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• Lattice QCD calculation can apply to the exclusive modes: 
   fπ, fK: K ->π 
• How about inclusive hadronic decay?
   We use τ inclusive Kaon decay experiments ->  |Vus| 

determination 

• Using optical theorem and dispersion relation, 
   τ decay differential cross section 
  (τ hadronic decay/τ leptonic decay)
  and the hadronic vacuum polarization 
  (HVP) function are related.
  -> We can use lattice HVP calculations.

Intruduction
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|
us

|V
0.215 0.22 0.225

 decays, PDG 2013l3K
 0.0014±0.2253 

 decays, PDG 2013l2K
 0.0010±0.2253 

CKM unitarity, PDG 2013
 0.0010±0.2255 

 s inclusive, HFAG 2014→ τ

 0.0021±0.2176 

, HFAG 2014νπ → τ / ν K→ τ

 0.0019±0.2232 

, HFAG 2014ν K→ τ

 0.0020±0.2212 

 average, HFAG 2014τ

 0.0014±0.2204 

HFAG-Tau
Summer 2014

• |Vus| from inclusive τ decay -> 3 σ deviation from CKM unitarity
• pQCD and high order OPE -> problematic uncertainties? 4



This work

• We would like to propose an alternative method to calculate                
|Vus| from the inclusive τ decay.

• By combing both the lattice data and pQCD, 
   we could expect more precise determination of |Vus|.
• As a result, pQCD uncertainty can be suppressed. 
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Conventional study 

|Vus| determination 
from finite energy sum rule
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• The finite energy sum rule (FESR)

S0 … finite energy, 
w(s) is an arbitrary analytic function with  polynomial in s.
  
• LHS … ρ(s) is related to the experimental τ inclusive decays 

• RHS … Analytic calculation with                                     
perturbative QCD (pQCD) and OPE

        (s0 should be large enough = mτ^2)

Finite energy sum rule

Lattice determination of |Vus| with inclusive hadronic τ decay experiment†

T. Izubuchi,∗1 ∗2 H. Ohki,∗2

The Kobayashi-Maskawa matrix element |Vus| is an
important parameter for flavor physics, which is rele-
vant to the search for new physics beyond the standard
model in particle physics. So far |Vus| has been most
precisely determined by kaon decay experiments. As
an alternative way, from the τ decay, one can also de-
termine |Vus| independently. A conventional method
is to use the so-called finite energy sum rule with poly-
nomial weight function ω(s) and the spectral function

ρ(J)V/A with the spin J = 0, 1 as

∫ s0

0
ω(s)ρ(s)ds = − 1

2πi

∮

|s|=s0

ω(s)Π(s)ds, (1)

where Π(s) is a hadronic vacuum polarization(HVP)
function. Here, ρ(s) on the left hand side is related
to the differential decay of the τ decay by hadronic V
and A currents with u, s flavors as

dRus;V/A

ds
=

12π2|Vus|2SEW

m2
τ

(1− yτ )
2 (2)

×
[
(1 + 2yτρ

(0+1)
us;V/A − 2yτρ

0
us;V/A)

]
,

where yτ = s/m2
τ , SEW is a known short-distance elec-

troweak correction. The HVP function Π(s) on the
right hand side in Eq.(1) is analytically calculated by
using OPE based on perturbative QCD (pQCD). Thus,
the momentum s0 should be taken large enough to use
a perturbative OPE result. By combining both the
inclusive τ decay experiments and pQCD, one can ob-
tain |Vus|. Recent analyses suggest that there is 3 σ
discrepancy between two results from the method that
uses the inclusive τ decay and the CKM unitarity con-
straint. While there might be a possibility that such a
discrepancy could be explained by new physics effect,
we should note that the OPE yields a potential prob-
lematic uncertainty in the |Vus| determination from the
inclusive hadronic τ decay using the finite energy sum
rule a). Thus it is important to reduce the uncertainty
of the QCD part, so that we aim to resolve the so-called
|Vus| puzzule.
In this report, in order for that purpose, we would

like to propose an alternative method to determine
|Vus|, in which we use non-perturbative lattice QCD
results for Π(s) in addition to pQCD. Combing two in-
puts, we would expect that more reliable result could
be obtained. In order to use lattice QCD inputs, we

