Introduction of IHEP:

Status and Future Plan

History

May 19, 1950 :

Institute of Modern Physics, CAS Oct. 6, 1953:

Institute of Physics, CAS

July 1, 1958 :

Institute of atomic energy

Feb. 1, 1973:

Institute of High Energy Physics, CAS

Main research Disciplines

Physics

- HEP Exp. Based on Accelerators
- Particle Astrophysics & Neutrino Exp.
- Particle Detection and Electronics
- Particle Physics Theory

Accelerator Physics and Technologies

High Luminosity Electron Accelerator

- High Intensity Proton Accelerator
- Applied Research and Technology Transfer

Radiation Technologies and Applications

Synchrotron Radiation Techniques & Applications
 Neutron Scattering Techniques & Applications
 Nuclear Analytical Techniques & Applications

Technology

Science

Management system

Particle physics in China started from BEPC BEPCII/BESIII: Operational since 2009

e⁺e⁻ collider at tau-charm

BESIII: an international collaboration

Political Map of the World, June 1999

BESIII example: discovery of Z_c (3900)

• A charged charmonium state: 4 quarks !

Opens a new way to fully understand XYZ particles

Reports by Media

The Future: CEPC+SppC

- A project after BEPCII
- Thanks to the discovery of the low mass Higgs boson, and stimulated by ideas of Circular Higgs Factories in the world, CEPC+SppC configuration was proposed in Sep. 2012

Timeline (dream)

• CPEC

- Pre-study, R&D and preparation work
 - Pre-study: 2013-15
 - Pre-CDR for R&D funding request
 - R&D: 2016-2020
 - Engineering Design: 2015-2020
- Construction: 2021-2027
- Data taking: 2028-2035

• SppC

- Pre-study, R&D and preparation work
 - Pre-study: 2013-2020
 - R&D: 2020-2030
 - Engineering Design: 2030-2035
- Construction: 2035-2042
- Data taking: 2042 -

IHEP-CEPC-DR-2015-01 IHEP-EP-2015-01 IHEP-TH-2015-01

IHEP-CEPC-DR-2015-01

IHEP-AC-2015-01

CEPC-SPPC

Preliminary Conceptual Design Report

Volume I - Physics & Detector

CEPC-SPPC

Preliminary Conceptual Design Report

Volume II - Accelerator

Revisions after international reviews Can be downloaded from http://cepc.ihep.ac.cn/preCDR/volume.html

The CEPC-SPPC Study Group

March 2015

The CEPC-SPPC Study Group

March 2015

Particle & Astro-Particle Physics at IHEP

		Current	Future	
Accelerator -based	Precision frontier	BESIII		
		International projects: Belle II、PANDA、COMET	International: ILC CEPC → SppC	
	Energy frontier	CMS, ATLAS		
Non- accelerator- based	Underground	Daya Bay	JUNO nEXO	
		EXO		
	Surface	ARGO/ASy	LHASSO	
	Space	AMS	HERD	
		HXMT	XTP	

Daya Bay reactor neutrino experiment

In March 2012, Daya Bay reported the measurement:

 $\begin{array}{l} \text{Sin}^2 2 \theta_{13} \text{= } 0.092 \pm 0.016 (\text{stat}) \pm 0.005 (\text{syst}) \\ \text{Probability of non-zero } \theta_{13} \ \ 5.3 \ \sigma \end{array}$

F.P. An et al., Phys. Rev. Lett. 108, (2012) 171803

Reported by major international science journals

Science

Key Neutrino Measurement Signals China's Rise

the firster, test on the state of and, or problem ablances, and so are a details allo to a line allo similar a side

-motor Adding and Reserve and Addresses straint medicings. Address processor from this server of the local data server which it was with

NEWS & ANALYSIS

Annalasia pana dia tan

Reactor experiment reveals neutrino oscillation's third mising angle

Physics Today

Stops Boy

Physics

Viewpolat

Rockstring the November

man I can be been and the loss of some of

Out Input Departure many long Robert Lad Street

The Review of Construct Printed and its reli

APS Physics

Physics 5, 47 (1913)

The Economist

Matter and antimatter Flavoursome research

Physicists are closing in on how matter differs from antimatter

nature

Mar 17th 2012 From the print edition

HOT on the heels of results from Fermilab, in America, which reported last week on an esoteric phenomenon called chargeconjugation/parity (CP) violation involving equally esoteric subatomic particles known as Do-mesons, a second research group, the Dava Bay Collaboration of more than 40 institutions, mainly from China and America

55

Discovery News

Selected by Science as 10 breakthrough of 2012

other, leaving a universe filled only with energy.

