New e⁺e⁻ to hadronic results from Belle

Chengping Shen, Beihang University shencp@buaa.edu.cn 14th International Workshop on Tau Lepton Physics (TAU 2016) 19 -23 September, 2016, IHEP, Beijing

Outline

- Introduction
- Updated $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- Updated $e^+e^- \rightarrow K^+K^-J/\psi$
- Measurement of $e^+e^- \rightarrow \gamma \chi_{cJ}$
- $e^+e^- \rightarrow \pi^+\pi^-\pi^0 \chi_{bJ}$ at 10.867 GeV
- e⁺e⁻→bb¯
- $e^+e^- \rightarrow \pi^+\pi^-h_b(nP)$
- Summary

The Belle experiment

Integrated luminosity of B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

e⁺e⁻ annihilation to vector bottomonia

ISR production of vector charmonia

Updated $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$

PRD 91, 112007 (2015)

Unbinned simultaneous maximum likelihood fit for Y(4360) and Y(4660). $Amp = BW_1 + e^{i\phi} \cdot BW_2$

Parameters	Solution I	Solution II
$M_{Y(4360)} (MeV/c^2)$	$4347 \pm 6 \pm 3$ 102 + 0 + 5	
$Y_{(4360)}$ (IVIEV)	$103 \pm 9 \pm 5$	
$\mathcal{B} \cdot \Gamma^{e+e}_{Y(4360)}$ (eV)	$9.2\pm0.6\pm0.6$	$10.9 \pm 0.6 \pm 0.7$
$M_{Y(4660)} \; ({ m MeV}/c^2)$	$4652\pm10\pm11$	
Γ _{Y(4660)} (MeV)	$68\pm11\pm5$	
$\mathcal{B} \cdot \Gamma^{e^+e^-}_{Y(4660)}$ (eV)	$2.0\pm0.3\pm0.2$	$8.1\pm1.1\pm1.0$
\(\circ \)	$32\pm18\pm20$	$272\pm8\pm7$
$\sqrt{\chi^2/ndf} = 18.7/21$.		

- Consistent with previous measurement
- No obvious signal above Y(4660).
- Some events accumulate at Y(4260), especially the $\pi^+\pi^- J/\psi$ mode.

M($\pi^{+}\pi^{-}\psi(2S)$) with Y(4260,4360,4660)

Unbinned simultaneous maximum likelihood fit for Y(4260), Y(4360) and Y(4660). $Amp = BW_1 + e^{i\phi_1} \cdot BW_2 + e^{i\phi_2} \cdot BW_3$.

Significance of Y(4260) is 2.4 σ —low, but affects Y(4360) and Y(4660) masses and widths.

FOUR solutions with equally good fit quality, which is $\chi^2/ndf = 14.8/19$.

Comparsion of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ cross section

BESIII (16 energy points; L_{tot}=5.1fb⁻¹)

 $\psi(2S)$ Reconstructed modes:

```
Mode I: \Psi(3686) \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow I^+I^- (I=e/\mu)
Mode II: \Psi(3686) \rightarrow neutrals+J/\psi, neutrals=(\pi^0\pi^0, \pi^0, \eta \text{ and } \gamma\gamma) J/\psi \rightarrow I^+I^- (I=e/\mu)
```


- Y(4360) signal region
- $M(Z_c) = 4054 \pm 3 \pm 1 \text{ MeV/c}^2$
- $\Gamma = 45 \pm 11 \pm 6 \,\text{MeV}$
- Significance: >3.5σ

Belle with ISR: PRL110, 252002

- M = 3894.5±6.6±4.5 MeV
- Γ = 63±24±26 MeV
- 159 ± 49 events
- >5.2σ

Updated $e^+e^- \rightarrow K^+K^-J/\psi$

PRD 89,072015(2014)

Event selections are almost the same as in Phys. Rev. D 77, 011105(R) (2008) Shaded hist.: J/ ψ mass sidebands

Search for $Z_{cs} \rightarrow KJ/\psi$ states

Measurement of $e^+e^- \rightarrow \gamma \chi_{cJ}$ via ISR

- ► Y(4260), Y(4360) did not show in hadronic R inclusive scan
- Large dipion transitions rate than conventional charmonium.
- It is important to investigate them using much larger data samples and new decay channels.
- ► Radiative transitions: $e^+e^- \rightarrow \gamma \chi_{cJ}$ via ISR, $\chi_{cJ} \rightarrow \gamma J/\psi$, $J/\psi \rightarrow \mu^+\mu^-$ Phys. Rev. D 92, 012011 (2015)

TABLE II. Upper limits on $\Gamma_{ee} \times \mathcal{B}$ at the 90% C.L.			
	χ_{c1} (eV)	χ_{c2} (eV)	
$\overline{\Gamma_{ee}}[\psi(4040)] \times \mathcal{B}[\psi(4040) \to \gamma \chi_{cJ}]$	2.9	4.6	
$\Gamma_{ee}[\psi(4160)] \times \mathcal{B}[\psi(4160) \rightarrow \gamma \chi_{cJ}]$	2.2	6.1	
$\Gamma_{ee}[\psi(4415)] \times \mathcal{B}[\psi(4415) \rightarrow \gamma \chi_{cJ}]$	0.47	2.3	
$\Gamma_{ee}[Y(4260)] \times \mathcal{B}[Y(4260) \rightarrow \gamma \chi_{cJ}]$	1.4	4.0	
$\Gamma_{ee}[Y(4360)] \times \mathcal{B}[Y(4360) \rightarrow \gamma \chi_{cJ}]$	0.57	1.9	
$\Gamma_{ee}[Y(4660)] \times \mathcal{B}[Y(4660) \to \gamma \chi_{cJ}]$	0.45	2.1	

Table: Upper limits on branching fractions $\mathcal{B}(R \to \gamma \chi_{cJ})$ at the 90% C.L.