† All the results shown here are preliminary.
∗1 Physics Department, Brookhaven National Laboratory, Up-

ton, NY 11973, USA
∗2 RIKEN Nishina Center
a) For a recent study of the inclusive τ decay using the finite

energy sum rule, see1).
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Fig. 1. Q2
1 dependence of the ratio of the pQCD to the kaon

pole contribution. For pQCD result, the D = 0 OPE

(Nf = 3) and a conventional value of |Vus| are used.

adopt a different weight function ω(s) which has poles
in the Euclidean momentum region. As an illustra-
tive example, we take a following weight function as
ω(s) = 1

(s+Q2
1)(s+Q2

2)···(s+Q2
N )

, where −Q2
k < 0 (for

k = 1, ..., N), and N ≥ 3. Taking s0 → ∞ in Eq.(1),
we obtain

∫ ∞

0
ρ(s)ω(s)ds =

N∑

k

Res
(
Π(−Q2

k)ω(−Q2
k)
)
. (3)

The lattice result is used for residues on the right hand
side. The left hand side can be evaluated up to s = m2

τ

from the experimental data, and we use a pQCD re-
sult for s > m2

τ . There is an advantage in this method.
Since above weight function ω(s) is highly suppressed
in high momentum region, so the uncertainty coming
from pQCD can be reduced. In fact, Fig. 1 shows the
weight function dependence of the ratio of the OPE
contribution of the spectrum integral in Eq.(3) to the
one from the dominant kaon pole contribution. As
shown in Fig. 1, the OPE contribution can be sup-
pressed by adding poles in the weight function.

As a preliminary study, we calculate |Vus| deter-

mined from ρ(0)A . As for the lattice calculation of ρ(0)A ,
we use L = 48 lattice result near the physical quark
massb). Using a weight function with three poles of
(Q2

1, Q
2
2, Q

2
3) = (0.1, 0.2, 0.3), we obtain 0.3% statisti-

cal relative error, which is competitive with previous
results. As a future work, we need to estimate sys-
tematic uncertainties such as lattice discretization, un-
physical mass, and contributions from other channels,
in particular pQCD effects.

References
1) P. A. Boyle et al. Int. J. Mod. Phys. Conf. Ser.

35, 1460441 (2014) doi:10.1142/S2010194514604414
[arXiv:1312.1716 [hep-ph]].

b) We thank RBC-UKQCD collaboration and Kim Maltman
for providing lattice HVP and experimental data.
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• Using a different type of the weight function w(s) which has residues                 

and taking S0 -> ∞, 

LHS … Experimental data and pQCD 
RHS … Lattice HPVs Π(Q) at Euclidean momentum region

Our strategy

Lattice determination of |Vus| with inclusive hadronic τ decay experiment†
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τ , SEW is a known short-distance elec-

troweak correction. The HVP function Π(s) on the
right hand side in Eq.(1) is analytically calculated by
using OPE based on perturbative QCD (pQCD). Thus,
the momentum s0 should be taken large enough to use
a perturbative OPE result. By combining both the
inclusive τ decay experiments and pQCD, one can ob-
tain |Vus|. Recent analyses suggest that there is 3 σ
discrepancy between two results from the method that
uses the inclusive τ decay and the CKM unitarity con-
straint. While there might be a possibility that such a
discrepancy could be explained by new physics effect,
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lematic uncertainty in the |Vus| determination from the
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side. The left hand side can be evaluated up to s = m2
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from the experimental data, and we use a pQCD re-
sult for s > m2

τ . There is an advantage in this method.
Since above weight function ω(s) is highly suppressed
in high momentum region, so the uncertainty coming
from pQCD can be reduced. In fact, Fig. 1 shows the
weight function dependence of the ratio of the OPE
contribution of the spectrum integral in Eq.(3) to the
one from the dominant kaon pole contribution. As
shown in Fig. 1, the OPE contribution can be sup-
pressed by adding poles in the weight function.