Strictly speaking, the Daya Bay experiment looked at antineutrinos rather than neutrinos. These particles are a by-product of nuclear fission, and the six reactors at Daya Bay and nearby Ling Ao turn them out in prodigious quantities. The idea was to see how many of these antineutrinos disappear before reaching the experiment's main detector (pictured above), which is housed in an underground hall near the reactors. This, the team hoped, would help elucidate a phenomenon known as neutrino oscillation

14

Neutrinos (and antineutrinos) come in three "flavours": electron-neutrinos, muonneutrinos and tau-neutrinos. A given neutrino can however, oscillate between

Daya Bay Collaboration

Political Map of the World, June 1999

Europe (2)

Asia (20)

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Polytech. Univ., Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ.,

National United Univ.

North America (16)

BNL, Caltech, LBNL, Iowa State Univ., Illinois Inst. Tech., Princeton, RPI, UC-Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin, William & Mary, Virginia Tech.,
Univ. of Illinois-Urbana-Champaign, Siena

~250 Collaborators

Future Prospects

Next Step: JUNO for Mass Hierarchy

The only one based on reactor: independent of CP phase

LS volume:× 20 → for statistics (40 events/day)
 light(PE) × 5 → for resolution ($\Delta M_{12}^2 / \Delta M_{23}^2 \sim 3\%$)

- Mass hierarchy
- Precision measurement of mixing parameters
- Supernova neutrinos
- Geoneutrinos
- Sterile neutrinos
- Muon detector **Stainless Steel Structure** Φ 35m Acrylic tank 20 kt $LS(A_1 > 25 m)$ 40kt pure water($A_1 > 50$ m) ~18000 20" PMTs coverage: ~75% 2000 20" VETO PMTs

Physics Reach

Thanks to a large θ_{13}

- Mass hierarchy
- Precision measurement of mixing parameters
- Supernova neutrinos
- Geoneutrinos

.

• Sterile neutrinos

	Current	Daya Bay II
Δm_{12}^2	4%	0.6%
Δm_{23}^2	4%	0.6%
$\sin^2\theta_{12}$	6%	0.7%
$\sin^2\theta_{23}$	10%	N/A
$\sin^2\theta_{13}$	6% → 4%	~ 15%

Detector size: 20kt Energy resolution: 3%/√E Thermal power: 36 GW

For 6 years, mass hierarchy cab be determined at 4σ level, if $\Delta m^2_{\mu\mu}$ can be determined at 1% level

Supernova neutrinos in Giant LS detector

- Less than 20 events observed so far
- Assumptions:
 - Distance: 10 kpc (our Galaxy center)
 - Energy: 3×10⁵³ erg

Quenched Proton Energy E_{p}^{vis} [MeV]

– L_v the same for all types

LS detector vs. Water Cerenkov detectors: much better detection to these correlated events

→ Measure energy spectra & fluxes of almost all types of neutrinos

Other Physics with Giant LS detector

• Geo-neutrinos

- Current results:
 - KamLAND: 30±7 TNU *(PRD 88 (2013) 033001)* Borexino: 38.8±12.0 TNU *(PLB 722 (2013) 295)*
- Desire to reach an error of 3 TNU: statistically dominant
- JUNO:
 - ×10 statistics
 - Huge reactor neutrino backgrounds
 - Expectation: $2 \pm 5\% \pm 5\%$
- Solar neutrinos
 - need LS purification, low threshold
 - background handling (radioactivity, cosmogenic)
- Atmosphere neutrinos
- Nucleon Decay
- Sterile neutrinos

Stephen Dye @Neutrino 2012

Schedule & Current Status

Schedule:

