

中國科學院為能物服為完備 Institute of High Energy Physics Chinese Academy of Sciences

SQUARING LOOPS IN MADGRAPH5_AMC@NLO

VALENTIN HIRSCHI IN COLLABORATION WITH OLIVIER MATTELAER

[ARXIV:1507.00020]

IHEP SEMINAR 2015

NOVEMBER 20

OUTLINE

• The challenges of computing loop-induced matrix-elements.

• How does MadEvent now integrate them.

• Validation and applications in Higgs physics.

• Can you compute this loop-induced process with MG5_aMC?

- Can you compute this loop-induced process with MG5_aMC?
 - Well... no, but MadLoop can give you the loop ME's!

- Can you compute this loop-induced process with MG5_aMC?
 - Well... no, but MadLoop can give you the loop ME's!
- How does that help me?

- Can you compute this loop-induced process with MG5_aMC?
 - Well... no, but MadLoop can give you the loop ME's!

- How does that help me?
 - It... does not.

- Can you compute this loop-induced process with MG5_aMC?
 - Well... no, but MadLoop can give you the loop ME's!

- How does that help me?
 - It... does not.

There is a wide range of interest for loop-induced processes, but no automated efficient way of **integrating** them.

Need to bring a definitive solution to this.

$$\sigma^{\mathrm{LI}} = \left| \begin{array}{c} & \end{array} \right|^{2} & = \int_{m} d^{(d)} \left| \mathcal{A}^{(1)} \right|^{2} \end{array}$$

Squaring loops

$$\mathcal{M}^{\mathrm{NLO,virt}} \sim \mathcal{A}_U^{(\mathrm{loop})}|_{\mathrm{non-}R_2} \mathcal{B}^{\star}$$

$$\mathcal{M}^{\mathrm{NLO, virt}} \sim \mathcal{A}_{U}^{(\mathrm{loop})}|_{\mathrm{non-}R_{2}} \mathcal{B}^{\star}$$
$$= \sum_{\mathrm{colour}} \sum_{h=1,H} \left(\sum_{l=1,L} \lambda_{l}^{(1)} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h,l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i,l}} \right) \left(\sum_{b=1,B} \lambda_{b}^{(0)} \mathcal{B}_{h,b} \right)^{\star}$$

$$\mathcal{M}^{\mathrm{NLO, virt}} \sim \mathcal{A}_{U}^{(\mathrm{loop})}|_{\mathrm{non-}R_{2}} \mathcal{B}^{\star}$$

$$= \sum_{\mathrm{colour}} \sum_{h=1,H} \left(\sum_{l=1,L} \lambda_{l}^{(1)} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h,l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i,l}} \right) \left(\sum_{b=1,B} \lambda_{b}^{(0)} \mathcal{B}_{h,b} \right)^{\star}$$

$$= \sum_{h=1,H} \sum_{l=1,L} \sum_{b=1,B} \mathrm{Red} \left[\int d^{d} \bar{\ell} \frac{\mathcal{N}_{h,l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i,l}} \right] \Lambda_{lb} \mathcal{B}_{h,b}^{\star}$$

$$\mathcal{M}^{\mathrm{NLO, virt}} \sim \mathcal{A}_{U}^{(\mathrm{loop})}|_{\mathrm{non-}R_{2}} \mathcal{B}^{\star}$$

$$= \sum_{\mathrm{colour}} \sum_{h=1,H} \left(\sum_{l=1,L} \lambda_{l}^{(1)} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h,l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i,l}} \right) \left(\sum_{b=1,B} \lambda_{b}^{(0)} \mathcal{B}_{h,b} \right)^{\star}$$

$$= \sum_{h=1,H} \sum_{l=1,L} \sum_{b=1,B} \mathrm{Red} \left[\int d^{d} \bar{\ell} \frac{\mathcal{N}_{h,l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i,l}} \right] \Lambda_{lb} \mathcal{B}_{h,b}^{\star}$$

$$= \sum_{t=1,T} \mathrm{Red} \left[\int d^{d} \bar{\ell} \frac{\sum_{h} \sum_{l \in t} \sum_{b} \mathcal{N}_{h,l}(\ell) \Lambda_{lb} \mathcal{B}_{h,b}^{\star}}{\prod_{i=0}^{m_{t}-1} \bar{D}_{i,t}} \right]$$

HOW LOOP-INDUCED ME'S ARE COMPUTED

$$\mathcal{M}^{LI} = \left|\mathcal{A}^{LI}\right|^2 = \left|\mathcal{A}^{LI}_{\text{non-}R_2}\right|^2 + 2\Re\left(\mathcal{A}^{LI}_{\text{non-}R_2}\mathcal{A}^{LI*}_{R_2}\right) + \left|\mathcal{A}^{LI}_{R_2}\right|^2$$