As a preliminary study, we calculate |Vus| deter-

mined from ρ(0)A . As for the lattice calculation of ρ(0)A ,
we use L = 48 lattice result near the physical quark
massb). Using a weight function with three poles of
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physical mass, and contributions from other channels,
in particular pQCD effects.
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• Our formula

Data 
Finite Energy Sum rule …  Tau exp. v.s. pQCD
Our method                   …  Tau exp. v.s. pQCD & Lattice data 
Weight function: ω(s)
Finite Energy Sum rule  … ω(s) : polynomial in s
Our method                    … 

Comparison with conventional method
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puts, we would expect that more reliable result could
be obtained. In order to use lattice QCD inputs, we

† All the results shown here are preliminary.
∗1 Physics Department, Brookhaven National Laboratory, Up-

ton, NY 11973, USA
∗2 RIKEN Nishina Center
a) For a recent study of the inclusive τ decay using the finite

energy sum rule, see1).
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Fig. 1. Q2
1 dependence of the ratio of the pQCD to the kaon

pole contribution. For pQCD result, the D = 0 OPE

(Nf = 3) and a conventional value of |Vus| are used.

adopt a different weight function ω(s) which has poles
in the Euclidean momentum region. As an illustra-
tive example, we take a following weight function as
ω(s) = 1

(s+Q2
1)(s+Q2

2)···(s+Q2
N )

, where −Q2
k < 0 (for

k = 1, ..., N), and N ≥ 3. Taking s0 → ∞ in Eq.(1),
we obtain

∫ ∞

0
ρ(s)ω(s)ds =

N∑

k

Res
(
Π(−Q2

k)ω(−Q2
k)
)
. (3)

The lattice result is used for residues on the right hand
side. The left hand side can be evaluated up to s = m2

τ

from the experimental data, and we use a pQCD re-
sult for s > m2

τ . There is an advantage in this method.
Since above weight function ω(s) is highly suppressed
in high momentum region, so the uncertainty coming
from pQCD can be reduced. In fact, Fig. 1 shows the
weight function dependence of the ratio of the OPE
contribution of the spectrum integral in Eq.(3) to the
one from the dominant kaon pole contribution. As
shown in Fig. 1, the OPE contribution can be sup-
pressed by adding poles in the weight function.

As a preliminary study, we calculate |Vus| deter-

mined from ρ(0)A . As for the lattice calculation of ρ(0)A ,
we use L = 48 lattice result near the physical quark
massb). Using a weight function with three poles of
(Q2

1, Q
2
2, Q

2
3) = (0.1, 0.2, 0.3), we obtain 0.3% statisti-

cal relative error, which is competitive with previous
results. As a future work, we need to estimate sys-
tematic uncertainties such as lattice discretization, un-
physical mass, and contributions from other channels,
in particular pQCD effects.

References
1) P. A. Boyle et al. Int. J. Mod. Phys. Conf. Ser.

35, 1460441 (2014) doi:10.1142/S2010194514604414
[arXiv:1312.1716 [hep-ph]].

b) We thank RBC-UKQCD collaboration and Kim Maltman
for providing lattice HVP and experimental data.
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τ inclusive decay experiment

For K pole, we assume a delta function form, whose coefficient is 
obtained from the experimental value of K-> μ decay width 

Determination of |Vus| from lattice HVP and

experimental hadronic τ decay

1 Preliminary

For SM hadronic τ decays, a derivative of the ratio Rij;V/A of the decay width into states
produced hadronic V and A currents with i, j flavors to the electron decay width,

Rij;V/A ≡ Γ[τ− → ντHij;V/A(γ)]/Γ[τ
− → ντe

−ν̄e(γ)] (1)

is related to the spectral functions ρ(J)ij;V/A with the spin J = 0, 1 by

dRij;V/A

ds
=

12π2|Vij|2SEW

m2
τ

(1− yτ)
2
[

(1 + 2yτ )ρ
0+1
ij;V/A(s)− 2yτρ

0
ij;V/A(s)

]

, (2)

where yτ = s/m2
τ , SEW is a known short-distance electroweak conrrection. Fig. 1 repre-

sents hadronic τ decays. The spectal function is defined as ρ(J)ij;V/A(s) =
1
π ImΠ(J)

ij;V/A(−s),

where Π(J)
ij;V/A(−s) is computed from the usual flavor ij vector (V) or axial vector (A)

current-current two-point functions;

Π(µν)
ij;V/A(q

2) ≡i

∫

d4xeiqx⟨0|T
(

Jµ
ij;V/A(x)J

†ν
ij;V/A(0)

)

|0⟩

=(qµqν − q2gµν)Π(1)
ij;V/A(Q

2) + qµqνΠ
(0)
ij;V/A(Q

2), (3)

where Jµ
ij;V/A are the V/A currents with flavor ij.

