Tau Lepton Reconstruction in ATLAS

Tau 2016 Conference, Beijing, 21st September 2016

Cristina Galea

presented by: Daniele Zanzi

Nikhef/RU Nijmegen

University of Melbourne

Tau lepton properties

– Mass = 1.78 GeV, intermediate lifetime: $c\tau = 87~\mu m$

- All taus decay before reaching any detector

Final State	B.R. (%)	Decay type	
$e u_e u_ au$	17.8	Leptonic	$ au_e$
$\mu u_{\mu} u_{ au}$	17.4	35.2	$ au_{\mu}$
$\pi/K u_{ au}$	11.8	1-prong	
$\pi/K \ge 1\pi^0 \nu_\tau$	36.9	48.7	$ au_h$
$\pi\pi\pi \ge 0\pi^0\nu_\tau$	13.9	3-prong	

- Challenging at ATLAS!

Why are taus interesting in ATLAS?

- best channel for observing Higgs boson fermionic decays
- also the best for finding the neutral MSSM Higgs boson
- add another channel to all searches with leptons
- they are really heavy, so they might be special (recent hints of possible lepton non-universality from LHCb...)
- they are handy for Lepton Flavor Violation searches

The ATLAS detector

– multi-purpose detector for various physics signatures with leptons, photons or jets in p-p collisions at $\sqrt{s}=7-13~{\rm TeV}$

Tau reconstruction and identification in ATLAS

- taus = narrow jets, with low track multiplicity
- tau algorithm seeds: jets formed with the anti-k_t algorithm (R=0.4) with $\rm p_T>10$ GeV, $|\eta|<2.5$
- energy measured in a 0.2 cone and calibrated to true visible energy using a η and p_T dependent scale factor (TES)
- special vertex association for improved vertex assignement
- identification: BDT to distinguish taus from other jets

Reconstructing the true number of prongs

– the systematic uncertainty on reconstructing the true number of tracks is 2-5 %

Tracking improvements for 3-prong taus

– inclusion of special prescriptions for merged hits increases the 3-prong reconstruction efficiency significantly at high- p_T

7

Tau identification - input variables for BDT

– signal: taus from $Z \rightarrow \tau \tau$ MC; background: jets from MC multijet events

Tau identification - BDT output

– signal: taus from $Z \to \tau \tau$ MC; background: jets from MC multijet events

Tau reconstruction and identification efficiency

 different working points (Loose, Medium, Tight) correspond to increasing BDT cuts; they have decreasing efficiencies and increasing background rejection

Tau identification uncertainty

 largest uncertainty due to the calorimeter calibration and performance, which causes shape variation in the BDT input variables

Tau energy resolution

 the use of tracking information will significantly improve the energy resolution at low momentum (see slide 23)

Tau Energy Scale uncertainty

 the uncertainty is obtained from MC using the same method as in Run 1, with some uncertainties for which measurements are not yet available inflated by a factor of 2

Tau modelling in 2016 data

 simulation provides good modelling of the most recent ATLAS data

Taus on the cover of EPJC!

Tau substructure algorithm

- a new particle-flow type of algorithm
- the π^{\pm} from τ decay are reconstructed using tracks in a 0.2 cone matched to the τ vertex
- the energy in the calorimeter deposited by the π^{\pm} is subtracted, and from the remaining clusters the π^0 s are reconstructed and identified using a BDT
- the final decay mode classification is done using another BDT

Tau substructure algorithm

Nice way to measure Higgs CP

Higgs CP measurement by correlating **transverse** τ polarizations:

Classification performance

Efficiency

Purity

Classification modelling

 good modelling is observed for both true taus (right) and jets that fake a tau (left)

π^0 angular and energy resolution

– good angular and energy resolution is observed for the reconstructed $\pi^0 {\rm s}$

Tau angular resolution improvement

 a factor of 5 improvement in angular resolution with respect to the calorimeter-based measurement used in Run 1

Tau energy resolution improvement

– a factor of 2 improvement in energy resolution with respect to the calorimeter-only measurement at low p_T

Alternative energy measurement (D0-like)

– no
$$\pi^0$$
s: $p_T^{ au} = \sum p_T^{ au trk}$

- decays with π^0 s: average calorimeter-only measurement with $p_T^{\tau} = E_T^{CAL} + \sum p_T^{trk} \sum R_{Ch.Pion}(\eta, p_T^{trk}) * p_T^{trk}$
- energy resolution very similar to Tau Particle Flow method

Kinematic modelling

 good modelling is observed for both the tau mass reconstruction (left) and the Z mass reconstruction (right)

Conclusions and references

- tau reconstruction in ATLAS resumed in Run 2 with algorithms and performance similar to Run 1, in spite of increased instantaneous luminosity (reference)
- inclusion of special prescriptions for merged hits increases the 3-prong reconstruction efficiency significantly at high- p_T (reference)
- a new algorithm which identifies π^0 s in tau decays is now available, leading to a better decay mode classification, significant improvement in angular and energy resolution, and new possibilities of measuring the Higgs boson CP with tau leptons (reference)