How loop-induced ME's are computed

$$\mathcal{M}^{LI} = |\mathcal{A}^{LI}|^{2} = |\mathcal{A}^{LI}_{\text{non-}R_{2}}|^{2} + 2\Re \left(\mathcal{A}^{LI}_{\text{non-}R_{2}}\mathcal{A}^{LI*}_{R_{2}}\right) + |\mathcal{A}^{LI}_{R_{2}}|^{2}$$
$$|\mathcal{A}^{LI}_{\text{non-}R_{2}}|^{2} = \sum_{\text{color}} \sum_{h=1,H} \left(\sum_{l_{1}=1,L} \lambda_{l_{1}} \int d^{d}\bar{\ell} \frac{\mathcal{N}_{h,l_{1}}(\ell)}{\prod_{i=0}^{m_{l_{1}}-1} \bar{D}_{i,l_{1}}}\right)$$
$$\cdot \left(\sum_{l_{2}=1,L} \lambda_{l_{2}} \int d^{d}\bar{\ell} \frac{\mathcal{N}_{h,l_{2}}(\ell)}{\prod_{i=0}^{m_{l_{2}}-1} \bar{D}_{i,l_{2}}}\right)^{\star}$$

How loop-induced ME's are computed

$$\mathcal{M}^{LI} = \left| \mathcal{A}^{LI} \right|^{2} = \left| \mathcal{A}^{LI}_{\text{non-}R_{2}} \right|^{2} + 2\Re \left(\mathcal{A}^{LI}_{\text{non-}R_{2}} \mathcal{A}^{LI*}_{R_{2}} \right) + \left| \mathcal{A}^{LI}_{R_{2}} \right|^{2}$$
$$\left| \mathcal{A}^{LI}_{\text{non-}R_{2}} \right|^{2} = \sum_{\text{color } h=1,H} \left(\sum_{l_{1}=1,L} \lambda_{l_{1}} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h,l_{1}}(\ell)}{\prod_{i=0}^{m_{l_{1}}-1} \bar{D}_{i,l_{1}}} \right)$$
$$\cdot \left(\sum_{l_{2}=1,L} \lambda_{l_{2}} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h,l_{2}}(\ell)}{\prod_{i=0}^{m_{l_{2}}-1} \bar{D}_{i,l_{2}}} \right)^{\star}$$
$$= \sum_{h=1,H} \sum_{l_{1}=1,L} \sum_{l_{2}=1,L} \left(\operatorname{Red} \left[\frac{\mathcal{N}_{h,l_{1}}(\ell)}{\prod_{i=0}^{m_{l_{1}}-1} \bar{D}_{i,l_{1}}} \right] \operatorname{Red} \left[\frac{\mathcal{N}_{h,l_{2}}(\ell)}{\prod_{i=0}^{m_{l_{2}}-1} \bar{D}_{i,l_{2}}} \right]^{\star} \underbrace{\sum_{color \\ \Lambda_{l_{1},l_{2}}} \lambda_{l_{1}} \lambda_{l_{2}}^{\star}} \right)$$

How LOOP-INDUCED ME'S ARE COMPUTED

$$\mathcal{M}^{LI} \supset \sum_{h=1,H} \sum_{l_1=1,L} \sum_{l_2=1,L} \left(\operatorname{Red} \left[\frac{\mathcal{N}_{h,l_1}(\ell)}{\prod_{i=0}^{m_{l_1}-1} \bar{D}_{i,l_1}} \right] \operatorname{Red} \left[\frac{\mathcal{N}_{h,l_2}(\ell)}{\prod_{i=0}^{m_{l_2}-1} \bar{D}_{i,l_2}} \right]^* \underbrace{\sum_{color} \lambda_{l_1} \lambda_{l_2}^*}_{\Lambda_{l_1,l_2}} \right) \\ \left(\mathcal{M}^{\operatorname{NLO,virt}} \sim \sum_{t=1,T} \operatorname{Red} \left[\int d^d \bar{\ell} \frac{\sum_h \sum_{l \in t} \sum_b \mathcal{N}_{h,l}(\ell) \Lambda_{lb} \mathcal{B}^*_{h,b}}{\prod_{i=0}^{m_t-1} \bar{D}_{i,t}} \right] \right)$$

• A) For a given helicity, the number of terms in this squaring is: 'L×L' (It was 'L×B' for NLO MEs)

• B) Impossible to do reduction at the squared amplitude level in this case. The number of calls to Red[] scales like 'L×H' (It was 'T' for NLO MEs) • A) The number of terms in this squaring is $L \cdot L$ (It was for $L \cdot B$ for NLO MEs).

$$\left|\mathcal{A}_{\text{non-}R_{2}}^{LI}\right|^{2} = \sum_{h=1,H} \sum_{l_{1}=1,L} \sum_{l_{2}=1,L} \left(\text{Red}\left[\frac{\mathcal{N}_{h,l_{1}}(\ell)}{\prod_{i=0}^{m_{l_{1}}-1} \bar{D}_{i,l_{1}}}\right] \text{Red}\left[\frac{\mathcal{N}_{h,l_{2}}(\ell)}{\prod_{i=0}^{m_{l_{2}}-1} \bar{D}_{i,l_{2}}}\right]^{*} \underbrace{\sum_{\text{color}} \lambda_{l_{1}} \lambda_{l_{2}}^{*}}_{\Lambda_{l_{1},l_{2}}} \right)$$

• A) The number of terms in this squaring is $L \cdot L$ (It was for $L \cdot B$ for NLO MEs).

$$\left|\mathcal{A}_{\text{non-}R_{2}}^{LI}\right|^{2} = \sum_{h=1,H} \sum_{l_{1}=1,L} \sum_{l_{2}=1,L} \left(\text{Red}\left[\frac{\mathcal{N}_{h,l_{1}}(\ell)}{\prod_{i=0}^{m_{l_{1}}-1} \bar{D}_{i,l_{1}}}\right] \text{Red}\left[\frac{\mathcal{N}_{h,l_{2}}(\ell)}{\prod_{i=0}^{m_{l_{2}}-1} \bar{D}_{i,l_{2}}}\right]^{*} \underbrace{\sum_{\text{color}} \lambda_{l_{1}} \lambda_{l_{2}}^{*}}_{\Lambda_{l_{1},l_{2}}}\right)$$