The |Vus| extraction uses an analysis of the us two-point function. From Eq. (2), it
shows that the experimental data of dRus;V/A/ds fixes the |Vus|2 and the spectral function
combination

(

1 + 2
s

m2
τ

)

ImΠ(1)(s) + ImΠ(0)(s). (4)

The experimental situation for the inclusive τ decays is shown in 1. The current status
of |Vus| determination can be found in HFAG-tau summary (See Fig. 2). For the Kaon
pole contribution, we assume a simple delta function form as

|Vus|
2

[(

1 + 2
s

m2
τ

)

ImΠ(1)(s) + ImΠ(0)(s)

]

= δ(s−m2
k)0.0012299(46). (5)

1

To compare with experiments, 
a conventional value of  |Vus|=0.2253 is used

⇠ 2f2
k |Vus|2

⇢(s) ⌘ |Vus|2
✓

1 + 2
s

m2
⌧

◆
Im⇧1(s) + Im⇧0(s)

�
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• we use pole-type weight function; 

                            (Number of poles: N)
For convergence of contour integral,  
a weight function with N ≧ 3 is required

This weight function can suppress 
   larger error parts from higher multi hadron final states at s > mk^2
   contributions from pQCD at s > mτ^2

For lattice HVPs, 
Q^2 values should not be too small to avoid finite size(time) effect, 
and not to be large to avoid large discretization error.

Advantage of Weight function

!(s) =
NY

k

1

(s+Q2
k)

, (Q2
k > 0)
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Lattice calculation
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Lattice HVPs
HVPs from V/A current-current correlation functions with u s flavors, 
we consider zero-spatial momentum 

2 Lattice-experimental analysis

Using the analyticity properties of the spectral function Π(s), we can obtain a relation
between experiments dRus;V/A/ds, (s > 0) and the lattice inputs of hadronic vacuum
polarization fucntion Π(Q2) in Euclidean (space-like) points (s = −Q2 < 0) as follows,

1

2πi

∮

C

dsΠ(s)ω(s) =
∑

k

Π(−Q2
k)Res

(

ω(−Q2
k)
)

, (6)

where Π(s) ≡
[(

1 + 2 s
m2

τ

)

Π(1)(s) + Π(0)(s)
]

, and ω(s) is a weight function having poles

at a set of Euclidean Q2
k (s = −Q2

k < 0). As a simple form of a weight function, we would
like to take

ω(s) =
1

ΠN
k=1(s+Q2

k)
. (7)

The number of poles N then should be taken as N > 2, which is needed for convergence
of any kind of contour integrals. Thus we obtain a relation

∫ ∞

sth

dsρ(s)ω(s) =
∑

k

Π(Q2
k)

Πj ̸=k(Q2
j −Q2

k)
(8)

The LHS of this equation is determined by ρ(s) = 1
π ImΠ(−s), which can be evaluated up

to s = m2
τ , with unknown factor |Vus|2 from the experimental results of dRus;V/A/ds . The

RHS is a sum over the values of the HVPs with known test function ω(s) at s = −Q2
k.

(See Fig. 3). Hereafter we simply denote the sum of residues as

∑

k

Π(Q2
k)

Πj ̸=k(Q2
j −Q2

k)
≡ Res (Πω) . (9)

One aim to understand what sort of choice will optimize the lattice and experimental
errors and obtain a precise value of |Vus|. Above experimental region (s > m2

τ ), one have
to use a pQCD result to evaluate the LHS.

3 Lattice hadronic vacuum polarization function

The data set used for calculations of the lattice HVPs are tabulated in table.1.
The hadronic vacuum polarization function is calculated in the configuration space.

We use its zero spatial momentum components as

ΠV/A
µν (t) =

1

V

∑

x⃗

⟨JV/A
µ (x⃗, t)JV/A

ν (x⃗, 0)⟩. (10)

HPVs in the momentum-space are following structure

Πµν(q) = (q2δµν − qµqν)Π
(1)(q2) + qµqνΠ

(0)(q2), (11)

3

Spin =1, 0 components can be obtained in momentum space as 
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The data set used for calculations of the lattice HVPs are tabulated in table.1.
The hadronic vacuum polarization function is calculated in the configuration space.

