

Atmospheric neutrino and proton decay at Super-Kamiokande and Hyper-Kamiokande

Zepeng Li, Duke University

For The Super-Kamiokande Collaboration and The Hyper-Kamiokande Collaboration

Three generations of Kamiokande

Kamiokande (1983-1996)

3 kton

Super-Kamiokande (1996-)

50 kton

Hyper-Kamiokande (2026-)

520 kton

Super-Kamiokande

Four Run Periods: SK-I (1996-2001) SK-II (2003-2005) SK-III(2005-2008) SK-IV(2008-Present)

- Super-K is a 50 kton water Cherenkov detector with 22.5 kton of fiducial volume at 2,700 m.w.e underground.
- The detector is optically separated into ID and OD.
- Multi-purpose detector.
- Excellent detection of atmospheric neutrinos, >47,000 atmospheric neutrino events since 1996.
- A Nobel prize winning experiment!

Atmospheric neutrinos in SK

Atmospheric neutrinos in SK

Atmospheric neutrinos measurement in SK

SK measures the flux of atmospheric neutrino with energy of sub-GeV to ~10 TeV. The measurement is consistent with Honda flux model prediction.

effect of geo-magnetic field.

Neutrino oscillations at Super-K

- Leading effect if v_{μ} disappearance $(v_{\mu} \rightarrow v_{\tau})$.
- V_{τ} appearance from neutrino oscillations could be detected by charged-current V_{τ} interactions.

Tau neutrino appearance in Super-K

To search for tau neutrino appearance from neutrino oscillation, high energy neutrino beam is necessary! Atmospheric neutrinos have wide span of energy and path length. Large probability of V_{τ} appearance with proper combination of L and E.

Tau neutrino appearance in SK

- Tau lepton production is rare in SK due to 3.5 GeV energy threshold of charged-current V_τ interaction, ~300 CC V_τ events expected in SK FV.
- Multiple light-producing particles from tau decay.
- Neural network(input variables in backup) to select hadronic tau decay events.

Tau lepton decays in ~10⁻¹³s, tau lepton track is undetectable in SK detector.

Tau neutrino appearance in SK

- Tau lepton production is rare in SK due to 3.5 GeV energy threshold of charged-current v_{τ} interaction, ~300 CC v_{τ} events expected in SK FV.
- Multiple light-producing particles from tau decay.
- Neural network(input variables in backup) to select hadronic tau decay events.

Tau lepton decays in ~10⁻¹³s, tau lepton track is undetectable in SK detector.

Tau neutrino appearance in SK

Data = $PDF_{bg} + \alpha \times PDF_{tau} + \sum \varepsilon_i \times (tauPDF_i + bgPDF_i)$ α is the normalization of tau events. $(tau, BG)PDF_i$ is the PDF of ith systematic error of shifting it by $I\sigma$, ε_i is the magnitude of the systematic error.

 $\begin{array}{ll} \alpha = 1.47 \pm 0.32 & \mbox{preliminary} \\ \mbox{compared to simulation} \\ (4.6\sigma \mbox{ from 0}) \mbox{assuming NH} \\ \mbox{Sensitivity at } \alpha = 1:3.3\sigma \end{array}$

TAU 2016

Neutrino oscillations at Super-K

SK1-4 0.33 Mtyr data and MC

SK oscillation analysis- θ_{13} constrained 20 preliminary Inverted 15 15 15 Normal $\Delta \chi^2$ $\Delta \chi^2$ $\Delta \chi^2$ 10 10 10 99% 99% 5 5 95% 95% 90% 90% 68% 0 ^L 0.001 0.2 0.002 0.003 0.4 0.6 0.8 0.004 0.005 2 $\sin^2 \theta_{_{23}}$ $|\Delta m_{32}^2|, |\Delta m_{13}^2| eV^2$ δ_{cp} δ_{CP} Fit (517 dof) $\sin^2\theta_{23}$ $|\Delta m^2_{32}| eV^2$ $\sin^2\theta_{13}$ χ^2 SK (IH) 4.2 2.5x10⁻³ 576.0 0.0219 0.58 4.2 2.5x10⁻³ SK (NH) 0.0219 0.59 571.7

- θ_{13} is constrained at PDG average, uncertainty is included as a systematic error.
- $\Delta \chi^2 = \chi^2_{NH} \chi^2_{IH} = -4.3$ (-3.1 of sensitivity)
- The p-value of obtaining $\Delta \chi^2$ of -4.3 or less is 0.031 (sin² θ_{23} =0.6) and 0.007 (sin² θ_{23} =0.4) in IH hypothesis. Under NH hypothesis, the p-value is 0.45 (sin² θ_{23} =0.6).

