Update of the Hadronic Vacuum Polarization Contribution to a_u

Michel Davier

in collaboration with A. Hoecker, B. Malaescu, Z. Zhang

Outline

Introduction

Precise data now available since 2010 update

New evaluation of hadronic VP contribution to a_{μ}

Conclusion & perspectives

Tau2016 Beijing Sept. 19-23

Introduction

Tau2016 Beijing Sept. 19-23

Hadronic Contribution a, had

Leading-Order Higher-Order Light-By-Light $a_{\mu}^{\text{had}} = a_{\mu}^{\text{had},\text{LO}} + a_{\mu}^{\text{had},\text{HO}} + a_{\mu}^{\text{had},\text{LBL}}$ $\simeq 700(\sim7) - 9.79(0.09) + 10.5(2.6)$ $(\rightarrow\sim4) - 8.63 (0.09)$ Had NLO: Hagiwara et al., 2007 Had NNLO: Kurz et al., 2014 Had NNLO: Kurz et al., 2014 Had LBL: Prades-de Rafael-Vainshtein, 2008

[In this talk all a_{μ}^{had} values are given in units of 10⁻¹⁰]

- Hadronic (q & g) loop contributions cannot reliably be calculated from perturbative QCD (pQCD)
 - \rightarrow Use dispersion relations with e+e- annihilation data
 - → Essentially model independent
- There are also lattice and model-based attempts

LO Hadronic Contribution a had

- > We focus here on methods which provide precise & model independent estimate
- Using analyticity and unitarity one can write a dispersion relation based on low energy e⁺e⁻ data to calculate the dominant LO contributions:

$$a_{\mu}^{\text{had}} = \frac{\alpha^2(0)}{3\pi^2} \int_{4\pi_{\pi}^2}^{\infty} ds \frac{K(s)}{s} R(s) , \qquad R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Dispersion relation: Bouchiat and Michel, 1961

The QED kernel K(s) has such an s dependence that low energy data contribute most

Brodsky, de Rafael, 1968

Our group contribution to LO Hadronic a, had

The dispersive approach follows the availability of trustful experimental data

- > Detailed QCD studies of τ decays (ALEPH) and tests of quark-hadron duality \Rightarrow substitute pQCD above 1.8 GeV to less precise data Davier-Hoecker 1998,98
- > Update with new data from VEPP-2M Davier-Eidelman-Hoecker-Zhang 2003,03
- Detailed study of isospin-breaking effects when using τ spectral functions Davier-Hoecker-Lopez-Malaescu-Mo-Toledo-Wang-Yuan-Zhang 2010
- > Improvement of statistical and systematic tools (HVPTools) and update with new BABAR $\pi+\pi-$ data Davier-Hoecker-Malaescu-Yuan-Zhang 2010
- Global update

Davier-Hoecker-Malaescu-Zhang 2011

New update today, taking advantage of more complete data from BABAR, KLOE, BESIII, CMD3 and SND at VEPP-2000, KEDR

Tau2016 Beijing Sept. 19-23

Input eter Data in Combination with pQCD

• [π⁰γ-1.8GeV]

- sum about 22→37 exclusive channels
- estimate unmeasured channels using isospin relations

• [1.8-3.7] GeV

- good agreement between data and pQCD calculation; previous extensive QCD tests with τ data
 - \rightarrow use 4-loop pQCD
- J/ψ, ψ(2s): Breit-Wigner integrals

• [3.7-5] GeV

charm particle thresholds

 \rightarrow use data

• >5GeV

use 4-loop pQCD calculation

Tau2016 Beijing Sept. 19-23

Combination procedure (1)

The integration of data points belonging to different experiments, with different within-experiment and inter-experiment correlated systematic errors, and with different data densities requires a **careful treatment**

It is mandatory to test the accurateness of the integration procedure in terms of central value and error using representative models with known truth.