Solution : Project onto color flows (i.e. use partial color amplitudes)

$$\lambda_{l} = \sum_{i=1,K} \underbrace{(\lambda_{l} \otimes \kappa_{i})}_{\alpha_{l,i}} \kappa_{i}. \qquad \sum_{\text{color}} \kappa_{i} \kappa_{j}^{*} = K_{ij}$$
$$\left| \mathcal{A}_{\text{non-}R_{2}}^{LI} \right|^{2} = \sum_{h=1,H} \sum_{i=1,K} \sum_{j=1,K} \left(J_{i,h} J_{j,h}^{*} K_{i,j} \right)$$
$$J_{j,h} := \sum_{l=1,L} \alpha_{i,l} \tilde{L}_{l,h}$$
$$\tilde{L}_{l,h} := \text{Red} \left[\frac{\mathcal{N}_{l,h}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i,l}} \right]$$

• A) The number of terms in this squaring is $L \cdot L$ (It was for $L \cdot B$ for NLO MEs).

ADDITIONAL PERKS OF COLOR FLOWS

- Necessary for event color assignation for loop-induced processes with MadEvent.
- Using NLO color partial amplitudes for SCET NLO hard functions.
- Could be used in NLO matrix-element improved showers (a.k.a Vincia)
- In a matched computation when using a fixed-color ME generator such as COMIX for both reals AND subtraction terms, i.e. Monte Carlo over colors
- MadLoop keeps track of the factorized couplings in the partial color amplitudes, so that mixed expansions or interference computations are possible.
- In general, it increases MadLoop flexibility.

• B) Impossible to do reduction at the squared amplitude level in the LI case. The number of calls to Red[] scales like 'L·H' (It was 'T' for NLO MEs)

$$\tilde{L}_{l,h} := \operatorname{Red}\left[\frac{\mathcal{N}_{l,h}(\ell)}{\prod_{i=0}^{m_l-1} \bar{D}_{i,l}}\right]$$

Solution B1 : Perform MC over helicity config (and stick to OPP).

• B) Impossible to do reduction at the squared amplitude level in the LI case. The number of calls to Red[] scales like 'L·H' (It was 'T' for NLO MEs)

$$\tilde{L}_{l,h} := \operatorname{Red}\left[\frac{\mathcal{N}_{l,h}(\ell)}{\prod_{i=0}^{m_l-1} \bar{D}_{i,l}}\right]$$

Solution B1 : Perform MC over helicity config (and stick to OPP).

Solution B2 : Reduce with TIR whose inputs are independent on the helicity

$$\left\{ T^{(r),\mu_{1}\cdots\mu_{r}} \equiv \int d^{d}\bar{\ell} \frac{\ell^{\mu_{1}}\dots\ell^{\mu_{r}}}{\prod_{i=0}^{m_{l_{t}}-1}\bar{D}_{i,l_{t}}}, \ C^{(r)}_{\mu_{1}\dots\mu_{r};h,l} \right\}_{r=0}^{r_{\max}}$$

The tensor coefficients must be computed once only and can then be recycled for all helicity configuration

• B) Impossible to do reduction at the squared amplitude level in the LI case. The number of calls to Red[] scales like 'L·H' (It was 'T' for NLO MEs)

$$\tilde{L}_{l,h} := \operatorname{Red}\left[\frac{\mathcal{N}_{l,h}(\ell)}{\prod_{i=0}^{m_l-1} \bar{D}_{i,l}}\right]$$

Solution B1 : Perform MC over helicity config (and stick to OPP).

Solution B2 : Reduce with TIR whose inputs are independent on the helicity

$$\left\{ T^{(r),\mu_{1}\cdots\mu_{r}} \equiv \int d^{d}\bar{\ell} \frac{\ell^{\mu_{1}}\dots\ell^{\mu_{r}}}{\prod_{i=0}^{m_{l_{t}}-1}\bar{D}_{i,l_{t}}}, \ C^{(r)}_{\mu_{1}\dots\mu_{r};h,l} \right\}_{r=0}^{r_{\max}}$$

The tensor coefficients must be computed once only and can then be recycled for all helicity configuration

- Which one is best? It depends on:
 - A) How faster OPP is w.r.t. TIR.
 - B) How good is the Monte-Carlo sampling over helicity configurations

	$\left gg ightarrow hh ight.$	gg ightarrow hhg	gg ightarrow hhgg	gg ightarrow hggg
#loop Feynman diagrams	16	108	952	2040
# topologies	8	54	380	540
# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7s	21s	269s	1h36m
Output code size	$0.5 { m Mb}$	$0.7 { m Mb}$	$1.8 { m Mb}$	$3.2 { m Mb}$
Runtime RAM usage	4.7 Mb	$20.5 { m ~Mb}$	$102 {\rm ~Mb}$	$240~{\rm Mb}$
Run time (OPP, single hel.)	2.6ms (81%)	40.7ms (84%)	859ms (83%)	1.27s (85%)
Run time (IREGI, single hel.)	17.5ms (97%)	1.14s (99%)	65s~(100%)	70s~(100%)
Run time (PJFry, single hel.)	3.2 ms (85%)	190 ms (96%)	29s (100%)	30s~(100%)
Run time (Golem95, single hel.)	15.1ms (97%)	615ms~(99%)	18s (99%)	19s~(99%)
Run time (OPP, hel. summed)	5.2ms (82%)	328ms (85%)	14.7s (81%)	41s (86%)
Run time (IREGI, hel. summed)	18.4ms (95%)	1.19s~(96%)	68.2s~(96%)	75.6s~(92%)
Run time (PJFry, hel. summed)	3.8 ms (75%)	243ms (79%)	30.5s~(91%)	33.7s~(83%)

