BABAR ISR K_S^0 K_L^0 π^0 (π^0)

Wolfgang Gradl

on behalf of the BABAR collaboration

Tau 2016, Beijing 23rd September 2016

Motivation

QED is precision physics

- $lacksquare a_\ell \equiv rac{1}{2}(g-2)_\ell$ testbed for QED
- experimentally: electron ok
- muon: currently $> 3\sigma$ discrepancy btw. theory and experiment

$$\begin{split} a_{\mu}^{\text{theo}} \times 10^{10} = & 11\,659\,180.2 \pm 4.9 \\ a_{\mu}^{\text{exp}} \times 10^{10} = & 11\,659\,208.9 \pm 6.3 \\ \Delta a_{\mu} \times 10^{10} = & 28.7 \pm 8.0 \end{split}$$

Test SM new physics?

Motivation

Muon anomalous magnetic moment sensitive to hadronic vacuum polarisation

ab-initio calculations difficult experimental input required: $\sigma(e^+e^- \to {\rm hadrons})$

$$a_{\mu}^{
m had,LO} imes 10^{10} = 692.3 \pm 4.2$$
 Davier et al., EPJ C71, 1515

$$a_{\mu}^{\text{had,LO}} \times 10^{10} = 694.9 \pm 4.3$$

 $a_{\mu}^{\text{had,NLO}} \times 10^{10} = -9.84 \pm 0.06 \pm 0.04$

Hagiwara et al., JP G38, 085003

Motivation

$$a_{\mu}^{
m had,LO} = rac{lpha^2(0)}{3\pi^2}\int\limits_{4m_{\pi}^2}^{\infty}{
m d}s rac{K(s)}{s}$$
 $R(s)$ $R(s) = rac{\sigma(e^+e^-
ightarrow {
m hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$ experimental input

dominated by low-energy cross sections improve precision by measuring exclusive final states

$e^+e^- \rightarrow \text{hadrons cross sections from } BABAR$

The BABAR experiment

- $\begin{array}{c} \hbox{ PEP-II: } e^+e^- \mbox{ collider, } 3.1 \times 9 \mbox{ GeV}^2 \\ \sqrt{s} = 10.58 \mbox{ GeV} \left[\Upsilon(4S)\right] \end{array}$
- Asymmetric beam energies c.m. lab boost $\beta \gamma = 0.56$
- Asymmetric detector
 - acceptance in c.m. $-0.9 \lesssim \theta^* \lesssim 0.85$
 - ▶ detects $\approx 15\%$ of ISR γ
 - ightharpoonup contains pprox 50% of events with fwd/bwd $\gamma_{
 m ISR}$
- excellent performance
 - Good tracking, mass resolution
 - Good γ , π^0 reco.
 - $\blacktriangleright \ \ \mathsf{Full} \ \mathsf{PID} \ \mathsf{for} \ e \,, \mu \,, \pi \,, K, \, p$

High luminosity

- ho $\mathcal{L}_{\rm peak} = 12.069 \times 10^{33} \, {\rm cm}^{-2} \, {\rm s}^{-1}$
- ▶ 513.7(18) fb $^{-1}$ accumulated (1.7 billion $e^+e^- \rightarrow q\overline{q}$ events)

Initial state radiation in e^+e^-

- $e^+e^- \rightarrow \gamma_{\rm ISR} e^+e^- \rightarrow \gamma_{\rm ISR} X$
- X is any allowed (hadronic) system, e.g.
 - lacktriangle a resonance with $J^{PC}=1^{--}$
 - 2 particle system with appropriate quantum numbers
- Cross section factorises into

$$\frac{\mathrm{d}\sigma(s;s',\theta_{\gamma})}{\mathrm{d}s'\,\mathrm{d}\;\theta_{\gamma}} = W(s;s',\,\theta_{\gamma})\cdot\sigma_X(s')$$

Radiator function known to $\leq 0.5\%$ $\sigma_{X}(e^{+}e^{-} \rightarrow X)$

cross section

• Use W or normalise to $e^+e^- \to \mu^+\mu^-\gamma$ (many systematics cancel)

ISR at $\Upsilon(4S)$ energies

- Rely on tagged (= measured) photon to identify ISR events
- Excellent momentum resolution by means of kinematic fit
- High fiducial efficiency: hadronic system forced into detector fiducial region

- Harder momentum spectrum due to boost
 - fewer problems with soft particles
 - measure down to threshold
- Simultaneous access to wide range of s' in single experiment
 ⇒ very small point-to-point systematic errors
- Large integrated luminosity

General event selection and reconstruction

- Using 469 fb $^{-1}$ of data near $\Upsilon(4S)$
- At least two charged tracks and at least four neutral clusters
- $K_S^0 \to \pi^+\pi^-$, pointing back to IP
- K_L^0 reconstruction: cluster in EMC with $E \geq 200\,\mathrm{MeV}$, take direction from cluster, and energy from kinematic fit
- Apply kinematic fits for different signal hypotheses
- Invariant mass resolution for the hadronic system ≈ 25 MeV

$K_S^0 K_L^0 \pi^0$ reconstruction

Select events with kinematic fit $\chi^2 < 25$ Estimate backgrounds from control region in χ^2

$K_S^0 K_L^0 \pi^0$ cross section

Systematic uncertainties include

- Background subtraction: $\approx 10\% \ {\rm for} \ M(K_S^0 K_L^0 \pi^0) < 2.2 \ {\rm GeV}, \ {\rm increasing} \ {\rm to} \approx 80\text{-}100\% \ {\rm above} \ 3.2 \ {\rm GeV}$
- \blacksquare Efficiency corrections overall data-MC difference of $(-9.5\pm1.6)\%$

$K_S^0 K_L^0 \pi^0$ resonant substructure

background-subtracted $K^0_S\pi^0$ and $K^0_L\pi^0$ mass distributions.

