Lattice calculation of IVusl from inclusive strangeness changing T decay

In collaboration with P. Boyle, R. J. Hudspith, T. Izubuchi, A. Juettner, C. Lehner, R. Lewis, K. Maltman + ... (RBC/UKQCD)

@ Tau 2016, IHEP, Beijing, September 19, 2016

outline

•Introduction Inclusive tau decay experiment Finite energy sum rule and |Vus| determination

- Lattice HVPs and tau decay
- Result of |Vus|
- •Summary

Intruduction

- Lattice QCD calculation can apply to the exclusive modes: fπ, fK: K ->π
- How about inclusive hadronic decay?
 We use τ inclusive Kaon decay experiments -> IVusl determination
- Using optical theorem and dispersion relation, τ decay differential cross section (τ hadronic decay/τ leptonic decay) and the hadronic vacuum polarization (HVP) function are related. -> We can use lattice HVP calculations.

 $\bar{v}_{e'}, \bar{v}_{u'}, \bar{u}, \bar{u}$

- IVusl from inclusive τ decay -> 3 σ deviation from CKM unitarity
- pQCD and high order OPE -> problematic uncertainties?

This work

- We would like to propose an alternative method to calculate IVusI from the inclusive τ decay.
- By combing both the lattice data and pQCD, we could expect more precise determination of IVusI.
- As a result, pQCD uncertainty can be suppressed.

Conventional study

IVusl determination from finite energy sum rule

Finite energy sum rule

0.0001

He(s)

7

 s_0

 s_{th}

 τ experiment

• The finite energy sum rule (FESR)

$$\int_0^{s_0} \omega(s)\rho(s)ds = -\frac{1}{2\pi i} \oint_{|s|=s_0} \omega(s)\Pi(s)ds,$$

S0 ... finite energy,

w(s) is an arbitrary **analytic** function with polynomial in s.

- LHS ... $\rho(s)$ is related to the experimental τ inclusive decays

$$\frac{dR_{us;V/A}}{ds} = \frac{12\pi^2 |V_{us}|^2 S_{EW}}{m_\tau^2} \left(1 - \frac{s}{m_\tau^2}\right)^2 \left[\left(1 + 2\frac{s}{m_\tau^2}\right) \operatorname{Im}\Pi^1(s) + \operatorname{Im}\Pi^0(s) \right]$$

$$\rho(s) \equiv |V_{us}|^2 \left[\left(1 + 2\frac{s}{m_\tau^2}\right) \operatorname{Im}\Pi^1(s) + \operatorname{Im}\Pi^0(s) \right]$$

$$\lim(s) \quad \text{pQCD}$$

 RHS ... Analytic calculation with perturbative QCD (pQCD) and OPE (s0 should be large enough = mτ^2)

Our strategy

• Using a different type of the weight function w(s) which has residues

$$\omega(s) = \frac{1}{(s+Q_1^2)(s+Q_2^2)\cdots(s+Q_N^2)}$$

and taking S0 -> ∞ ,

$$\int_0^\infty \rho(s)\omega(s)ds = \sum_k^N \operatorname{Res}\left(\Pi(-Q_k^2)\omega(-Q_k^2)\right)$$

LHS ... Experimental data and pQCD RHS ... Lattice HPVs $\Pi(Q)$ at Euclidean momentum region

-- N=5, (Q₂, Q₃, Q₄) 0.0001^L₀ Comparison with conve $Q_1^2 [GeV^2]$

Our formula

$$\int_0^\infty \rho(s)\omega(s)ds = \sum_k^N \operatorname{Res}\left(\Pi(-Q_k^2)\omega(-Q_k^2)\right)$$

Data

Finite Energy Sum rule ... Tau exp. v.s. pQCD ... Tau exp. v.s. pQCD & Lattice data Our method

<u>Weight function: ω(s)</u>

Finite Energy Sum rule ... $\omega(s)$: polynomial in s $\omega(s) = \frac{1}{(s+Q_1^2)(s+Q_2^2)\cdots(s+Q_N^2)}$ Our method

Lattice HPVs

τ inclusive decay experiment

For K pole, we assume a delta function form, whose coefficient is obtained from the experimental value of K-> μ decay width

 $\delta(s - m_k^2) 0.0012299(46) \sim 2f_k^2 |V_{us}|^2$

Advantage of Weight function

• we use pole-type weight function;

$$\omega(s) = \prod_k^N \frac{1}{(s+Q_k^2)}, \quad (Q_k^2 > 0)$$

(Number of poles: N)

For convergence of contour integral, a weight function with $N \ge 3$ is required

This weight function can suppress

- Iarger error parts from higher multi hadron final states at s > mk^2
- contributions from pQCD at $s > m\tau^2$

For lattice HVPs,

Q^2 values should not be too small to avoid finite size(time) effect, and not to be large to avoid large discretization error.