Resonance	$\gamma \chi_{c1} (10^{-3})$	$\gamma \chi_{c2} (10^{-3})$
ψ (4040)	3.4	5.5
ψ (4160)	6.1	16.2
ψ (4415)	0.83	3.9

$e^+e^- \rightarrow \pi^+\pi^-\pi^0 \chi_{bJ}$ at 10.867 GeV

PRL 113, 142001 (2014)

Heavy quarkonia hadronic transition : QCD multipole expansion (QCDME) model. [Y. P Kuang, Front Phys. China 1, 19 (2006)]

For Y(5S) resonance peak:

The anomalously large width :e⁺e⁻

 $\rightarrow \pi^+\pi^-\Upsilon(ns)$ [Belle PRL 100, 112001]

and $e^+e^- \rightarrow \pi^+\pi^-h_b(ns)$ [PRL 108,

032001].

 Z_b (10610)[±] and Z_b(10650)[±] [PRL 108, 122001].

Born cross section:

 $σ(e^+e^- → π^0 π^+ π^- χ_{b0}) < 3.4$ (pb) at 90% C.L.

 $\sigma(e^+e^- \rightarrow \pi^0 \pi^+ \pi^- \chi_{b1}) = 0.98 \pm 0.12 \pm 0.12$ (pb)

 $\sigma(e^+e^- \rightarrow \pi^0 \pi^+ \pi^- \chi_{b2}) = 0.62 \pm 0.14 \pm 0.08 \text{ (pb)}$

- The same order as e⁺e⁻→
 π⁺π⁻Υ(nS). [PRL 100, 112001].
- Hadronic loop effect? [arXiv:1406.6763]

$e^+e^- \rightarrow (\pi^+\pi^-\pi^0)_{non-\omega}\chi_{bJ}$

- The χ_{bJ} candidates out of ω signal region.
- Possible cascade decay from

 $Υ(5S) → πZ_b → πρχ_{bJ} [arXiv:1406.0082]$

• The interpretation is currently limited.

$$e^+e^- \rightarrow \gamma X_b \rightarrow \gamma \omega \Upsilon (1S)$$

- The X(3872) counterpart in the bottomonium sector X_b, NOT observed decay channel π⁺π⁻Υ(1S).
- As X_b is above ωχ_b threshold, this Isospin-conserving process should be a more promising decay mode. [PRD88, 054007].

Assuming X_b is narrow, the product branching fraction : Br($\Upsilon(5S) \rightarrow \gamma X_b$) Br($X_b \rightarrow \omega \chi_{bJ}$) varies from 2.6 $\times 10^{-5}$ to 3.8 $\times 10^{-5}$ between 10.55 and 10.65 GeV/c².

 $\begin{array}{l} & \text{Decomposition of } \mathsf{R}_{\mathsf{b}} \\ \text{Fit to } \mathsf{R}_{\mathsf{b}} \\ & |A_{NR}|^2 + |A_R + A_{5S} \, e^{i\phi_{5S}} \, BW(M_{5S}, \Gamma_{5S}) + \\ & A_{6S} e^{i\phi_{6S}} \, BW(M_{6S}, \Gamma_{6S}))|^2 \\ \text{Conclusions:} \\ & \text{Strong interference btw } \Upsilon(5S) \& \text{ continuum} \\ & \Upsilon(5S) \text{ peak is saturated by} \\ & B^{(*)}B^*\pi, \Upsilon(\mathsf{nS})\pi\pi, \mathsf{h}_{\mathsf{b}}(\mathsf{mP})\pi\pi \\ & \text{BB/BB*/B*B* do not resonate} \Rightarrow \text{continuum} \end{array}$

 $e^+e^-\rightarrow \pi^+\pi^-h_h(nP)$

- Resonant parameters agree with from $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$
- $e^+e^- \rightarrow \pi^+\pi^-h_b(nP)$ at the same level as $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$; similar shape.
- 1st obs. of $\Upsilon(6S) \rightarrow \pi^+\pi^-h_b(nP)$ 3.5 σ for 1P, 5.3 σ for 2P.

Ecm=10865.6 ±2.0 MeV $\sigma^{B}(e^{+}e^{-} \rightarrow h_{b}(1P)\pi^{+}\pi^{-}) = 1.66 \pm 0.09 \pm 0.10 \text{ pb},$ $\sigma^{B}(e^{+}e^{-} \rightarrow h_{b}(2P)\pi^{+}\pi^{-}) = 2.70 \pm 0.17 \pm 0.19 \text{ pb}.$ arXiv:1508.06562

10.9

10.95

Accepted by PRL

10.85

10.8

E_{cm} (GeV)

$Z_b \text{ in } \Upsilon(6S) \rightarrow \pi^+ \pi^- h_b (nP)$

• Fit $\pi^+\pi^-$ missing in each π missing mass spectra

Events mainly from Z_b intermediate states: not clear if only one Z_b or both. Single Z_b(10610) hypothesis is excluded at 3.3σ in π⁺π⁻ h_b(1P); Single Z_b(10650) hypothesis cannot excluded.

Belle: arXiv:1508.06562

Summary & outlooks

- Some updated on e+e- to charmonium(like)
- More measurements on e+e- to bottomonium(like)
- Obviously there are many puzzles need to be solved with more statistics
- Very exciting time ahead for Bellell from 2018 !