Fit: red line — coherent resonant; blue histogram — non-resonant component Dominated by $K^{*0} \overline{K}{}^0 + c.c.$:

dominant contribution from $K^*(892)^0\overline{K}^0+c.c.$ small $K_2^*(1430)^0\overline{K}^0+c.c.$

$K_S^0 K_L^0 \pi^0$ resonant substructure: $K^{*0} \overline{K}{}^0$

Dominated by $K^{*0}\overline{K}^0+c.c.$: dominant contribution from $K^*(892)^0\overline{K}^0+c.c.$ small $K_2^*(1430)^0\overline{K}^0+c.c.$ $K^*(892)^0\overline{K}^0+c.c.$ almost saturates cross section

$K_S^0 K_L^0 \pi^0$ resonant substructure: $\phi \pi^0$

Small contribution from $\phi\pi^0$; compatible with cross section measured in $K^+K^-\pi^0$ Isospin I=1, OZI suppressed Possible resonant structure around 1.6 GeV

$K^0_S K^0_L \pi^0 \pi^0$ cross section

$K_S^0 K_L^0 \pi^0 \pi^0$ resonant substructure

Some $K^*(892)^0$ evident $(190\pm44~K_S^0\pi^0,~171\pm32~K_L^0\pi^0)$ but statistics too low to study further No indication for $K^*(892)^0\overline{K}^*(892)^0$

Consistent with $K^*(892)^0\overline{K}^0\pi^0+c.c.$ as expected from $K^+K^-\pi^+\pi^-K^0_SK^0_I\pi^0(\pi^0)$ ISR from BABAR | W. Gradl | 17

Charmonium $\to K^0_S K^0_L \pi^0(\pi^0)$

Previous measurements of J/ψ decays:

Not all possible isospin combinations in final state included in PDG $KK\pi$

$$\sigma(e^+e^- \to X) \propto \Gamma(J/\psi \to e^+e^-) \times B(J/\psi \to X)$$

Charmonium region

Fit with MC signal shape + second-order polynomial (background)

$J\!/\psi$	$K^0_S \ K^0_L \ \pi^0 \ K^0_S \ K^0_L \ \pi^0 \ \pi^0$	182 ± 21 47 ± 11
$\psi(2S)$	$K^0_S \ K^0_L \ \pi^0 \ K^0_S \ K^0_L \ \pi^0 \ \pi^0$	$<8\\14\pm6$

Charmonium region

	$B/10^{-3}$		
	BABAR prelim.	PDG 2014	
$J/\psi \to K_S^0 K_L^0 \pi^0$ $J/\psi \to K_S^0 K_L^0 \pi^0 \pi^0$	$2.06 \pm 0.24 \pm 0.10$ $1.86 \pm 0.43 \pm 0.10$	2.35 ± 0.41	(from $K^+K^-\pi^0\pi^0$)
$\begin{array}{c} \hline \psi(2S) \to K^0_S K^0_L \pi^0 \\ \psi(2S) \to K^0_S K^0_L \pi^0 \pi^0 \end{array}$	< 0.3 $1.24 \pm 0.54 \pm 0.06$	_	

Charmonium decays to $K^*\overline{K}^0$

See significant yields for $J/\psi \, o$

	Events	$B(J\!/\psi\to X)\times B(X\to K^0\pi^0)\times 10^3$
$ \begin{array}{c} K^*(892)^0 \overline{K}{}^0 + c.c. \to K^0_S K^0_L \pi^0 \\ K^*_2(1430)^0 \overline{K}{}^0 + c.c. \to K^0_S K^0_L \pi^0 \end{array} $	106 ± 13 37 ± 11	$\begin{aligned} 1.20 \pm 015 \pm 0.06 \\ 0.43 \pm 0.12 \pm 0.02 \end{aligned}$

Summary

- \blacksquare Measure cross sections for $e^+e^- \to K^0_S K^0_L \pi^0(\pi^0)$
- \blacksquare Resonant substructure explored with $\mathcal{O}(10^2)$ events
- Contribution to a_{μ} :

$$\begin{split} a_{\mu}^{KK\pi\pi}(E_{\rm CM} < 2\,{\rm GeV}) \times 10^{10} &= 3.31 \pm 0.58 \qquad \text{HLMNT 2011} \\ a_{\mu}^{\text{all}KK\pi\pi}(E_{\rm CM} < 2\,{\rm GeV}) \times 10^{10} &= 2.41 \pm 0.11 \end{split}$$

- All $KK\pi$ and $KK\pi\pi$ now directly measured by BABAR no isospin relations needed any more for cross sections and dispersion relation!
- \blacksquare Branching fractions for $J\!/\psi$ and ψ' to $K^0_S K^0_L \pi^0(\pi^0)$ improved precision, first measurements
- Final word from BABAR for these channels.
 More progress: BESIII, Belle II, VEPP-2000