11

• example: N=3, $\{Q_1^2, Q_2^2, Q_3^2\} = \{0.1, 0.2, 0.3\}$

12

• example: N=4, $\{Q_1^2, Q_2^2, Q_3^2, Q_4^2\} = \{0.1, 0.2, 0.3, 0.4\}$

• example: N=5, $\{Q_1^2, Q_2^2, Q_3^2, Q_4^2, Q_5^2\} = \{0.1, 0.2, 0.3, 0.4, 0.5\}$

14

Lattice calculation

Lattice HVPs

HVPs from V/A current-current correlation functions with u s flavors, we consider zero-spatial momentum

$$\Pi_{\mu\nu}^{V/A}(t) = \frac{1}{V} \sum_{\vec{x}} \langle J_{\mu}^{V/A}(\vec{x}, t) J_{\nu}^{V/A}(\vec{x}, 0) \rangle$$

Spin =1, 0 components can be obtained in momentum space as

$$\Pi_{\mu\nu}(q) = (q^2 \delta_{\mu\nu} - q_\mu q_\nu) \Pi^{(1)}(q^2) + q_\mu q_\nu \Pi^{(0)}(q^2),$$

On the lattice, those with subtraction of unphysical zero-mode can be obtained by discrete Fourier transformation,

(direct double subtraction, sine cardinal Fourier transformation.)

$$\hat{\Pi}(q^2) = \sum_{t=-T/2}^{t=T/2-1} \left(\frac{e^{i\tilde{q}t} - 1}{q^2} + \frac{t^2}{2} \right) \Pi(t)$$
$$\tilde{q}_{\mu} = 2\sin\left(q_{\mu}/2\right)$$

lattice QCD ensemble and parameters

2+1 flavor domain-wall fermion gauge ensemble generated by RBC-UKQCD

Vol.	$a^{-1}[\text{GeV}]$	$m_{\pi}[\text{GeV}]$	$m_K[{ m GeV}]$	stat.
$24^3 \times 64$	1.785(5)	0.340	0.533	450
		0.340	0.593	450
$32^3 \times 64$	2.383(9)	0.303	0.537	372
		0.303	0.579	372
		0.360	0.554	207
		0.360	0.596	207
$48^3 \times 96$	1.730(4)	0.139	0.499	88
		0.135^\dagger	0.4937^\dagger	5 PQ-correction, (88)
$\overline{64^3 \times 128}$	2.359(7)	0.139	0.508	80

- Our main analysis is done on L=48 and 64, at almost physical quark mass region, L=5 fm.
- PQ-correction: partially quench (PQ) corrected HVP data at the physical point (†)

A systematic study of weight function dependence

$$\omega(s) = \prod_{k}^{N} \frac{1}{(s+Q_{k}^{2})}, \quad (Q_{k}^{2} > 0)$$

- C (center value of weights),
- Δ (separation of the pole position),
- N (the number of the poles).

• N=3, Δ=0.1 [GeV^2]

- Left : Ratios of each contribution of V/A with spin=0, 1 to the total residue. (Lattice)
- Right: Ratios of each decay modes to total cross section. (Experiments) rest : multi π channels, K η

19

• N=4, Δ=0.1 [GeV^2]

- For larger N with smaller Q^2, Kaon pole is the most dominant contribution.
- pQCD and rest modes are highly suppressed.

IVusl from K pole

- IVusl can be determined from K pole channel only (exclusive mode).
- Since τ -> K decay mode is dominated by axial spin = 0 channel, so we have

$$A_0 : |V_{us}^{A_0}| = \sqrt{\frac{\rho_{exp}^{K-pole}}{F_{lat}(\Pi^{(0):A})}}$$

$$\rho_{exp}^{K-pole} = 0.0012299 \int_0^\infty ds \omega(s) \delta(s - m_K^2) = 0.0012299 \omega(m_K^2)$$

We use
$$f_k^2 |V_{us}|^2 = 0.0012299(46)$$

obtained from the experimental value of K-> μ decay width

$$F_{lat} = \sum_{k=1}^{N} \operatorname{Res}\left(\omega(-Q_k^2)\right) \Pi_{lat}(-Q_k^2)$$

$\left| V_{us}^{A_0} \right|$ from L=48 lattice at physical quark mass

N : number of poles

K pole: determined from fK (K decay constant)

IVusl is universal and consistent with fK determination (mild dependence of C, N)Our result suggests : A0 channels is dominated by K pole(Excited mode contributions and lattice discretization error are small in this momentum region.)