- $\Delta \chi^2 = -5.2$ (-3.8 of sensitivity for SK best, -3.1 for combined best)
- The p-value of obtaining $\Delta \chi^2$ of -5.2 is 0.024 (sin² θ_{23} =0.6) and 0.001 (sin² θ_{23} =0.4). Under NH hypothesis, the p-value is 0.43 (sin² θ_{23} =0.6).

Hyper-Kamiokande

Hyper-Kamiokande proto-collaboration

12 countries, ~250 members and growing

KEK-IPNS and UTokyo-ICRR signed a MoU for cooperation on the Hyper-Kamiokande project.

TAU 2016

the state of the state of the

International Hyper-K Advisory Committee was formed under KEK-IPNS and UTokyo-ICRR. First review report was delivered

Notional Timeline (1st Tank)

- 2018~2025 HK construction
- 2026 \sim CPV study

Atm \cdot Solar \cdot Supernova \vee study, Proton decay searches

(Note) In the physics potential studies, the 2nd HK tank is assumed to come online 6 years after the start of the 1st tank.

TAU 2016

Broad science program with Hyper-K

- Neutrino oscillation physics
 - Comprehensive study with beam and atmospheric neutrinos
- Search for nucleon decay
 - Possible discovery with ~×10 better sensitivity than Super-K
- Neutrino astrophysics
 - Precision measurements of solar v
 - High statistics measurements of SN burst V
 - Detection and study of relic SN neutrinos
- Geophysics (neutrinography of interior of the Earth)
- Maybe more (unexpected)

Measurement of *CP* asymmetry with v beam $P(v_{\mu} \rightarrow v_{e}): v_{e}$ appearance probability

Expect 2000-3000 signal events for each of V_e and \overline{V}_e with HK + upgraded J-PARC neutrino beam (>1.3 MW). for 295km baseline,

- Max. ~ $\pm 25\%$ change from $\delta=0$ case
- Sensitive to exotic (non-MNS) CPV source

CPV sensitivity

- ~>3 σ sensitivity to the mass hierarchy with atm ν only
- \bullet Complementary information from beam and atm ν
- Sensitivity enhanced by combining two sources!

Oscillation-induced V_{τ} measurements

∆ X²

• After 10 years Hyper-K will have $O(1,000) v_T$ CC events that can be used to study CC v_T cross section, leptonic universality, etc.

per/ 100 kton yr. Hyper-K Signal CC $v\tau$ 40.2 Background 448.7 S /\/B , 10 years 9.6

<10% constraint to V_T cross section

Searches for $p \rightarrow \overline{\nu}K^+$ in HK

- K⁺ invisible (below Cherenkov threshold) but can be reconstructed via (like in Super-K)
 - $K \rightarrow \mu \nu$ tagged by de-excitation γ
 - $K \rightarrow \pi^+ \pi^0$
- Sensitivity enhanced by improved timing and photon yield
- Clear signal expected for lifetime just above current limit

Summary

- Super-Kamiokande
 - Tau neutrino appearance with significance of 4.6σ .
 - Normal hierarchy preferred by $\Delta \chi^2$ = -4.3 (p-value between 0.031 and 0.007 in IH hypothesis, 0.45 in NH hypothesis).
 - Weak preference of second octant and $\delta_{_{CP}}$ near 3/2 $\pi.$
- Hyper-Kamiokande
 - Next generation water Cherenkov detector, ~10 times larger volume and better PMTs.
 - Broad science program on neutrino physics, proton decay, geo-physics, etc.

Backups

Fit results of tau analysis

3

Paper fit update of tau analysis

Neutrino oscillations at Super-K

Improved MH sensitivity with T2K constraint

p-value for MH preference

SK analysis with T2K constraint.

Proton decay results from SK

- Update nucleon decay results by more than 0.3 Mton•year exposure (green in the left figure).
- Super-Kamiokande can cover large number of decay modes.
- All of them are the most stringent limits on nucleon lifetime.
- We observed some candidates, but still consistent with expected backgrounds and no evidences of nucleon decay have been observed.

Hyper-K backup

Strength of Hyper-K

- Best sensitivity for CP measurement
 - Relatively short baseline (~300km): less matter effect
 - Off axis beam at 1st oscillation maximum
- Large statistics with good S/N
 - ~2000 appearance signal events expected
 - S/N~10 at appearance peak
- Performance proven with real data
 - Building on experience from T2K/Super-K
 - Further improvement expected as we go

Long baseline experiment using a beam from J-PARC

- The same configuration as T2K (2.5° off-axis beam)
 - Well understood systematics
- Upgraded J-PARC and neutrino beamline
 - >I.3MW expected (current T2K:420kW)

J-PARC upgrade for HK is given the highest priority in KEK Project Implementation Plan (June 2016)

http://www.kek.jp/en/About/Roadmap/

- Near detectors for T2K (with upgrade) will continue for Hyper-K
- New intermediate detector with water Cherenkov technique being investigated

