Tau trigger and identification at CMS in Run-2

CMS

The 14th International Workshop on Tau Lepton Physics IHEP – Beijing – China 21/09/16

Taus @ CMS

SM H \rightarrow **tt** (D. Zanzi, L. Dodd's talks)

- Only (current) access to H-lepton coupling
- Provides best constraints on VBF

LFV H \rightarrow µ τ (A. Nehrkorn's, K. De Bruyn's talks)

Exotic searches to τ's (Z. Mao's talk) & Graviton, radion, Z', W'

scalar sector

Challenges in τ_h channels at CMS

<u>Signal</u>: reconstruction of genuine hadronic taus (τ_h)

+ efficient trigger selection

+ rejection of pileup (LHC currently features up to ~40 collisions / bunch crossing)
 + reliable description of data using simulation

Overview

(1) Run II τ_h -trigger

- Phase-1 upgrade of L1 trigger: challenges & system overview
- + L1 τ_h -algorithm: description and performance
- * τ_h 's at High Level Trigger (HLT)

2 Run II τ_h -identification

- Reconstruction based on Particle Flow algorithm
- Jet $\rightarrow \tau_h$ discriminators
- Anti-electron discriminator
- Performance measured in Run-2 data

CMS trigger system

- Select interesting processes that have cross sections orders of magnitude lower than proton-proton cross section
- Cannot store all events (TB/s)
- Fast and efficient selection, adapted to interesting physics processes with scales between O(100) GeV to several TeV
- → Rate of events that enter the system (~40 MHz), driven by LHC luminosity
- Implementation in two levels
 - Level-1 (output rate 100 kHz): electronics-based, decision to keep/reject an event in few μs
 - High Level Trigger (output rate 1 kHz): CPU-based, advanced reconstruction of the objects, decisicion to be taken in O(0.2) s

CMS L1 trigger in 2016

- Complete replacement of L1 trigger system (hardware, software)
- Upgrade commissioned this past year
- Brand new architecture
- The key conceptual changes to the L1 calorimeter trigger are
 - Streaming data from single event into one FPGA
 - Dynamic clustering of energy deposits
 - Pile-up subtraction @ L1

The MP7 card on which runs the L1 calorimetric object algorithms (including τ_h)

The L1 τ_{h} -algorithm

Cluster building

Energy response and resolution

Dynamic clustering of "trigger towers" (TT)

- ECAL + HCAL energies
- Designed to capture the τ -footprint
- Improved energy containment/ resolution
- Minimized effect of pileup

Merging

- Merging neighboring clusters (~15%)
- Capture $h^{\pm}\pi^{0}$'s (1-prong + π^{0} 's) decays

Energy calibration

- Improved energy response and resolution \rightarrow sharp turn-ons
- Function of E_{T} , pseudorapidity, merging and electromagnetic fraction

Cluster shapes:

The L1 τ_h -algorithm

(2/2)

Isolation

- Isolation energy: $E_T(6x9 \text{ TT})-E_T(\tau-\text{clusters})$
- Sums of ECAL and HCAL energies
- Cut: isolation energy requirement function of p_T, pileup and pseudorapidity η=-ln[tan(θ/2)]
- Isolation energy cut relaxed as function of p_T

■ Allows control of the rate, increases τ_h -purity ■ Enables pileup resilient selection of τ_h at L1 → Keep low p_T thresholds to efficiently select physics events: $H \rightarrow \tau \tau \rightarrow \tau_h \tau_h H \rightarrow \tau \tau \rightarrow e \tau_h$, etc.

L1 τ_h -trigger performance in data (1/3)

- Measurements based on ~ 12.9 fb⁻¹ of 2016 data, using the Tag & Probe technique on μ+τ events selected by a single-μ trigger
- **D** Resolution in position <0.1 in both η and ϕ directions

2016-09-21

L1 τ_h -trigger performance in data (2/3)

Measurements based on ~ 12.9 fb⁻¹ of 2016 data, using the Tag & Probe technique on μ+τ events selected by a single-μ trigger

\blacksquare Resolution in energy as function of p_{τ} and position in η

Resolution in energy improves with p_T

* Resolution in energy ~ stable with η

L1 τ_h -trigger performance in data (3/3)

Measurements based on ~ 12.9 fb⁻¹ of 2016 data, using the Tag & Probe technique on μ + τ events selected by a single- μ trigger

Turn-ons: L1 τ-trigger efficiency w.r.t. offline selection as function of p_T for L1 E_T thresholds of 28, 30 and 32 GeV

- In spite of increasing LHC lumi*, thresholds for L1 di-τ_h-iso maintained in the 28-32 GeV range throughout 2016
- Large improvement over Run-1 where we relied on jet triggers
- Also: definition of μ+τ_h, e+τ_h, τ_h+MET triggers @ L1
- Possible to design many more algorithms thanks to the flexibility of the system