	$ $ $gg \rightarrow hh$	gg ightarrow hhg	gg ightarrow hhgg	gg ightarrow hggg
#loop Feynman diagrams	16	108	952	2040
# topologies	8	54	380	540
# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7s	21s	269s	1h36m
Output code size	$0.5 { m Mb}$	$0.7 { m Mb}$	$1.8 { m Mb}$	$3.2 { m ~Mb}$
Runtime RAM usage	4.7 Mb	$20.5 { m ~Mb}$	$102 {\rm ~Mb}$	$240~{\rm Mb}$
Run time (OPP, single hel.)	2.6ms (81%)	40.7ms (84%)	859ms (83%)	1.27s (85%)
Run time (IREGI, single hel.)	17.5ms (97%)	1.14s (99%)	65s~(100%)	70s (100%)
Run time (PJFry, single hel.)	3.2 ms (85%)	190 ms (96%)	29s~(100%)	30s~(100%)
Run time (Golem95, single hel.)	15.1ms (97%)	615ms~(99%)	18s (99%)	19s~(99%)
Run time (OPP, hel. summed)	5.2ms (82%)	328ms (85%)	14.7s (81%)	41s (86%)
Run time (IREGI, hel. summed)	18.4ms (95%)	1.19s~(96%)	68.2s~(96%)	75.6s (92%)
Run time (PJFry, hel. summed)	3.8 ms (75%)	243ms (79%)	30.5s~(91%)	33.7s~(83%)

	$\left {{gg \to hh}} ight.$	gg ightarrow hhg	gg ightarrow hhgg	$gg \to hggg$
#loop Feynman diagrams	16	108	952	2040
# topologies	8	54	380	540
# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7s	21s	269s	1h36m
Output code size	$0.5 { m Mb}$	$0.7 { m Mb}$	$1.8 { m Mb}$	$3.2 {\rm ~Mb}$
Runtime RAM usage	4.7 Mb	$20.5 { m ~Mb}$	$102 {\rm ~Mb}$	$240~{\rm Mb}$
Run time (OPP, single hel.)	2.6ms (81%)	40.7ms (84%)	859ms (83%)	1.27s~(85%)
Run time (IREGI, single hel.)	17.5ms (97%)	1.14s (99%)	65s (100%)	70s (100%)
Run time (PJFry, single hel.)	3.2ms (85%)	190 ms (96%)	29s (100%)	30s (100%)
Run time (Golem95, single hel.)	15.1ms (97%)	615ms~(99%)	18s (99%)	19s (99%)
Run time (OPP, hel. summed)	5.2ms (82%)	328ms (85%)	14.7s (81%)	41s (86%)
Run time (IREGI, hel. summed)	18.4ms (95%)	1.19s~(96%)	68.2s~(96%)	75.6s~(92%)
Run time (PJFry, hel. summed)	3.8 ms (75%)	243ms (79%)	30.5s~(91%)	33.7s (83%)

	$\left gg ightarrow hh ight.$	gg ightarrow hhg	gg ightarrow hhgg	gg ightarrow hggg
#loop Feynman diagrams	16	108	952	2040
# topologies	8	54	380	540
# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7s	21s	269s	1h36m
Output code size	$0.5 { m Mb}$	$0.7 { m Mb}$	$1.8 { m Mb}$	$3.2 { m ~Mb}$
Runtime RAM usage	4.7 Mb	$20.5 { m ~Mb}$	$102 {\rm ~Mb}$	$240~{\rm Mb}$
Run time (OPP, single hel.)	2.6ms (81%)	40.7ms (84%)	859ms (83%)	1.27s~(85%)
Run time (IREGI, single hel.)	17.5ms (97%)	1.14s (99%)	65s (100%)	70s (100%)
Run time (PJFry, single hel.)	3.2 ms (85%)	190 ms (96%)	29s (100%)	30s (100%)
Run time (Golem95, single hel.)	15.1ms (97%)	615ms~(99%)	18s (99%)	19s (99%)
Run time (OPP, hel. summed)	5.2ms (82%)	328ms (85%)	14.7s (81%)	41s (86%)
Run time (IREGI, hel. summed)	18.4 ms (95%)	1.19s~(96%)	68.2s~(96%)	75.6s~(92%)
Run time (PJFry, hel. summed)	3.8 ms (75%)	243ms (79%)	30.5s~(91%)	33.7s (83%)

• OPP with **efficient** MC over helicity configurations is the dominant approach.