DHMZ approach:

- Quadratic interpolation of the data points/bins for each experiment
- Local weighted average between interpolations performed in infinitesimal bins (1 MeV)
- Full covariance matrices: correlations between data points of an experiment (systematic errors), between experiments and channels (VP, luminosity, ...)
- Consistent error propagation using pseudo experiments (toys)
- Possible bias tested in 2π channel using a GS model: negligible for quadratic interpolation, but not for linear model (trapezoidal rule)

Combination procedure (2)

Taking most important e+ e- $\rightarrow \pi$ + π - channel as an example

Incompatibilities between data points lead to error rescaling

Performed using PDG prescription

Major limiting factor for further improving the precision

Weights of experiments in average versus mass

BABAR dominates everywhere, except for KLOE 08 between 0.85 and 0.93 GeV

A Summary of $\pi^+\pi^-$ Input Data

2 main types of experiments:

Close Comparison of $\pi^*\pi^-$ Cross Sections

The $\pi^+\pi^-$ Channel: impact on $a_{\mu}^{had LO}$

- 2003: dominated by VEPP-2M data 508.2 \pm 5.2 \pm 2.7 (5.9)
- 2010: including ISR KLOE 2008 and BABAR data 508.4 \pm 1.3 \pm 2.6 (2.9)
- 2010: including KLOE 2010 507.8 \pm 1.2 \pm 2.5 \pm 0.6 (2.9)

stat syst corr syst (tot)

• 2016: with KLOE 2012 and BESIII 506.9 \pm 1.1 \pm 2.2 \pm 0.7 (2.5)

• Recall estimate 2013 using τ decays (ALEPH+OPAL+CLEO+Belle) $\nu \pi^{\pm} \pi^{0}$ 516.2 \pm 2.9 \pm 2.0_{TB} (3.5) (+2.2 σ)

- Some IB corrections still under debate (γ - ρ mixing)
- Because of the impressive progress of e+e- data, τ input relatively less precise and less reliable due to the IB uncertainties. Interesting by itself, but not to evaluate precise HVP contributions.

The $\pi^+\pi^-2\pi^0$ Channel: new data from BABAR

Tau2016 Beijing Sept. 19-23

Michel Davier (davier@lal.in2p3.fr, LAL, Orsay)

12

The $\pi^+\pi^-2\pi^0$ Channel: impact on $a_{\mu}^{had LO}$

- 2003: VEPP-2M data 16.76 ± 1.31 ± 0.20 (1.33)
- 2010: including preliminary ISR BABAR data with enlarged systematic uncertainty (A. Petzold, EPS-HEP 2007) $18.01 \pm 0.14 \pm 1.17 \pm 0.40$ (1.24)
- 2016: with BABAR with full statistics (preliminary) $18.16 \pm 0.06 \pm 0.49 \pm 0.27$ (0.56)
- Recall estimate using τ decays (ALEPH) $\nu \pi^{\pm} \pi^{-} \pi^{0}$ and $\nu \pi^{\pm} \pi^{0} \pi^{0} \pi^{0}$ 21.02 \pm 1.16 \pm 0.40_{TB} (1.22) (+2.1 σ)

B factories ???

The $2\pi+2\pi$ - Channel: new data from BABAR

DHMZ 2010 + BABAR 2005

DM2

ND

e⁺e⁻→2π⁺2π

- 2012: final BABAR results
- Full statistics (x5)
- Improved analysis
- Smaller systematic uncertainty (2.4%)

Tau2016 Beijing Sept. 19-23

The $2\pi^+2\pi^-$ Channel: impact on $a_{\mu}^{had LO}$

- 2003: VEPP-2M data $14.21 \pm 0.87 \pm 0.23$ (0.90)
- 2010: including BABAR (partial statistics) $13.35 \pm 0.10 \pm 0.43 \pm 0.29$ (0.53)
- 2016: with final BABAR with full statistics 13.70 \pm 0.03 \pm 0.28 \pm 0.13 (0.31)
- Recall estimate using τ decays (ALEPH) to $\nu \pi^{\pm} \pi^{0} \pi^{0} \pi^{0}$ 12.79 \pm 0.65 \pm 0.35_{TB} (0.74) (-1.1 σ)

Since the τ estimates for 4π and $3\pi\pi0$ are anticorrelated because of $\tau \rightarrow \pi 3\pi0$ it makes sense to combine them e+e- 31.86 \pm 0.64 τ 33.81 \pm 1.53 (+1.2 σ)

 \Rightarrow consistent, but τ value much less precise and affected by IB systematics

