Done} Upgrade injection, field, detector, electronics & DAQ systems for higher rates and lower systematics

Muon g-2: Experimental Principle

- Store longitudinally polarised muons in a dipole field
- Measure two quantities to extract a_u:
 - magnetic field averaged over muon distribution, B
 - anomalous precession frequency, ω_a

Muon g-2: Muon Production

- 120 ns wide bunch of 8 GeV protons from Booster & Recycler
- Fired at pion production target which is the same as that used for Tevatron Run II anti-proton production (Inconel (Ni-Cr))

Muon g-2: Muon Production

- Outgoing pions focused by a lithium lens and then momentumselected, centred on 3.11 GeV
- The pions are then collected and sent towards the delivery ring

Muon g-2: Muon Production

 In the delivery ring, pions decay into negative helicity μ⁺

- Create a ~90% polarised beam by selecting highest energy μ⁺
- Momentum of selected μ⁺ centred on 3.09 GeV (γ = 29.3) to reduce E-field effects:

Measuring the Magnetic Field

- Regularly map field inside vacuum chamber with NMR probe trolley
- Monitor field during datataking with fixed probes and interpolate

BOSTOI

NMR trolley in vacuum chamber

- BNL E821 result averaged around azimuth was good to 1 – 2 ppm
- We're shimming finer to improve this

Magnet Reassembly at Fermilab

First Magnetic Field Measurement

 Magnet achieved full power September 2015 with peakpeak variation of 1400 ppm:

- We care about the field weighted by muon distribution
- For 70 ppb uncertainty, we need a uniform field to relax constraints on measuring the muon distribution
- The goal is 50 ppm after first round of rough shimming

• C-shaped design with 1.45 T dipole field between poles

- C-shaped design with 1.45 T dipole field between poles
- Many "knobs" for calibration:
 - 72 Poles
 - Shaping & homogeneity

- C-shaped design with 1.45 T dipole field between poles
- Many "knobs" for calibration:
 - 72 Poles
 - Shaping & homogeneity
 - 864 Wedges
 - Quadrupole asymmetry

- C-shaped design with 1.45 T dipole field between poles
- Many "knobs" for calibration:
 - 72 Poles
 - Shaping & homogeneity
 - 864 Wedges
 - Quadrupole asymmetry
 - 48 Iron Top Hats
 - Change effective µ

- C-shaped design with 1.45 T dipole field between poles
- Many "knobs" for calibration:
 - 72 Poles
 - Shaping & homogeneity
 - 864 Wedges
 - Quadrupole asymmetry
 - 48 Iron Top Hats
 - Change effective µ
 - 144 Edge Shims
 - Quad/sextapole asymmetry
 - 8000 Surface Iron Foils
 - Local changes of effective µ
 - 100 Active Surface Coils
 - Control current to add ring-wide average field moments

Shimming & Field Measurements

Field in storage volume is measured using pulsed proton NMR

- Shimming trolley contains array of probes that map whole storage volume
- Extracted frequency gives 10 ppB single shot measurement precision

Shimming in Action

• Progress towards a uniform field from Oct '15 to July '16:

Rough Shimming Result

 August 2016: completed addition of surface foils & achieved 50 ppm goal for rough shimming:

• Now installing vacuum chambers & detector systems

 s_{e^+}

 p_{e^+}

Measuring the precession frequency, ω_a

- We measure ω_a using 24 electromagnetic calorimeters placed around the storage ring
- The highest energy positrons are correlated with the muon spin in our polarised sample

 μ^+

 s_{μ^+}

 s_{ν_e}

 p_{ν_e}

 $p_{\bar{\nu}_{\mu}}$

• As the μ^+ spin precesses towards and away from the calorimeters the number of high energy e⁺ is modulated by ω_a

Extracting ω_a from the calorimeter data

• Arrival-time spectrum from previous experiment (E821):

Calorimeter Design

- 24 calorimeters: each is array of 6 x 9 PbF₂ crystals 2.5 $x 2.5 \text{ cm}^2 x 14 \text{ cm} (15X_0)$
- Readout by SiPMs to 800 MHz WFDs (1296 channels) •

Calorimeter Performance

Measuring the Muon Distribution

- We need to measure the muon distribution to calculate: – Average magnetic field $\langle B \rangle_{\mu-\text{dist}}$
 - Pitch correction (vertical betatron motion) $\langle y^2 \rangle$
 - E-field correction (not all muons at magic mom) $\langle x_e^2 \rangle$
- We do this with three trackers around the ring
- A non-destructive measurement with a resolution of 1 mm.