	$\left gg ightarrow hh ight.$	gg ightarrow hhg	gg ightarrow hhgg	gg ightarrow hggg
#loop Feynman diagrams	16	108	952	2040
# topologies	8	54	380	540
# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7s	21s	269s	1h36m
Output code size	$0.5 { m Mb}$	$0.7 { m Mb}$	$1.8 { m Mb}$	$3.2 {\rm ~Mb}$
Runtime RAM usage	4.7 Mb	$20.5 { m ~Mb}$	$102 {\rm ~Mb}$	$240~{\rm Mb}$
Run time (OPP, single hel.)	2.6ms (81%)	40.7ms (84%)	859ms (83%)	1.27s (85%)
Run time (IREGI, single hel.)	17.5ms (97%)	1.14s (99%)	65s (100%)	70s (100%)
Run time (PJFry, single hel.)	3.2ms (85%)	190 ms (96%)	29s (100%)	30s (100%)
Run time (Golem95, single hel.)	15.1ms (97%)	615ms~(99%)	18s (99%)	19s (99%)
Run time (OPP, hel. summed)	5.2ms (82%)	328ms (85%)	14.7s (81%)	41s (86%)
Run time (IREGI, hel. summed)	18.4 ms (95%)	1.19s~(96%)	68.2s~(96%)	75.6s~(92%)
Run time (PJFry, hel. summed)	3.8 ms (75%)	243ms (79%)	30.5s~(91%)	33.7s (83%)

• The modern **OPP** reduction algorithms SAMURAI and NINJA now available too.

• OPP with **efficient** MC over helicity configurations is the dominant approach.

MadEvent

$$|M|^{2} = \frac{|M_{1}|^{2}}{|M_{1}|^{2} + |M_{2}|^{2}}|M|^{2} + \frac{|M_{2}|^{2}}{|M_{1}|^{2} + |M_{2}|^{2}}|M|^{2}$$

MadEvent

$$\int |M|^2 = \int \frac{|M_1|^2}{|M_1|^2 + |M_2|^2} |M|^2 + \int \frac{|M_2|^2}{|M_1|^2 + |M_2|^2} |M|^2$$

Valentin Hirschi, SLAC

Squaring loops

Valentin Hirschi, SLAC

Squaring loops

Slide by O.Mattelaer.

20.11.2015

Valentin Hirschi, SLAC

Squaring loops

SIMPLEST EXAMPLE

Valentin Hirschi, SLAC

Squaring loops

SIMPLEST EXAMPLE

VALIDATION P P > H J

Valentin Hirschi, SLAC

Squaring loops

VALIDATION P P > H J

Valentin Hirschi, SLAC

Squaring loops

VALIDATION P P > H J

Important b-mass effects at low-pt but the expected naive rescaling at high-pt

Valentin Hirschi, SLAC

Squaring loops

MATCHING / MERGING

 $Q_{match} = 50 GeV$

Valentin Hirschi, SLAC

Squaring loops

BSM: Z+A/H

Exact Phase-Space integration

	$gg \to Zh^0$	$gg ightarrow ZH^0$	$gg ightarrow ZA^0$
B1	$113.6 \begin{array}{c} +28.9\% \\ -21.2\% \end{array} \begin{array}{c} +1.0\% \\ -1.2\% \end{array}$	$682.4 \begin{array}{c} +29.6\% \\ -21.5\% \end{array} \begin{array}{c} +1.2\% \\ -1.2\% \end{array}$	$0.6203 \begin{array}{c} +32.5\% \\ -23.0\% \end{array} \begin{array}{c} +1.9\% \\ -1.9\% \end{array}$
B2	$85.59 \begin{array}{c} +29.9\% \\ -21.4\% \end{array} \begin{array}{c} +1.4\% \\ -1.1\% \end{array}$	$1545 \begin{array}{c} +30.1\% \\ -21.8\% \end{array} \begin{array}{c} +1.3\% \\ -1.3\% \end{array}$	$0.8614 \begin{array}{c} +33.0\% \\ -23.3\% \end{array} \begin{array}{c} +2.0\% \\ -2.0\% \end{array}$
B3	$169.9 \begin{array}{c} +28.1\% \\ -19.9\% \end{array} \begin{array}{c} +1.4\% \\ -0.5\% \end{array}$	$0.8968 \begin{array}{c} +31.2\% \\ -22.3\% \end{array} \begin{array}{c} +1.5\% \\ -1.6\% \end{array}$	$1317 \begin{array}{c} +28.4\% \\ -20.8\% \end{array} \begin{array}{c} +1.0\% \\ -1.0\% \end{array}$

Reweighting (1503.01656)

	$gg \to Zh^0$	$gg \to ZH^0$	$gg \to ZA^0$
B1	$113 \ ^{+30\%}_{-21\%}$	$686 \ ^{+30\%}_{-22\%}$	$0.622 {}^{+32\%}_{-23\%}$
B2	$85.8 \ ^{+30.1\%}_{-21\%}$	$1544\ ^{+30\%}_{-22\%}$	$0.869 {}^{+34\%}_{-23\%}$
B3	$167 {+31\%}_{-19\%}$	$0.891 {}^{+33\%}_{-21\%}$	$1325 \ ^{+28\%}_{-21\%}$