Civil preparation: 2013-2014 Civil construction: 2014-2017 Detector component production: 2016-2017 PMT production: 2016-2019 Detector assembly & installation: 2018-2019 Filling & data taking: 2020

JUNO collaboration established

Europe (24)

France(5) APC Paris CPPM Marseille IPHC Strasbourg LLR Paris Subatech Nantes Czech(1) Charles U Finland(1) U.Oulu Russia(2) INR Moscow JINR

23

Italy(7) Germany(6) **INFN-Frascati** FZ Julich **INFN-Ferrara INFN-Milano** TUM **INFN-Mi-BicoccaJ.Hamburg INFN-Padova U.Mainz INFN-Perugia U.Tuebingen INFN-Roma 3** Armenia(1) Yerevan Phys. Inst. Belgium(1) ULB

America(3) Germany(6) FZ Julich RWTH Aachen TUM UMD-Geo Chile(1) Catholic Univ. U.Mainz UTuebingen

Asia (28) **BJ Nor. U.** CAGS **Chongqing U.** CIAE DGUT **ECUST** Guangxi U. HIT **IHEP** Jilin U. Nanjing U. Nankai U. Natl. Chiao-Tung U. Natl. Taiwan U. Natl. United U.

NCEPU Pekin U. Shandong U. Shanghai JT U. Sichuan U. SYSU Tsinghua U. UCAS USTC Wuhan U. Wuyi U. Xi'an JT U. Xiamen U.

From ASy/ARGO to LHAASO

- Cosmic-rays physics and γray astronomy
- Altitude ~ 4400 m @ Sichuan
- International collaboration: China, France, Italy, ...
 Start construction: 2016

Current Space Program

- Hard X-ray modulated telescope (HXMT):
 - ⇒ Total mass: 1021kg; Power: 350 W
 - ⇒ to be launched in 2015
- Gamma-ray burst polarization (POLAR):
 - → onboard China's Spacelab: TG-2
 - An international collaboration: China, Switzerland, France, Poland
 - ⇒ Launch time ~ 2015

SVOM

- Redefined program: On board Chinese spacecraft
- ➡ A collaboration of China and France
- ⇒ to be launched in 2017-2018

AMS

HERD @ the China's Space Station

- Science
 - Dark matter search: γ from 0.1 – 10,000 GeV
 - Spectral and composition measurements of CRs between 300 GeV to PeV
 - Complementary to LHAASO: directly measured composition & spectrum in space
 - Next generation cosmic-ray exp. after AMS & Fermi
- Status
 - Groups from China, Italy, Switzerland, Sweden,...
 - Launch in ~2023

	Χ0(λ)	ΔΕ/Ε	e/p	e GF	p GF
		for e	sep	m²sr@	m²sr@1
				200GeV	00TeV
HERD (2020)	55(3)	1%	10 ⁻⁶	3.1	2.3
Fermi (2008)	10	12%	10 ⁻³	0.9	
AMS02 (2011)	17	2%	10 ⁻⁶	0.12	
DAMPE (2015)	31	1%	10 ⁻⁴	0.3	
CREAM (2015)	20(1.5)				0.2

Facilities for other Sciences

Chinese Spallation Neutron Source

Phase I:100 kWPhase II:500 kWStart time:2011Completion time:2017

- Started: mass production of equipment, LINAC installation
 - Completed: target station & spectrometer engineering design, Civil construction of office

• Located in Dongguan, Guangdong

ADS R&D

High beam power (CW)
Very high stability
Very low beam loss: <1W/m.

- CW RFQ with a high intensity
- Very Low beta SC cavities

BSRF: planning for future

BSRF : 3 months operation in specific mode ; 6 months parasitic mode. Every year ~500 experiments.

HEPS R&D: a new machine with 1260 m circumference. R&D projects under government review

- For the past 30 years, particle physics in China experienced an enormous growth, thanks to the economical growth of China.
- A lot more projects in the future.
- We had a lot of collaborations with international projects, such as LHC@CERN, Panda@Fair, BELLEII@SuperKEKB, EXO, COMET, ...
- Looking forward further collaborations with Pakistan