TAU 2016

10m

Neutrino energy spectrum

- Well understood by NA61@CERN and T2K
- Anti-ν flux ~80% of ν @peak
 - π production multiplicity
 - Of course, cross section on nucleus differs (by ×~3)
- Beam time ratio of $v: \nabla = 1:3$ is assumed in sensitivity study
 - Different ratio studied but dependence not large for CPV sensitivity

Sensitivity study

- Based on a framework developed for T2K future sensitivity study (PTEP 2015, 043C01)
 - \bullet Fit reconstructed E_{ν} distributions
 - \bullet Both ν_{e} and ν_{μ} samples, for ν and anti- ν run
 - Fit $sin^2\theta_{23}$, Δm^2_{32} , $sin^22\theta_{13}$, δ_{CP}
 - Mass hierarchy assumed to be known (from other experiments and/or HK atmospheric V)
- Systematic error estimated based on T2K experience/prospects
 - Implemented as covariance matrix, including correlation between energy/flavor bins
 - Compared to published (PTEP 2015, 053C02) result which used a conservative estimate, anti-V error is improved based on progress in T2K anti-V data analysis
- Assuming 2Tank HD staging (2nd tank from 7th year), 10 years total run

Expected events

1.3 MW, 10×10^7 sec, v: v=1.3

v_{μ} disappearance

Expected events

 δ =0 and 180° can be distinguished using shape information

Assumed systematic uncertainties

Extrapolation from T2K experience

- Beam flux + near detector constraint
 - Conservatively assumed to be the same
- Cross section uncertainties not constrained by ND
 - Nuclear difference removed assuming water measurements
- Far detector
 - Reduced by increased statistics of atmospheric V control sample and fundamental detector response understanding with improved calibration

Uncertainty on the expected number of events at Hyper-K (%)

	v mode		anti-v mode	
	Ve	νμ	Ve	νμ
Flux&ND	3.0	3.3	3.2	3.3
XSEC model	0.5	0.9	1.5	0.9
Far Det. +FSI	0.7	1.0	1.5	1.1
Total	3.2	3.6	3.9	3.6

- Further reduction by new near detectors under study
- Benefit from experience with T2K(-II)

Atmospheric neutrinos

- Large statistics sample of neutrinos with a wide range of energy, path length, and flavor provide sensitivities to many physics topics
 - Neutrino oscillation measurements
 - Precision measurement of standard oscillation parameters (mass hierarchy, θ_{23} octant)
 - Search for exotics (sterile neutrinos, Lorentz violation)
 - Study of the interior of Earth by oscillography
 - Chemical composition of the Earth's core (Z/A ratio) using matter effect (~electron density)

Sensitivity to Outer Core Chemical Composition, 10 Mton yr

0.6

0.5

0.4

0.2

0.1

102

 $P(v_{i} \rightarrow v_{i})$

10

"Multi-GeV^{(Energy (GeV)}

Proton Decay : p $\rightarrow \overline{v}$ K+

Nucleon decay searches

- Will be sensitive to a wide variety of nucleon decay modes
- 3σ potential exceeds current limits by an order of magnitude (or more)

	3σ discovery potential (10yrs)	Current limit (90%CL)
p→e⁺π ⁰	8.0×10 ³⁴	1.4×10 ³⁴
p→vK+	2.5×10 ³⁴	0.7×10 ³⁴
p→µ+π ⁰	8.7×10 ³⁴	. × 0 ³⁴
p→e⁺η ⁰	4.0×10 ³⁴	0.4×10 ³⁴
P→μ⁺η⁰	8.3×10 ³⁴	0. × 0 ³⁴
n→e⁺π⁻	1.7×10 ³⁴	0.2×10 ³⁴
p→μ⁺π-	I.I×I0 ³⁴	0. × 0 ³⁴

Indirect DM searches

- Unique sensitivities, especially for low mass region
- Improve ×3-10 over SK limit

From Galactic center

Summary of physics potential

		2TankHD w/ staging	
LBL (13.5MWyr)	δ precision	7°-21°	
	CPV coverage (3/5σ)	78%/62%	
	sin ² θ ₂₃ error (for 0.5)	±0.017	
ATM+LBL (10 years)	MH determination	>5.30	
	Octant (sin²θ ₂₃ =0.45)	5.8σ	
Proton Decay	e⁺π ⁰ 90%CL	1.2×10 ³⁵	
(10 years)	vK 90%CL	2.8×10 ³⁴	
Solar (10 years)	Day/Night (from 0/from KL)	6σ/I2σ	
	Upturn	4.9σ	
	Burst (10kpc)	104k-158k	
Supernova	Nearby	2-20 events	
	Relic (10 yrs)	98evt/4.8σ	