BSM: Z+A/H

Exact Phase-Space integration

:		g_{2}	$q \rightarrow Z$	h^0	$gg \rightarrow ZH^0$	$gg \rightarrow ZA^0$
	B1	113.6	$^{+28.9\%}_{-21.2\%}$	$^{+1.0\%}_{-1.2\%}$	$682.4 \begin{array}{c} +29.6\% \\ -21.5\% \end{array} \begin{array}{c} +1.2\% \\ -1.2\% \end{array}$	$0.6203 \begin{array}{c} +32.5\% \\ -23.0\% \end{array} \begin{array}{c} +1.9\% \\ -1.9\% \end{array}$
	B2	85.59	$^{+29.9\%}_{-21.4\%}$	$^{+1.4\%}_{-1.1\%}$	$1545 \begin{array}{c} +30.1\% \\ -21.8\% \end{array} \begin{array}{c} +1.3\% \\ -1.3\% \end{array}$	$0.8614 \begin{array}{c} +33.0\% \\ -23.3\% \end{array} \begin{array}{c} +2.0\% \\ -2.0\% \end{array}$
	B3	169.9	$^{+28.1\%}_{-19.9\%}$	$^{+1.4\%}_{-0.5\%}$	$0.8968 \begin{array}{c} +31.2\% \\ -22.3\% \end{array} \begin{array}{c} +1.5\% \\ -1.6\% \end{array}$	$1317 \begin{array}{c} +28.4\% \\ -20.8\% \end{array} \begin{array}{c} +1.0\% \\ -1.0\% \end{array}$

Reweighting (1503.01656)

	$gg \to Zh^0$	$gg \to ZH^0$	$gg \to ZA^0$
B1	$113 \ ^{+30\%}_{-21\%}$	$686 \ ^{+30\%}_{-22\%}$	$0.622 {}^{+32\%}_{-23\%}$
B2	$85.8 \ ^{+30.1\%}_{-21\%}$	$1544\ ^{+30\%}_{-22\%}$	$0.869 {}^{+34\%}_{-23\%}$
B3	$167 \ ^{+31\%}_{-19\%}$	$0.891 {}^{+33\%}_{-21\%}$	$1325 \ ^{+28\%}_{-21\%}$

BSM: Z+A/H

Exact Phase-Space integration

:		g_{ξ}	$q \rightarrow Zl$	h^0	$gg \rightarrow ZH^0$	$gg \rightarrow ZA^0$
	B1	113.6	$^{+28.9\%}_{-21.2\%}$	$^{+1.0\%}_{-1.2\%}$	$682.4 \begin{array}{c} +29.6\% \\ -21.5\% \end{array} \begin{array}{c} +1.2\% \\ -1.2\% \end{array}$	$0.6203 \begin{array}{c} +32.5\% \\ -23.0\% \end{array} \begin{array}{c} +1.9\% \\ -1.9\% \end{array}$
	B2	85.59	$^{+29.9\%}_{-21.4\%}$	$^{+1.4\%}_{-1.1\%}$	$1545 \begin{array}{c} +30.1\% \\ -21.8\% \end{array} \begin{array}{c} +1.3\% \\ -1.3\% \end{array}$	$0.8614 \begin{array}{c} +33.0\% \\ -23.3\% \end{array} \begin{array}{c} +2.0\% \\ -2.0\% \end{array}$
	B3	169.9	$^{+28.1\%}_{-19.9\%}$	$^{+1.4\%}_{-0.5\%}$	$0.8968 \begin{array}{c} +31.2\% \\ -22.3\% \end{array} \begin{array}{c} +1.5\% \\ -1.6\% \end{array}$	$1317 \ _{-20.8\%}^{+28.4\%} \ _{-1.0\%}^{+1.0\%}$
< '						

Reweighting (1503.01656)

	$gg \to Zh^0$	$gg \to ZH^0$	$gg \to ZA^0$
B1	$113 \ ^{+30\%}_{-21\%}$	$686 \ ^{+30\%}_{-22\%}$	$0.622 {}^{+32\%}_{-23\%}$
B2	$85.8 \ ^{+30.1\%}_{-21\%}$	$1544\ ^{+30\%}_{-22\%}$	$0.869 {}^{+34\%}_{-23\%}$
Β3	$167 \ ^{+31\%}_{-19\%}$	$0.891 {+33\%}_{-21\%}$	$1325 \ ^{+28\%}_{-21\%}$

[Also another independent cross-check against g g > z z with MadLoop+Sherpa]

Valentin Hirschi, SLAC

Squaring loops

AUTOMATION AT WORK

SM TABLES (I)

Pr	m boson + jets	Syntax	Cross section (pb) $\sqrt{s} = 13$	$\Delta_{\hat{\mu}} \Delta_{PDI}$ TeV
a.1	$pp \rightarrow H$	p p > h [QCD]	17.79 ± 0.060	+31.3% +0.5% -23.1% -0.9%
a.2	$pp \rightarrow Hj$	p p > h j [QCD]	12.86 ± 0.030	$^{+42.3\%}_{-27.7\%}$ $^{+0.6\%}_{-0.9\%}$
a.3	$pp \rightarrow Hjj$	pp>hjjQED=1 [QC	$[D] 6.175 \pm 0.020$	$+61.8\% +0.7\% \\ -35.6\% -0.9\%$
*a.4	$gg \rightarrow Zg$	gg>zg[QCD]	43.05 ± 0.060	$+43.7\% +0.7\% \\ -28.4\% -1.0\%$
†a.5	$gg \rightarrow Zgg$	gg>zgg[QCD]	20.85 ± 0.030	$^{+64.5\%}_{-36.5\%}$ $^{+1.0\%}_{-1.1\%}$
†a.6	$gg \rightarrow \gamma g$	gg>ag[QCD]	75.61 ± 0.200	+73.8% +0.7% -41.6% -1.1%
†a.7	$gg \rightarrow \gamma gg$	gg>agg[QCD]	14.50 ± 0.030	+76.2% +0.6% -40.7% -1.0%

