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Charged Lepton Flavor Violation

Why do we search for charged lepton flavor violation (CLFV)?

@ It's a simple generalization of quark mixing and neutrino mixing.

~

@ Quark Sector

p ,
3 D
— — Mixed by CKM mechanism.
[ ] [ ] [ ] Observed.
© Neutral Lepton Sector
n'—"—'n‘ Neutrino oscillation observed.
[ ] [ ] 6 ] © Charged Lepton Sector
| Mixing? — CLFV
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Charged Lepton Flavor Violation

@ CLFV is a good probe to physics beyond the Standard Model (SM).
Taking 4™ — e* process as an examle:

In Standard Model, it's possible through

neutrino oscillation: In SUSY-GUT Model, for loop diagram:
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32W|ZI(VMNS)u/(VMNS)eI | ~ O(10~%) Might be observable near 10~ 15!

negligible!
* Define branching ratio Br = N¢; v / Nnuclears apture

If CLFV process is observed, it will be a direct proof to new physics. C
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CLFV and Muon to Electron Conversion

Candidate CLFV processes:
0 CLFV processes in 7 leptons: 7 — Iy, 7 — lll, 7 — K0, ...
Studied at B factories. (LHCb, BaBar, Belle)
Big improvements expected in super B factories. (Belle II)
9 CLFV processes in u leptons: u — ey, u — eee, uN — eN, ...
Studied with muon source. (PSI)
The new generation of muon sources can take us for a giant leap. (FermiLab, J-PARC)
Among them, uN — eN is our focus:
o The muon to electron conversion (N — eN) is a process of a muon in a muonic atom
converting into an electron w/o neutrino emission.
wm+(AZ)—se +(A2)
9 Event signature: a single mono-energetic electron of around 105 MeV (for Aluminium).
Esig =my — Me — Ebinding — Erecoil
Q Backgrounds: intrinsic (muon decay in orbit) and beam related backgrounds.

)

C,A
OMET

Chen Wu (NJU, IHEP, Osaka) COMET Experiment TAU2016 5/23



Muon to Electron Conversion

Why N — eN?

@ From the theoretical point of view:

@ Both photonic process and four-fermion
process can contribute to it.

e From the experimental point of view:

@ The measurement for uN — eN
measurement was restricted by beam
related background.

@ Now we have much better muon beam:
pulsed, pure, and intense!

With the current detector technology and
available beamline in near future we can
improve the signal sensitivity by 4~6 orders of
magnitude.
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History of CLFV Experiment

History of © — ey, uN — eN, and p — 3e
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herent uon lectron

5T pion
capture
solenoid

3T muon transport
(curved solenoids)

ransition (

The COMET experiment aims at searching for
uN — eN conversion with a single event
sensitivity S.E.S. = 2.6 x 1077 in one year
running time.

@ 8 GeV pulsed protons beam (56 kW)
shooting onto a pion production target
(Tungsten).

@ Pions will be captured by 5T capture
solenoid and transported by 3 T C-shape
transportation solenoid.

© After 180° transportation, muons from
pion decay will arrive at the stopping
target (Aluminum or Titanium).

@ Charged tracks from the stopping target
will be transported by another C-shape
electron transportation solenoid and will
finnally reach the detector. C

OMET
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Location of the COMET Experiment
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The Proton Beam at J-PARC

@ A pulsed proton beam is needed to reject © Fill every other bucket. Use slow extracion

beam related background. with pulse structure kept.

# | ,

° aucket O,
RCS /
h=2 : MR

h=9
: 4filled and 5 empty
sukets \

T T 0 Spill length is 0.8 sec while accelerator
cycle is 2.48 sec, thus the duty factor is
@ In J-PARC, the separation time is 1.17 us 0.8/2.48 = 0.32.
and the pulse width is 100 ns. totel tine (s) 2,48

dP/dt at linear acc.(GeV/c/t) =8.44003
dp/dt at linear reset(Gev/c/t) =-6.84327
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The Muon Beam at J-PARC

@ In the capture solenoid the pions @ In the C-shape muon beam line, the
from the production target will be curved solenoid will make charged
captured by 5 T magnetic field. particles drift along verticle direction

@ After being captured, the momentum @ The drift distance is proportional to
direction has a broad dsitribution. To the momentum amplitude.
make the beam more parallel to the @ The drift direction ig decided by the
beam axis, the magnetic field is charged of the particle.
decreased adiabatically. @ With the help of a dipole field and

, collimator, we can select the beam by
f_.v. charge and momentum.

@ Muon with momentum smaller than
75MeV/c is preferable.
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COMET Detectors

Q Signal tracks from the stopping target will be transported by
the curve solenoid to the detector solenoid.

e In the detector solenoid sit straw tracker and energy

calorimeter.

@ The straw tracker consits of (could be more than) 5
stations Each station has 4 layers of straw tubes.
@ The energy calorimeter is a plane of crystals.

Beam Collimator Muon Target Disks
Beam Blocker

| | |

Detector Slenoid .
@f

Calorimeter
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Staged Plan of COMET

Pion Capture Section

Protons o ShRAL
\\ Asection to capture pions with a large
/\\\\, == solid angle under a high solenoidal
\\ W magnetic field by superconducting
f.%: Production Maget
=i Target
=]
=
Pions .
Detector Section
I A detector t h
muon-to-elect
Muons ion pro

Pion-Decay and
Muon-Transport Section
A section to collect muons from
decay of pions under a solenoi
dal magnetic field.