We use its zero spatial momentum components as
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3On the lattice, those with subtraction of unphysical zero-mode can be 
obtained by discrete Fourier transformation, 
(direct double subtraction, sine cardinal Fourier transformation.)

sth

Figure 3: Schematic picture of the analysis (Eq.8).

L T ml mh mπ[GeV] mK [GeV] a−1[GeV] ZV ZA

24I-1 24 64 0.005 0.03 0.3398 0.5325 1.785(5) 0.7019(26) 0.7016(27)
24I-2 24 64 0.005 0.04 0.3398 0.5934 1.785(5) 0.7019(26) 0.7016(27)
32I-11 32 64 0.004 0.025 0.3025 0.5366 2.383(9) 0.7396(17) 0.7396(17)
32I-12 32 64 0.004 0.03 0.3025 0.5791 2.383(9) 0.7396(17) 0.7396(17)
32I-21 32 64 0.006 0.025 0.3603 0.5544 2.383(9) 0.7396(17) 0.7396(17)
32I-22 32 64 0.006 0.03 0.3603 0.5957 2.383(9) 0.7396(17) 0.7396(17)
48I 48 96 0.00078 0.0362 0.1392 0.4992 1.7295(40) 0.71075(25) 0.71075(5)
48I (PQ) 48 96 0.0006979 0.0358 0.135† 0.4937† 1.7295(40) 0.71075(25) 0.71075(5)
64I 64 128 0.000678 0.02661 0.1393 0.5079 2.359(7) 0.74293(14) 0.74341(5)

Table 1: Summary of lattice data set and parameters. The results of mK are taken from
Ref. [1]. The 48I (PQ) is a partially quenched corrected mass data, where the masses of
mπ and mK are the same as the physical ones (indicated as †).

On the lattice, those in the momentum-space with subtraction of unphysical zero-mode
can be obtained by discrete Fourier transformation,

Π̂(q2) =
t=T/2−1
∑

t=−T/2

(

eiq̃t − 1

q2
+

t2

2

)

Π(t), (12)

where q̃ is the lattice momenta which satisfies the vector Ward identity,

q̃µ = 2 sin (qµ/2). (13)

Thus the spin J = 0, 1 components are evaluated as Π̂(0)(q2) = Π̂tt(q2), and Π̂(1)(t) =
1
3

∑

i=x,y,z Π̂ii(t)1. The HVPs for each lattice are summarized in Fig. 4.

3.1 MK and FK

Using Π(0):A(t), we can extract the mass (mK) and decay constant (FK). Here we use

Π(0):A(t)sym = 1
2

(

Π(0):A(t) + Π(0):A(T − t)
)

. We plot the effective mass for Π(0):A
sym (t) in

1Note that in the denominator of Eq. (12), I use not q̃2 but q2. This may be a difference from Jamie’s
analysis.

4

sth

Figure 3: Schematic picture of the analysis (Eq.8).

L T ml mh mπ[GeV] mK [GeV] a−1[GeV] ZV ZA

24I-1 24 64 0.005 0.03 0.3398 0.5325 1.785(5) 0.7019(26) 0.7016(27)
24I-2 24 64 0.005 0.04 0.3398 0.5934 1.785(5) 0.7019(26) 0.7016(27)
32I-11 32 64 0.004 0.025 0.3025 0.5366 2.383(9) 0.7396(17) 0.7396(17)
32I-12 32 64 0.004 0.03 0.3025 0.5791 2.383(9) 0.7396(17) 0.7396(17)
32I-21 32 64 0.006 0.025 0.3603 0.5544 2.383(9) 0.7396(17) 0.7396(17)
32I-22 32 64 0.006 0.03 0.3603 0.5957 2.383(9) 0.7396(17) 0.7396(17)
48I 48 96 0.00078 0.0362 0.1392 0.4992 1.7295(40) 0.71075(25) 0.71075(5)
48I (PQ) 48 96 0.0006979 0.0358 0.135† 0.4937† 1.7295(40) 0.71075(25) 0.71075(5)
64I 64 128 0.000678 0.02661 0.1393 0.5079 2.359(7) 0.74293(14) 0.74341(5)

Table 1: Summary of lattice data set and parameters. The results of mK are taken from
Ref. [1]. The 48I (PQ) is a partially quenched corrected mass data, where the masses of
mπ and mK are the same as the physical ones (indicated as †).