*****: Not publicly available.

SM TABLES (II)

\Pr	ocess	Syntax	Cross section (pb)	$\Delta_{\hat{\mu}} \Delta_{PDF}$
Double	e bosons + jet		$\sqrt{s} = 13$ '	TeV
b.1	$pp {\rightarrow} HH$	pp>hh[QCD]	$1.641 \pm 0.002 \cdot 10^{-2}$	+30.2% +1.1% -21.7% -1.2%
b.2	$pp { m \rightarrow} HHj$	pp>hhj [QCD]	$1.758 \pm 0.003 \cdot 10^{-2}$	$+45.7\% +1.2\% \\ -29.2\% -1.2\%$
*b.3	$pp { m m o} H\gamma j$	pp>haj [QCD]	$4.225 \pm 0.006 \cdot 10^{-3}$	+38.6% +0.4% -25.9% -0.7%
*b.4	$gg { m \rightarrow} HZ$	gg>hz[QCD]	$6.537 \pm 0.030 \cdot 10^{-2}$	$+\overline{29.4\%}$ $+1.0\%$ -21.3% $-1.1%$
*b.5	$gg { m \rightarrow} HZg$	gg>hzg[QCD]	$5.465 \pm 0.020 \cdot 10^{-2}$	$^{+46.0\%}_{-29.4\%} {}^{+1.2\%}_{-1.3\%}$
b.6	$gg \! ightarrow \! ZZ$	gg>zz[QCD]	1.313 ± 0.004	$^{+27.1\%}_{-20.1\%}$ $^{+0.7\%}_{-1.0\%}$
*b.7	$gg \! ightarrow \! ZZg$	gg>zzg[QCD]	0.6361 ± 0.002	$^{+45.4\%}_{-29.1\%}$ $^{+1.0\%}_{-1.2\%}$
b.8	$gg \! ightarrow \! Z\gamma$	gg>za[QCD]	1.265 ± 0.0007	$+30.2\% +0.6\% \\ -22.2\% -1.0\%$
$^{\dagger}b.9$	$gg { m m \rightarrow} Z\gamma g$	gg>zag[QCD]	0.4604 ± 0.001	$^{+43.7\%}_{-28.4\%}$ $^{+0.8\%}_{-1.1\%}$
b.10	$gg \rightarrow \gamma \gamma$	gg>aa[QCD]	$5.182 \pm 0.010 \cdot 10^{+2}$	+72.3% +1.0% -43.4% -1.3%
*b.11	$gg {\rightarrow} \gamma \gamma g$	gg>aag[QCD]	19.22 ± 0.030	$+59.7\% +0.7\% \\ -35.7\% -1.0\%$
b.12	$gg \! ightarrow W^+W^-$	g g > w+ w- [QCD]	4.099 ± 0.010	+26.5% +0.7% -19.7% -1.0%
*b.13	$gg \rightarrow W^+W^-g$	gg>w+w-g[Q(CD] 1.837 ± 0.004	+45.2% $+0.9%$

*****: **Not publicly** available.

SM TABLES (III)

Proce	ess	Syntax	Cross section (pb)	$\Delta_{\hat{\mu}} \Delta_{PDH}$
Triple bosons			$\sqrt{s} = 13 \text{ TeV}$	
† c.1	$pp \rightarrow HHH$	pp>hhh [QCD]	$3.968 \pm 0.010 \cdot 10^{-5}$	+31.8% +1.4% -22.6% -1.4%
$^{\dagger}c.2$	$gg \rightarrow HHZ$	gg>hhz[QCD]	$5.260 \pm 0.009 \cdot 10^{-5}$	+31.2% +1.3% -22.2% -1.3%
[†] c.3	$gg \rightarrow HZZ$	gg>hzz [QCD]	$1.144 \pm 0.004 \cdot 10^{-4}$	+31.1% +1.2% -22.2% -1.3%
[†] c.4	$gg \rightarrow HZ\gamma$	gg>hza[QCD]	$6.190 \pm 0.020 \cdot 10^{-6}$	+29.3% +1.0% -21.2% -1.2%
$^{\dagger}c.5$	$pp \rightarrow H\gamma\gamma$	pp>haa [QCD]	$6.058 \pm 0.004 \cdot 10^{-6}$	+30.3% +1.1% -21.8% -1.3%
[†] c.6	$pp \rightarrow HW^+W^-$	g g > h w + w - [QCD]	$2.670 \pm 0.007 \cdot 10^{-4}$	$+31.0\% +1.2\% \\ -22.2\% -1.3\%$
[†] c.7	$gg \rightarrow ZZZ$	gg>zzz[QCD]	$6.964 \pm 0.009 \cdot 10^{-5}$	+30.9% +1.2% -22.1% -1.3%
[†] c.8	$gg \rightarrow ZZ\gamma$	gg>zza [QCD]	$3.454 \pm 0.010 \cdot 10^{-6}$	+28.7% +0.9% -20.9% -1.1%
$t_{c.9}$	$gg ightarrow Z \gamma \gamma$	gg>zaa [QCD]	$3.079 \pm 0.005 \cdot 10^{-4}$	+28.0% +0.7% -20.9% -1.0%
$^{\dagger}c.10$	$gg \! ightarrow \! ZW^+W^-$	g g > z w + w - [QCD]	$8.595 \pm 0.020 \cdot 10^{-3}$	+26.9% +0.6% -19.5% -0.6%
$^{\dagger}c.12$	$gg \rightarrow \gamma W^+W^-$	gg>aw+w-[QCD]	$1.822 \pm 0.005 \cdot 10^{-2}$	+28.7% +0.9% -20.9% -1.1%