IVusl from All channels

- A0 channel is dominated by K pole.
- -> The kaon decay constant in the continuum limit can be used. (well determined from lattice QCD) we use $f_K^{phys} = 0.15551(83)[\text{GeV}]$ [RBC/UKQCD, 2014]
- How about other channels?
- Lattice HVPs for A1, V1, V0 <-> multi hadron states & pQCD
- We take the continuum limit using the data L=48 and 64

$$V_{1} + V_{0} + A_{1} + A_{0} : |V_{us}^{V_{1}+V_{0}+A_{1}+A_{0}}| = \sqrt{\frac{\rho_{exp}^{K-pole} + \rho_{exp}^{others}}{(f_{K}^{phys})^{2}\omega(m_{K}^{2}) + F_{lat}(\Pi_{others}) - \rho_{pQCD}}},$$

$$\rho_{exp}^{others} = |V_{us}|^{2} \int_{s_{th}}^{m_{\tau}^{2}} ds\omega(s) \text{Im}\Pi(s)$$

$$F_{lat} = \sum_{k=1}^{N} \text{Res}(\omega(-Q_{k}^{2}))\Pi_{lat}(-Q_{k}^{2}) \qquad \rho_{pQCD} = \int_{m_{\tau}^{2}}^{\infty} ds\omega(s)\Pi_{OPE}(s)$$

Systematic error estimate

• Higher order discretization error of a^4 for V1+V0+A1,

$$\mathcal{O}(C^2 a^4), \ (a^{-1} = 2.37 [\text{GeV}])$$

Finite volume correction

1 loop ChPT analysis of current-current correlator on finite volume for $K\pi$ channel (V1).

Isospin breaking effects

We put 0.2 % for isospin breaking (EM) effect on V1+V0+A1. Strong isospin breaking corrected Kπ experimental data used. (Analysis with s-dependent isospin breaking effect is ongoing) [Ref: Antonelli, Cirigliano, Lusiani, and Passemar, JHEP10(2013)070]

• pQCD (OPE) uncertainty

2% for possible duality-violation effect

IVusl for all channels

K pole: determined from fK (K decay constant) For N=4, 5, full result (V1 + V0 + A1+A0) is stable against the change of C, which is consistent with K pole determination.

Ratio of contributions

In large C region, perturbative QCD dominates spectral integral in both N. N=3 : C ~ 0.5, 50 % : K, 30 % : K π , 20% : multi π & pQCD N=4 : In small C ~ 0.2, 80%: K, 20 %: K π -> K & K π dominant case

IVusl relative error

C and N dependence of error. Minimum error can be found depending on the value of N, In the case of N=4, C \sim 0.5.

error^2	(%)
Exp.	6
K(A0)	45
V1+V0+A1	43
disc.	0
isospin	0
FVC	5
OPE	0

error^2	(%)
Exp.	25
K(A0)	36
V1+V0+A1	29
disc.	3
isospin	1
FVC	6
OPE	0

error^2	(%)
Ехр.	70
K(A0)	12
V1+V0+A1	8
disc.	6
isospin	2
FVC	1
OPE	1

Result

All our results (C<1, N=3,4) are consistent with each other and CKM unitarity constraint as well.

Summary

The dispersive relation between the inclusive τ decay experiments and the lattice vacuum polarizations, from which we can determine the CKM matrix element IVusI.

We

- -By introducing a weight function with poles at spacetime momenta and lattice QCD, we extend finite energy sum rule analysis to carry out a new type of IVusl determination, which potentially brings a better precision.
- -By changing the number and location of poles, N and C, we could adjust "inclusiveness", the impact of multi hadron states, apart from those from K pole and K-Pi, which gives us a new systematic analysis.
- -For most accurate Vus, Large N and smaller C, is preferable, where the lattice error (error of f_K and stat error of A1+V1+V0) dominate in our current analysis.

Future Prospects:

Improvement in both experiments and lattice QCD is possible. Experiment -> multi hadron (high s) channels, Lattice -> statistical error is dominant.

light u d current analysis is also possible -> Flavor breaking IVusl Other quantities such as α_had , HVP contribution to $(g-2)\mu$

Thank you

Comparison of unitary and PQ-corrected data on L=48

Effective residue

N = 3, and $(Q_1^2, Q_2^2, Q_3^2) = (0.1, 0.2, 0.3).$

Only A0 has visible difference (Kaon), other channels are consistent with each other (quark mass effect is negligible for multi hadron states).