Neutrinoless Double Beta Decay

Liangjian Wen

Nov 22, 2015

Double Beta Decay

An active and competitive community

🔄 PANDA X

¹³⁶Xe

⁷⁶Ge

¹³⁰Te

supernemo

collaboration

⁸²Se (¹³⁰Te, ¹¹⁶Cd, ⁴⁸Ca, ⁹⁶Zr, ¹⁵⁰Nd, ¹⁰⁰Mo)

SNG¹ LUCIFER

¹³⁰Te

Ton-scale Neutrinoless Double Beta Decay (0vββ) - A Notional Timeline

Search for Lepton Number Violation

	Current generation experiments									REACHING FOR THE HORIZON		
	NSAC 0vββ decay Subcommittee								State			
	R&D: Pre-technology selection		R&D & Project Eng.: Post-technology selection						for	The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE		
				Ton-sca	ale Const	truction						
									Data Taking			
20	15 2016	2017	2018	2019	2020	2021	2022	2023	2024	2025		
Ton-scal Mileston	n-scale Mission Technology estones Decision Selection			Construction					Data			

<u>Xenon is ideal for a large $0\nu\beta\beta$ experiment</u>

- More scalable. e.g, no need to grow crystals
- Can be re-purified during the experiment
- No long lived Xe isotopes to activate

- Can be easily transferred from one detector to another if new technologies become available
- Noble gas: easy(er) to purify
- ¹³⁶Xe enrichment easier and safer.

Keys in DBD Experiments

Sensitivity

 N_B = number of background counts in the ROI along the measure time

$$\begin{split} \mathbf{N}_{\mathsf{B}} &>> \mathbf{1} \\ S_{1/2}^{0\nu} \propto \epsilon \frac{i.a.}{A} \sqrt{\frac{M \cdot t_{meas}}{bkg \cdot \Delta E}} \\ \mathbf{N}_{\mathsf{B}} &\leq \mathbf{O}(\mathbf{1}) \rightarrow \texttt{`'zero} \\ S_{1/2}^{0\nu} \propto \epsilon \frac{i.a.}{A} M \cdot t_{meas} \end{split}$$

For "background-free" experiment → factor of 50 in T_{1/2} needs factor of 50 in M
For experiment with background → factor of 50 in T_{1/2} needs factor of 50 in M

- Liquid Xe Time Projection Chamber (TPC)
- Enriched ¹³⁶Xe to 80.6%
- Q-value 2458 keV
- Located at Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM, USA

WIPP Surface and Underground Facilities

Liquid Xenon – Decent Resolution

Energy meas. → Combine Light and Ionization

Schematic plot of **EXO-200** Time Drift Chamber

Current EXO-200: 1.4% @ 2.615 MeV Future nEXO project: <1% (low noise electronics)

Liquid Xenon – NOT A Pure Calorimeter

<u>Liquid Xenon – Homogeneity is Essential</u>

Material radioactivity qualification

- Neutron Active Analysis
- Low background γ-spectroscopy
- α -counting
- Radon counting
- High performance GD-MS and ICP-MS

(D.S. Leonard et al., Nucl. Ins. Meth. A 591, 490(2008))

The impact of every screw within the Pb shielding is evaluated before acceptance

 \rightarrow Goal: 40 cnts/2yr in the 0vββ ± 2σ ROI in 140kg of LXe 12

Search for 0vββ Search of ¹³⁶Xe

Ton-scale LXe Experiment

SS/MS spectra in nEXO

Example: nEXO, 5 yr data, $0\nu\beta\beta$ @ $T_{1/2}=6.6x10^{27}$ yr, projected backgrounds from subsets of the total volume

nEXO Sensitivity

nEXO 5 yr 90% CL sensitivity: $T_{1/2} > 6.6 \cdot 10^{27}$ yr

NH and IH bands are also 90%CL

Forero et al., PRD 90 (2014) 093006 Forero et al., Private Comm.

Photodetector

- Extensive MC (NEST) studies
 - Light collection efficiency
 - Operation field
 - Noise from SiPM sensor
 - Readout Electronic Noise, threshold effect

SiPMs D.E ~ 15%@175nm

Mirror R&D

- Teflon (used on EXO-200)
 - Outgassing, LXe purity issue
 - Charge build-up
- AI + MgF₂ (*LiF, AIF, etc*) on OFHC
 - ~1.2m cathode, shaping rings
 - Challenge: large coating machines, radio-purity

PMT in beam

GXe light source

PMT under collimator for monitoring

Charge Readout Tile

- Ultra-low background, low noise charge readout tile
 - X- and Y- chain of small pads
 - $2\mu m SiO_2$ layer between X-, Y- crossing
 - Pad size: 3mm diagonal, can be optimized
 - (Cu + Ni/Au) or Au
 - Metalized vias

First Data in LXe at Stanford

Charge Readout Simulation

Issues •

Backgroun rejection

eff

- Optimal pitch size
- Noise requirement
- Diffusion impact
- e /γ discrimination
- Induction impact

X-cluster and Y-clusters: $\Delta D < 3mm$, $\Delta T < 1\mu s$

SS event: $N_X <= 1 \&\& N_Y <= 1$

Cold ASIC electronics

- Two schemes
 - Digital multiplexing
 - Analog + Digital in cold
 - Analog serialization output
 - Sampling first then hold on the capacitor
 - Serially readout ch.-by-ch.
 - External ADC, less EM interference

Critical requirement: <200 e- noise @160K

Analog multiplexing readout

Preliminary Tests

- Noise (preliminary)

 ~380 e- @ 295K
 ~280 e- @ 160K
- gain: ~12.8mV/fC
- Analog INL < 1.5%
- 2MHz sampling

LXe Test System

First successful liquification with CF₄

- A multi- purpose setup:
- ✓ charge tile
- ✓ SiPM under HV
- ✓ mirrors
- Anti-correlation MC
 validation 24

ICP-MS Lab

ICP-MS: Thermo Element iCAP Qc Ultra-pure water: Millipore Milli-Q[®] Reference Sample Digestion: Milestone ETHOS UP Ultra-pure acid: Acid distillation equipment

Initial target sensitivity: U/Th < 10⁻¹³ g/g, Develop extremely careful sample treatment

Commissioning next week.

Radio-purity screening for EXO, JUNO, other low background experiment

Summary

- nEXO has robust discovery potential of $0\nu\beta\beta$. Its detector configuration & technique was validated by EXO-200
- IHEP is a new player in $0\nu\beta\beta$ field and we expect to play an important role EXO-200/nEXO
 - 2~3 FTE at EXO-200 (L.J.W analysis coordinator), ~ 5 FTE @ nEXO (G.F.C photo-detector L2)
 - Active R&Ds at IHEP
 - 2D Charge readout tile
 - > Ultra-low background assay using ICP-MS technique
 - Cold ASIC electronics
 - VUV reflective mirror on Cu cathode & shaping
 - Detector Simulation
 - nEXO M&S: Funding: \$240k/yr, 2015-2017
- Enrichment: possible in China? Collaboration with other Country?

Thanks!