*****: **Not publicly** available.

SM TABLES (IV)

\Pr	ocess	Syntax	Cross section (pb)	$\Delta_{\hat{\mu}}$ Δ_{PDD}
Sel	lected $2 \rightarrow 4$		$\sqrt{s}=13$ T	leV
[†] d.1 *d.2 [†] d.3 [†] d.3 d.4 [†] d.5	$pp \rightarrow Hjjj$ $pp \rightarrow HHjj$ $pp \rightarrow HHHj$ $pp \rightarrow HHHH$ $gg \rightarrow e^+e^-\mu^+\mu^-$ $pp \rightarrow HZ\gamma j$	<pre>p p > h j j j QED=1 [QCD] p p > h h j j QED=1 [QCD] p p > h h h j [QCD] p p > h h h h [QCD] g g > e+ e- mu+ mu- [QCD] g g > h z a g [QCD]</pre>	$\begin{array}{c} 2.519 \pm 0.005 \\ 1.085 \pm 0.002 \cdot 10^{-2} \\ 4.981 \pm 0.008 \cdot 10^{-5} \\ 1.080 \pm 0.003 \cdot 10^{-7} \\ 2.022 \pm 0.003 \cdot 10^{-3} \\ 4.950 \pm 0.008 \cdot 10^{-6} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Non-ha	adronic processes	00	$\sqrt{s} = 500 \text{ GeV},$	-29.3% -1.3% no PDF
[†] e.1 [†] e.2 [†] e.3 *e.4	$e^+e^- ightarrow ggg$ $e^+e^- ightarrow HH$ $e^+e^- ightarrow HHgg$ $\gamma\gamma ightarrow HH$	e+ e- > g g g [QED] e+ e- > h h [QED] e+ e- > h h g g [QED] a a > h h [QED]	$\begin{array}{c} 2.526 \pm 0.004 \cdot 10^{-6} \\ 1.567 \pm 0.003 \cdot 10^{-5} \\ 6.629 \pm 0.010 \cdot 10^{-11} \\ 3.198 \pm 0.005 \cdot 10^{-4} \end{array}$	+31.2% -22.0% +0.0% -0.0% +19.2% -14.8% +0.0% -0.0%
Mi	scellaneous		$\sqrt{s} = 13$ T	CeV
†f.1	$pp \rightarrow tt$	pp>tt [QED]	$4.045\pm0.007\cdot10^{-15}$	$^{+0.2\%}_{-0.8\%}$ $^{+0.9\%}_{-1.0\%}$

*****: Not publicly available.

SM TABLES (V)

Process Bosonic decays		Syntax	Partial width (GeV)	
g.1 *g.2 [†] g.3	$egin{aligned} H & ightarrow jj \ H & ightarrow jjj \ H & ightarrow jjjj \end{aligned}$	h > j j [QCD] h > j j j [QCD] h > j j j j QED=1 [QCD]	$\begin{array}{c} 1.740 \pm 0.0006 \cdot 10^{-1} \\ 3.413 \pm 0.010 \cdot 10^{-4} \\ 1.654 \pm 0.004 \cdot 10^{-4} \end{array}$	
g.4 $^{\dagger}g.5$	$H \rightarrow \gamma \gamma H \rightarrow \gamma \gamma j j$	h > a a [QED] h > a a j j [QCD]	$9.882 \pm 0.002 \cdot 10^{-6}$ $7.448 \pm 0.030 \cdot 10^{-13}$	
*g.7	$Z \rightarrow ggg$	z > g g g [QCD]	$3.986 \pm 0.010 \cdot 10^{-6}$	

[Implementation for decays is inefficient for now, but sufficient for most relevant decays]

 \star : Not publicly available.

TAKE-HOME MESSAGE

• Direct loop-induced process simulation with MG5_aMC@NLO finalized:

- 2 > 2 on a laptop
- 2 > 3 on a small size cluster
- 2 > 4 case-by-case but typically requires a large size cluster

TAKE-HOME MESSAGE

• Direct loop-induced process simulation with MG5_aMC@NLO finalized:

- 2 > 2 on a laptop
- 2 > 3 on a small size cluster
- 2 > 4 case-by-case but typically requires a large size cluster

• Thanks to an efficient MC over helicity, OPP is competitive for loopinduced processes. TIR remains however a great stability rescue mechanism.

TAKE-HOME MESSAGE

• Direct loop-induced process simulation with MG5_aMC@NLO finalized:

- 2 > 2 on a laptop
- 2 > 3 on a small size cluster
- 2 > 4 case-by-case but typically requires a large size cluster

• Thanks to an efficient MC over helicity, OPP is competitive for loopinduced processes. TIR remains however a great stability rescue mechanism.

• BSM-flexible and readily available on https://launchpad.net/mg5amcnlo

THANKS.