COMET Phase-I COMET Phase-I
Start from 2018 Start from 2021 (e
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COMET Phase-I

The COMET Phase-l is designated to conduct the following tasks:

@ Background Study for COMET Phase-lI:
A direct measurement of potential background sources for the full COMET
experiment by using the actual COMET beamline constructed at Phase-I.
Using Phaes-Il detectors: straw tube tracker and energy calorimeter (ECal).

@ Search for mu-e conversion:
A search for mu-e conversion at intermediate sensitivity which would be more
than 100 times better than the SINDRUM-II limit.
Using new detector dedicated for Phase-I: cylindrical detector.

detector system pion production
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Cylindrical Detector for COMET Phase-|

CDC outer wall CDC

Stopping target

CDC inner wall

Superconducting coils

CDC endplate

Beam duct

Trigger hodoscope

Return yoke

Collimator

\ 3210 ~N
Shielding Cryostat it

Vacuum window
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Signal Sensitivity and Background in COMET Phase-I

@ The fact of COMET beam witin about

1.26 x 107 sec (146 days). Expected background events are about 0.032
Type Background Estimated events
Physics Muon decay in orbit 0.01
Radiative muon capture 0.0019
total protons 3.2 x 1019 Neutron emission e\Iftu]r muon capture <0.001
muon e fficiency 0.00047 . . ('1.a.§,ed pa;lu le emission after muon capture < 0.001
. rompt Beam * Beam electrons

Number of stopped muons | 1.5 x 10 e

* Other beam particles
. . L. . All (%) CumlnumlI <0.0038
@ Considering that the capture ratio in Al is Radiaive pion captre s
0.61 and the detector acceptanoe IS Delayed Beam  Beam clectrons ~0
0.041, the fraction of ;» — e conversion to ~0
. . ~0
the ground state in the final state of . o
fgnd — 0.9, we can achieve: Aun-[ oton induced backgrounds 0.0012
Others Cosmic rays' < 0.01
S.E.S.=3.1x 10" 1% Total 0.032

B(pu~ +Al > e~ +A)<T7x 10715(90%01,) T This cstimate is currently limited by compuiing rosources.
100 times better than the current limit!
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Status of COMET Beamline

@ Proton extinction factor measured to be

~ O(10~ ™).
© The coil winding for capture solenoid is
..l O almost done.
IR
T
[ T o © Muon transportation solenoid has been
constructed.
e Diamond detector has been studied to . .
measure the beam profile/extinction in @ 14 coils of the detector solenoid has been
front of the capture solenoid. asserpblgd.

e Prototype of graphite target for Phase-|
has been developed.

Detector Solenoid
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Status of COMET Facility

COMET Hall construction has
been completed last year.
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Status of COMET Phase-| Detectors

Straw Tube and Ecal

@ Straw assembly prototype with 20 micron @ GSO and LYSO crystal test has been
straws. conducted and LYSO was chosen for
E [ higher yield and faster time response.

ilGso

@ Operation in vacuum performed in

e The front end board (ROESTI/EROS) has
success been developed. ROESTI V3 tests show
e Beam test with 105MeV/c electron was good time resolution (<1ns).
done: ox 150um

Sigma vs Position for A¥C2HE=50/50, 2000V

or < 1ne in common chip
uf

Sigma um

05 15 25 35 4.5
Position mm
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Status of COMET Phase-| Detectors

Cylindrical Detector

© Front end boards have been
@ Beam tests and cosmic ray tests with produced and mass test finished last
prototypes have been conducted. Good spatial year.
resolution and efficiency (150 um, 99%) have
been achieved.

9 CDC construction completed in June 2016. s

Cosmic ray test is on going.
y Tl g ‘ 9 e Trigger scheme using FC7-FCT with

frontend trigger system has been
studied.

@ Software framework (ICEDUST)
\ finished last year. Full MC study
L indicates that the pre-trigger rate

g

ST R, estimated as ~ O(10)kHz, and
Q Beam tests for CTH prototype has been momenturn(:e?c;l(l;zg\r}}i)a ppreciated ,
conducted. 1ns time resolution obtained. ’ @I
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The COMET Collaboration

U g
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@ The CLFV process is a good probe to new phsycis beyond the Standard Model.

@ With a new generation of muon beam being available soon, the prospect of
searching for muon to electron conversion is very atractive.

© COMET at J-PARC aims at a search for muon to electron conversion with signal
sensitivity S.£.S = 2.6 x 10~'7 (10,000 times better than current limit) from
2021 with 1 year beam time.

© Staged plan for COMET has been approved and COMET Phase-| is expected to
take data from 2018 with 146 days beam time. It will carry out a background
study for Phase-Il together with a direct search for muon to electron conversion
with signal sensitivity S.£.S = 3.1 x 10~"° (100 times better than current limit).

© R&D and construction are in good shape.
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Chen Wu (NJU, IHEP, Osaka)

Thank you!
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