Tau2016 Beijing Sept. 19-23

New Data on KsKl Channel: BABAR + CMD3

- BABAR 2015: with Kl + Ks detection from threshold to 2.2 GeV
- CMD3 2016: Ks detection
 \$\phi\$ region
- Compatibility of measurements in the $\boldsymbol{\varphi}$ region

peak integral $\propto \Gamma^{\phi}_{ee} BR_{KsKl}$ (keV)

CMD2	$\textbf{0.427} \pm \textbf{0.008}$
SND	$\textbf{0.438} \pm \textbf{0.015}$
BABAR	$\textbf{0.420} \pm \textbf{0.013}$
CMD3	$\textbf{0.428} \pm \textbf{0.010}$

• $a_{\mu}^{had LO}$

 $2010 \quad 12.96 \pm 0.18 \pm 0.25 \pm 0.24$

 $2016 \qquad 12.81 \pm 0.06 \pm 0.18 \pm 0.15$

Tau2016 Beijing Sept. 19-23

Michel Davier (davier@lal.in2p3.fr, LAL, Orsay)

New data on K⁺K⁻ Channel: BABAR + SND

- BABAR 2013
- Mass spectrum from threshold to 5 GeV
- Low systematic uncertainty (0.7% 3.7%)
- Discrepancy with SND at VEPP-2M

- SND 2016
- New data at VEPP-2000
- Disagreement with previous SND results
- Agreement with BABAR

Tau2016 Beijing Sept. 19-23

Michel Davier (davier@lal.in2p3.fr, LAL, Orsay)

√s (GeV) 17

Clouds over the $\phi \rightarrow K^{+}K^{-}$ contribution

- Discrepancy between BABAR and CMD2/SND (VEPP2M) for the $\varphi{\rightarrow}K{+}K{-}$ cross section
- BABAR (syst=0.7%) higher by 5.1% wrt CMD2 (syst=2.2%) and by 9.6% wrt SND (syst=7.1%)
- Remark: difficult measurement in scan mode (very low energy kaons), not the case with ISR method (kaons boosted)
- Including the BABAR data in the new evaluation raises significantly the K+K- contribution to $a_{\mu}^{had\,LO}$ from 21.63 \pm 0.27 \pm 0.58 \pm 0.36 to 22.67 \pm 0.25 \pm 0.32 \pm 0.15
- CMD3 is close to publish new data with 'large' peak cross section, claiming to have solved the long-standing isospin-breaking between K+K- and KsKl decays (preliminary results in arxiv:1603.03230)
- KsKl results already published (2016), but K+K- still being scrutinized
- Puzzling K+K- increase: ~11% wrt CMD2 (~5% wrt BABAR)!
- To be watched carefully....

Tau2016 Beijing Sept. 19-23

Data on K Kbar π now complete (BABAR)

- 2010: only $K_s K^{\pm} \pi^{\pm}$ and $K^{+} K^{-} \pi^{0}$ measured (BABAR)
- Below 2 GeV K*(890) π dominance observed (with small $\phi \pi \pi$ contribution)
- Isospin relations used to estimate the full $\text{KK}\pi$ contribution
- 2016: last mode measured by BABAR: $K_s K_l \pi^0$ (talk here by W. Gradl)
- All channels measured \Rightarrow no need to resort to estimate using isospin relations, only $K_s \rightarrow K_l$
- Precision on $a_{\mu}^{had LO}$ increased by ~20%
- Consistency with isospin estimate
 - 2010: 2.39 \pm 0.16 $K_s K^{\pm} \pi^{\pm}$ + isospin
 - 2016: 2.45 ± 0.15 sum of the 3 channels

Tau2016 Beijing Sept. 19-23

Data on K Kbar π now complete (BABAR)

Data on K Kbar $\pi\pi$ nearly complete (BABAR)