Tracker Design

• Each tracker has 8 modules that sit in front of calorimeter

Muon g-2: Current Schedule

Take-home messages

- The Muon g-2 experiment will reduce error by a factor of 4 compared to the previous Muon g-2 (BNL E821)
- The storage ring magnet has been operational for a year and our rough shimming targets have been achieved
- Beamline commissioning begins in April 2017, with real data collection starting Autumn 2017
- We anticipate a result with the same precision as E821 by mid-2018
- We expect to report three results with 100%, 50% and 25% of the E821 uncertainty

Extra Slides

Improvements over E821

Key: More muons per fill & more fills per hour

BOSTON

NIVERSITY

- Key: Finer shimming of magnet and refined monitoring
- Key: Modern detectors/electronics/DAQ/calibration

Systematic Errors on ω_a (ppb)

	-		-	-
Category	E821	E989 Improvement Plans		Goal
	[ppb]			[ppb]
Gain changes	120	Better laser calibration		
		low-energy threshold	Detector Team	20
Pileup	80	Low-energy samples recorded		
		calorimeter segmentation		40
Lost muons	90	Better collimation in ring		20
CBO	70	Higher n value (frequency)	Ring Team	
		Better match of beamline to	ring	< 30
E and pitch	50	Improved tracker		
-		Precise storage ring simulat	Detector Team	30
Total	180	Quadrature sum		70

Systematic Errors on ω_p (ppb)

μ 🎽
m g-2 m

	Brookhaven E821			FNAL
Source of uncertainty	R99	R00	R01	E989
	[ppb]	[ppb]	[ppb]	[ppb]
Absolute calibration of standard probe	50	50	50	35
Calibration of trolley probes	200	150	90	30
Trolley measurements of B_0	100	100	50	30
Interpolation with fixed probes	150	100	70	30
Uncertainty from muon distribution	120	30	30	10
Inflector fringe field uncertainty	200	-	-	-
Time dependent external B fields	-	-	-	5
Others †	150	100	100	30
Total systematic error on ω_p	400	240	170	70
Muon-averaged field [Hz]: $\tilde{\omega}_p/2\pi$	61791256	61791595	61791400	-

 [†]Higher multipoles, trolley temperature (≤ 50 ppb/° C) and power supply voltage response (400 ppb/V, ΔV=50 mV), and eddy currents from the kicker.

Absolute calibration of the field

Absolute Calibration

 Measured field is not what a free proton sees; need corrections

Systematic uncertainties from E821 [NIM **394**, 349 (1997)] Projections for E989

Source of Error	Uncertainty (ppb)
NMR detection and measurement	15
Field homogeneity	10
Materials outside the probe	15
Water/sample holder shape	15
Probe materials	10
Diamagnetic shielding (H ₂ O)	14 2.
Temperature	10 5
Total	34 28

Diamagnetic shielding measurements: Metrologia 51, 54 (2014)

Calibration Procedure (during the experiment):

- Move NMR trolley to desired location, take measurements
- Pull NMR trolley far away
- Move plunging probe into position, take measurements (at each trolley probe location)

Test Facility at ANL

- MRI solenoid magnet
- High-precision, high-resolution
 DAQ system

DAQ System Characteristics

- Bandwidth: 61.79 MHz +/- 50 kHz (833 ppm)
- Amplitude: ~ 1 V at t ~ 0
- RMS Noise: ~ 1 mV
- S/N: ~ 1000 at t ~ 0
- Resolution and accuracy: < ~1 ppb

State-of-the-art Laser-based calibration system

UNIVERSITY