On the lattice, those in the momentum-space with subtraction of unphysical zero-mode
can be obtained by discrete Fourier transformation,

Π̂(q2) =
t=T/2−1
∑

t=−T/2

(

eiq̃t − 1

q2
+

t2

2

)

Π(t), (12)

where q̃ is the lattice momenta which satisfies the vector Ward identity,

q̃µ = 2 sin (qµ/2). (13)

Thus the spin J = 0, 1 components are evaluated as Π̂(0)(q2) = Π̂tt(q2), and Π̂(1)(t) =
1
3

∑

i=x,y,z Π̂ii(t)1. The HVPs for each lattice are summarized in Fig. 4.

3.1 MK and FK

Using Π(0):A(t), we can extract the mass (mK) and decay constant (FK). Here we use

Π(0):A(t)sym = 1
2

(

Π(0):A(t) + Π(0):A(T − t)
)

. We plot the effective mass for Π(0):A
sym (t) in

1Note that in the denominator of Eq. (12), I use not q̃2 but q2. This may be a difference from Jamie’s
analysis.

4



lattice QCD ensemble and parameters

• Our main analysis is done on L=48 and 64, 
   at almost physical quark mass region, L=5 fm. 
• PQ-correction: partially quench (PQ) corrected HVP data at the physical 

point (†) 

2+1 flavor domain-wall fermion gauge ensemble generated by RBC-UKQCD 

Vol. a�1
[GeV] m⇡[GeV] mK [GeV] stat.

24

3 ⇥ 64 1.785(5) 0.340 0.533 450

0.340 0.593 450

32

3 ⇥ 64 2.383(9) 0.303 0.537 372

0.303 0.579 372

0.360 0.554 207

0.360 0.596 207

48

3 ⇥ 96 1.730(4) 0.139 0.499 88

0.135

†
0.4937

†
5 PQ-correction, (88)

64

3 ⇥ 128 2.359(7) 0.139 0.508 80
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A systematic study of weight function dependence

L T Fit range amK am(∗)
K aFK aF (∗)

K

24I-1 24 64 10-32 0.2984(11) 0.29833(54) 0.0940(12) 0.09347(39)
24I-2 24 64 10-32 0.3324(12) 0.33245(55) 0.0969(12) 0.09632(41)
32I-11 32 64 10-32 0.2238(12) 0.22518(37) 0.0692(10) 0.06969(32)
32I-12 32 64 10-32 0.2415(12) 0.24301(39) 0.07066(99) 0.07112(33)
32I-21 32 64 10-32 0.2335(14) 0.23266(25) 0.0699(14) 0.07113(31)
32I-22 32 64 10-32 0.2507(14) 0.24999(26) 0.0715(14) 0.07254(32)
48I 48 96 10-48 0.28843(31) 0.28853(14) 0.09019(21) 0.090396(86)
48I (PQ) 48 96 10-48 0.28643(73) 0.285439(8)(†) 0.09026(25) 0.08992(48)(†)

64I 64 128 10-64 0.21548(28) 0.21531(17) 0.06661(16) 0.066534(99)

Table 2: Results of mK and FK from Π(0):A(t). For reference, the results given in [1] are
also shown, which are indicated with (∗). For PQ data, the experimental data are also
shown as indicated with (†).

Q2
2 = 0.2, Q2

3 = 0.3, Q2
4 = 0.4 fixed. As shown in the figure, the pQCD contribution with

a weight function for 4 poles is suppressed than the one for 3 poles. The ration of each
contribution is shown in Fig. 7.
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Figure 6: Spectrum integral for each channel as a function of Q2
1. (Left) A weight func-

tion with 3 poles of {Q2
2, Q

2
3} = {0.2, 0.3}. (Right) A weight function with 4 poles of

{Q2
2, Q

2
3, Q

2
4} = {0.2, 0.3, 0.4}. For the pQCD result, a conventional value of |Vus| = 0.2253

is used.

In Fig. 8, we show the ratio of each contribution of Kaon pole, other multi hadron
states (denoted by others), and OPE to the total spectrum integral I follow the same
notation for the weight functions in these parameters as

• C (center value of weights),

• ∆ (separation of the pole position),

• N (the number of the poles).