- 2010: only $K^+K^-\pi^+\pi^-$ and $K^+K^-\pi^0\pi^0$ measured (BABAR)
- Below 2 GeV K*(890)K π dominance observed (with smaller KK ρ and $\phi \pi \pi$ contributions)
- Isospin relations used + assumption on (KK)⁰ ρ^0 and (KK)[±] ρ^{\pm} (with 100% uncertainty) to estimate the full KK $\pi\pi$ contribution
- 2016: new modes measured by BABAR: $K_s K_l \pi^+\pi^-$, $K_s K_s \pi^+\pi^-$, $K_s K_l \pi^0\pi^0$ $K_s K^{\pm}\pi^{\pm}\pi^0$ available shortly full data statistics for all modes also data from CMD3 in agreement with BABAR
- All channels measured \Rightarrow no need to resort to estimates using isospin relations, only $K_s \rightarrow K_l$
- Precision on $a_{\mu}^{had LO}$ will be increased by ~ 6 (0.39 \rightarrow 0.06)
- Keep 2010 prescription before public release of the last channel

Tau2016 Beijing Sept. 19-23

Data on K Kbar $\pi\pi$ nearly complete (BABAR)

a_µ Tau 2016 preliminary

 $a_{\mu}^{had LO}$

a_u

DEHZ 2003 $696.3 \pm 6.2_{exp} \pm 3.6_{rad}$ (7.1_{tot}) DHMZ 2011 $692.3 \pm 1.4_{stat} \pm 3.1_{syst} \pm 2.4_{corrsyst} \pm 0.2_{\psi} \pm 0.3_{QCD}$ (4.2_{tot}) DHMZ 2016 $692.8 \pm 1.2_{stat} \pm 2.6_{syst} \pm 1.6_{corrsyst} \pm 0.1_{\psi} \pm 0.3_{QCD}$ (3.3_{tot})

	11659/71 995	+ 0.001	
	110,007/1.000	+- 0.004	
EW	19.4	+- 0.1	
had LBL	10.5	+- 2.6	
had LO	692.8	+- 3.3	
had NLO	-9.87	+- 0.09	
had NNLO	1.24	+- 0.01	
nnadiction	116501910	+ <i>1</i> 2	
prediction	11059101.9	T- 4.C	
exp BNL	11659208.9	+- 6.3	
deviation	27.0	+- 7.6	3.6 σ

R(s) 2016

Tau2016 Beijing Sept. 19-23

Michel Davier (davier@lal.in2p3.fr, LAL, Orsay)

R(s) 2016

Tau2016 Beijing Sept. 19-23

Michel Davier (davier@lal.in2p3.fr, LAL, Orsay)

Perspectives

- KLOE-BABAR discrepancy for $\pi^{+}\pi^{-}$ still unresolved
- New higher precision $\pi^+\pi^-$ measurements needed:

CMD3 in progress BABAR new independent analysis underway

0.3% systematic uncertainty looks reachable

- $\pi^{+}\pi^{-}\pi^{0}$ could be improved for ω and ϕ resonances
- K+K- results from CMD2/3 to be scrutinized and understood
- Important to cross-compare BABAR ISR and forthcoming CMD3/SND scan results in 1-2 GeV range; so far excellent agreement
- More at BESIII and Belle-II ?
- A factor of 2 in precision has been obtained in the last 10 years; now comparable (3.3) to estimated systematic uncertainty of had-LBL (2.6)
- Lattice calculations are progressing (talk by B. Chakraborty)
- New approach: obtaining $a_{\mu}^{had LO}$ from a dispersion integral in the spacelike region by an ultrahigh precision measurement of Bhabha differential cross section to obtain $\Delta \alpha_{had}(Q^2)$ Carloni Calame et al. 2015 or μ e elastic scattering (Venanzoni et al., workshop 'Physics beyond colliders', CERN, Sept. 7 2016)

Conclusion

- More precise/complete e+e- input data + Dedicated data treatment and uncertainty correlation studies
 - steadily improving precision for the LO HVP evaluation based on dispersion relations (20% since 2011)
- □ The long standing e+e-/tau discrepancy nearly resolved, but additional systematics from isospin-breaking corrections
- □ Improvements are expected in the next years with
 - new $\pi^{+}\pi^{-}$ analyses underway (BABAR, CMD3)
 - collecting more data on multihadronic channels at VEPP-2000
- □ Precision of dispersive approach for had LO should be at the same level as had LBL or better when FNAL experiment gets its final result \Rightarrow if unchanged, deviation from SM will be at >7 σ