* Now inst. luminosity up to \sim 1.3 x 10³⁴ cm⁻².s⁻¹

11

HLT τ_h -trigger: description

Particle Flow

- Global event reconstruction
- Optimal combination of information from CMS subdetectors
- Tracking/magnetic field integral are key ingredients
- Separation between neutral and charged hadrons
- \rightarrow List of stable particles (e/ μ / γ /hadrons)
- \rightarrow Combines them to build jets, τ 's, MET

D HLT τ_h -reconstruction: based on PF@HLT

- τ_h are isolated jets
- Track-based isolation (PU resilient)

HLT $\tau_h\text{-trigger}$ performance in Run-2 data

HLT τ-trigger performance measured in 2016 data with respect to an offline selection, and using the Tag & Probe technique in events triggered by a single-μ trigger

■ High Level Trigger efficiency of the τ_hleg in μ+τ_h events selected as in the H→ττ→μτ_h analysis

2016-09-21

τ_h reconstruction

Decay Mode	Resonance	$\mathcal{B}\left[\% ight]$
$ au^- ightarrow { m e}^- \overline{ u}_{ m e} u_{ au}$		17.8
$ au^- ightarrow \mu^- \overline{ u}_\mu u_ au$		17.4
$ au^- ightarrow h^- u_ au$		11.5
$ au^- o h^- \pi^0 u_ au$	ho(770)	26.0
$ au^- o h^- \pi^0 \pi^0 u_ au$	$a_1(1260)$	10.8
$ au^- o h^- h^+ h^- u_ au$	$a_1(1260)$	9.8
$ au^- ightarrow h^- h^+ h^- \pi^0 u_ au$		4.8
Other hadronic modes		1.8
All hadronic modes		64.8

I τ_h reconstruction @ CMS: Hadron Plus Strips (HPS) algorithm

- τ_h build from combination of Particle Flow π^{\pm} and $\pi^0 \rightarrow \gamma\gamma$ candidates (strips)
- Reconstruction of different decay modes
 - Essentially same algorithm as Run-1
 - <u>New</u>: dynamic strip size in 1-prong + π⁰'s reconstruction, function of expected e/γ p_T

Jet $\rightarrow \tau_h$ rejection: isolation

Main handle in τ_h discrimination against QCD jets: isolation

Cut based discriminant based on energies of PF particles in isolation cone

$$I_{ au} = \sum_{ ext{charged}, \Delta z < 0.2 ext{ cm}} p_{ ext{T}} + \max\left\{0, \sum_{\gamma} p_{ ext{T}} - \Delta eta
ight\}$$

Charged and neutral energies in

Reconstructed decay mode

Transverse impact parameter +

Distance between PV and SV +

isolation cone

significance

significance

Shape variables

e/γ multiplicity

type

*

Hadronic τ decay Isolation cone Core cone Underlying event Pile up

MVA: ~50% better background rejection MVA discriminant w/ $\tau_{\rm h}$ lifetime information

at same signal efficiency

MVA output

Electrons can fake 1-prong + π^0 if:

- e track + deposit compatible w/ τ_h 's prong
- Brem. γ (s) mimick $\pi^0 \rightarrow \gamma\gamma$ (strip)

MVA-based discriminant

- ✤ Fractions of energy in HCAL and ECAL
- Photon multiplicity
- Energy-weighted difference in η/φ position between leading track and strips
- Visible mass of particles in signal cone

Several working points defined

Fake rates between 10⁻¹ and 10⁻⁴

$\tau_h\text{-ID}$ efficiency in Run-2 data

1 Three data-driven methods used to measure τ -ID efficiency

- Simulation gives a good description of data (SFs are compatible within unity)
- □ The three methods give compatible results (SFs are compatible within uncertainties of ~ 6%)

jet $\rightarrow \tau_h$ fake rate in Run-2 data

■ Measured in W → $\mu\nu$ + jets data (dominated by jet → τ_h fakes)

Dedicated selection for fakes

CMS

* Real τ_h contribution subtracted based on MC

D Fake rates at the level of a few % (low p_T) and less than 1% (high p_T)

D Fake rate higher in data than in MC \rightarrow likely due to hadronization/UE tune in MC

Tau trigger and identification at CMS in Run-2 (O. Davignon for CMS)

CMS

τ_h -energy scale in Run-2 data

\Box τ_{h} -ES (= correction on energy scale for simulation)

- Using Tag & Probe in $Z \rightarrow \mu \tau_h$ data
- ***** Data fitted using τ_h -ES-shifted MC templates

Measured for different τ_h reconstructed decay modes

Decay mode	τ _h -ES [%]	
1-prong	+0.0 ± 1.1	
1-prong + π^{0} 's	+1.0 ± 0.4	
3-prong	-0.1 ± 0.2	

Summary

Exciting developments at CMS in LHC Run-2

L1 trigger upgrade

- Substantial changes in architecture and algorithms
- $\rightarrow\,$ Maintains high efficiency to τ_h thanks to isolation and PU subtraction
- ***** Improvements in τ_h reconstruction and identification
- \rightarrow Changes to better reconstruct 1-prong + π^{0} 's decays
- $\rightarrow\,$ Re-training of anti-e/ μ and MVA-isolation discriminants
- **D** Full appraisal of τ_h performance in Run-2 data

LHC already delivered >31 fb⁻¹ this year!