7
{Q2

1, Q
2
2, · · · , Q2

N} = {C � (N/2 + 1)�, · · · , C ��, C, C +�, · · · , C + (N/2 + 1)�}

!(s) =
NY

k

1

(s+Q2
k)

, (Q2
k > 0)

C =
Q2

1 +Q2
2 + · · ·+Q2

N

N

Im(s)

Re(s)

pole positions (N=3 case)

�Q2
3 �Q2

2 �Q2
1
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• For larger N with smaller Q^2,  Kaon pole is the most dominant contribution.
• pQCD and rest modes are highly suppressed.
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We use 
obtained from the experimental value of K-> μ decay width

f2
k |Vus|2 = 0.0012299(46)
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fphys
K = 0.15551(83)[GeV]

⇢pQCD =

Z 1

m2
⌧

ds!(s)⇧OPE(s)



• Higher order discretization error of a^4 for V1+V0+A1,

• Finite volume correction  
   1 loop ChPT analysis of current-current correlator on finite volume 
   for Kπ channel (V1).
   
• Isospin breaking effects
We put 0.2 % for isospin breaking (EM) effect on V1+V0+A1. 
Strong isospin breaking corrected Kπ experimental data used.
(Analysis with s-dependent isospin breaking effect is ongoing)
[Ref: Antonelli, Cirigliano, Lusiani, and Passemar, JHEP10(2013)070]

• pQCD (OPE) uncertainty
   2% for possible duality-violation effect 

Systematic error estimate

24

O(C2a4), (a�1 = 2.37[GeV])
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For N=4, 5,  full result (V1 + V0 + A1+A0) is stable against the change of C, 
which is consistent with K pole determination.

|Vus| for all channels

preliminary
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• N=3  

In large C region, perturbative QCD dominates spectral integral in both N.
N=3 : C ~ 0.5,  50 % : K,  30 % : Kπ,  20% : multi π & pQCD
N=4 : In small C ~ 0.2, 80%: K, 20 %: Kπ -> K & Kπ dominant case

• N=4   
Ratio of contributions

26
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C and N dependence of error.
Minimum error can be found depending on the value of N, 
In the case of N=4, C ~ 0.5.

|Vus| relative error

preliminary
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Kl3 decays, PDG 2013

Kl2 decays, PDG 2013

CKM unitarity, PDG 2013

τ -> s inclusive, HFAG 2014

τ -> Kν / τ -> π ν, HFAG 20

τ -> Kν, HFAG 2014

τ  average, HFAG 2014

N=3,  C=0.5 [GeV2]

N=4,  C=0.2 [GeV2]

N=4,  C=0.5 [GeV2]

Result

Our result 
for all channels
(V1 + V0 +A1 +A0)

All our results (C<1, N=3,4) are consistent with each other and 
CKM unitarity constraint as well.

29
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This work



Summary
The dispersive relation between the inclusive τ decay experiments and the 
lattice vacuum polarizations, from which we can determine the CKM matrix 
element |Vus|.
We 
-By introducing a weight function with poles at spacetime momenta and lattice 
QCD, we extend finite energy sum rule analysis to carry out a new type of |Vus| 
determination, which potentially brings a better precision.
-By changing the number and location of poles, N and C, we could adjust 
"inclusiveness", the impact of multi hadron states, apart from those from K pole 
and K-Pi, which gives us a new systematic analysis.
-For most accurate Vus, Large N and smaller C, is preferable, where the lattice 
 error (error of f_K and stat error of A1+V1+V0) dominate in our current analysis.

Future Prospects: 

Improvement in both experiments and lattice QCD is possible.     
Experiment -> multi hadron (high s) channels,                                                                                            
Lattice -> statistical error is dominant.      

light u d current analysis is also possible ->  Flavor breaking |Vus|            
Other quantities such as α_had,  HVP contribution to (g-2)μ 30



Thank you
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Figure 11: F̃ (1/0):V/A(t) for 48I (Left) and 32I-11 (Right). We use a weight function with
N = 3, and (Q2
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2
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48

3 ⇥ 96 m⇡[GeV] mK [GeV]

unitary 0.139 0.499

PQ-corrected 0.135

†
0.4937

†

Effective residue