More improvements and nice results with τ_{h} 's to come in the next years \odot

References

- L1 trigger, and in particular taus:
 - ✤ <u>CMS-DP-2015-009</u>
 - ✤ JINST 11 (2016) 02, C02008
 - CERN-LHCC-2013-011, CMS-TDR-12 (2013)
 - ✤ <u>CMS-DP-2016-044</u>
 - ✤ <u>CMS-DP-2016-021</u>
- HLT tau trigger performance in 2016 data
 - ✤ <u>CMS-DP-2016-056</u>
- Tau reconstruction & ID in Run-1 and Run-2
 - ✤ Run-1: <u>JINST 11 (2016) P01019</u>
 - ✤ Run-2:
 - <u>CMS-PAS-TAU-16-002</u>
 - Update of tau energy scale & muon fake rate: <u>CMS DP-16-040</u>
 - Preliminary performance: <u>CMS-DP-2016-015</u>, <u>CMS-DP-2016-019</u>

The CMS detector

Superconducting magnet **Field: 3.8 T** \rightarrow Compact detector

The CMS detector

Supercrystals

Preshowe

The CMS detector

Electromagnetic Calorimeter

homogeneous calorimeter, scintillating crystals (PbWO₄)

- \rightarrow Electron/photon reconstruction
- \rightarrow Excellent energy and position resolution

Dee 75848 crystals End-cap crystals $26 X_0 \sim 23 \text{ cm} (R_{\text{moliere}})^2 \sim (22 \text{mm})^2$

Crystals in a

supermodule

The CMS detector

Hadronic calorimeters plastic scintillators

→ Hadronic jets reconstruction (charged and neutral components)

Muon chambers In the return yoke → Muon reconstruction

2016-09-21

The CMS detector

Compact and hermetic detector: measurement of the missing transverse energy $E_T^{Miss} = -\Sigma p_T^{vis}$

2 trigger levels Level 1 (L1) 40 MHz→100kHz High Level Trigger (HLT) 100 kHz→ O(1 kHz)

Topics not discussed

□ Tau-charge mis-identification: (0.22 ± 0.05)% (CMS TAU-16-002)

Events / bin

Obs./Exp.

- Electron to tau fake rate
- Measured for different WPs
- ✤ Ref: <u>CMS TAU-16-002</u>

Muon to tau fake rate

- Measured for different WPs
- * Ref: <u>CMS DP-16-040</u>

(2/2)

Topics not discussed

- Tau identification efficiency from W*→τv events
 - ✤ Ref: <u>CMS TAU-16-002</u>
 - Use highly virtual W* events to measure the tau ID efficiency at very high p₁ (>100 GeV)

Isolation discriminant		au id SF	<i>r</i> (W norm.)	correlation
Isolation-sum $\Delta R = 0.5$	Loose	0.94 ± 0.21	1.01 ± 0.05	-0.18
	Medium	0.91 ± 0.19	1.01 ± 0.05	-0.19
	Tight	0.83 ± 0.20	1.01 ± 0.05	-0.17
MVA-based $\Delta R = 0.5$	Loose	0.96 ± 0.17	1.01 ± 0.05	-0.22
	Medium	0.95 ± 0.15	1.01 ± 0.05	-0.25
	Tight	0.94 ± 0.15	1.01 ± 0.05	-0.27
	Very Tight	0.94 ± 0.14	1.01 ± 0.05	-0.27

Ttrigger time multiplexing

Details on Hadron Plus Strips (HPS)

- Reconstruction seeded by jets with p₁>14 GeV built using anti-kT algorithm
- **Clustering of the photons and electrons inside the jet into strips:**
 - Minimum p_T of e/γ that enter strips: 0.5 GeV
 - Construction of strips is an iterative process
 - ✤ Minimum p_T of strips: 2.5 GeV
 - Size of strip dynamically enlarged in particular to account for magnetic drift of e⁺e⁻ pairs
- **D** τ_h = combination of strips and charged hadrons (p_T) inside jet
 - * Build τ_h kinematics from visible decay products
 - Test hypothesis: 1-prong, 1-prong + pi0, 1-prong + 2pi0, 3-prong, etc.
 - Check if pass visible mass criteria (specific to each decay mode) that depend on the τ_h p_T, and if it passes charge requirements.

