SQUARING LOOPS IN MADGRAPH5_AMCANLO

> VALENTIN HIRSCHI IN COLLABORATION WITH OLIVIER MATTELAER [ARXIV:15OT.OOO2O $]$ IHEP SEMINAR 2015

OUTLINE

- The challenges of computing loop-induced matrix-elements.
- How does MadEvent now integrate them.
- Validation and applications in Higgs physics.

LOOP-INDUCED: MOTIVATION

- Can you compute this loop-induced process with MG5_aMC?

LOOP-INDUCED: MOTIVATION

- Can you compute this loop-induced process with MG5_aMC?
- Well... no, but MadLoop can give you the loop ME's!

LOOP-INDUCED: MOTIVATION

- Can you compute this loop-induced process with MG5_aMC?
- Well... no, but MadLoop can give you the loop ME's!
- How does that help me?

LOOP-INDUCED: MOTIVATION

- Can you compute this loop-induced process with MG5_aMC?
- Well... no, but MadLoop can give you the loop ME's!
- How does that help me?
- It... does not.

LOOP-INDUCED: MOTIVATION

- Can you compute this loop-induced process with MG5_aMC?
- Well... no, but MadLoop can give you the loop ME's!
- How does that help me?
- It... does not.

There is a wide range of interest for loop-induced processes, but no automated efficient way of integrating them.

Need to bring a definitive solution to this.

WHAT IS DIFFERENT WITH LOOP-INDUCED (LI) ?

WHAT IS DIFFERENT WITH LOOP-INDUCED (LI) ?

WHAT IS DIFFERENT WITH LOOP-INDUCED (LI) ?

WHAT IS DIFFERENT WITH LOOP-INDUCED (LI) ?

(

$$
=\int_{m} d^{(d)}\left|\mathcal{A}^{(1)}\right|^{2}
$$

How NLO ME'S ARE COMPUTED?

$$
\left.\mathcal{M}^{\text {NLO,virt }} \sim \mathcal{A}_{U}^{(\text {loop })}\right|_{\text {non- } R_{2}} \mathcal{B}^{\star}
$$

How NLO ME's ARE COMPUTED?

$$
\begin{aligned}
& \left.\mathcal{M}^{\text {NLO,virt }} \sim \mathcal{A}_{U}^{(\text {loop })}\right|_{\text {non- } R_{2}} \mathcal{B}^{\star} \\
& =\sum_{\text {colour }} \sum_{h=1, H}\left(\sum_{l=1, L} \lambda_{l}^{(1)} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h, l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i, l}}\right)\left(\sum_{b=1, B} \lambda_{b}^{(0)} \mathcal{B}_{h, b}\right)^{\star}
\end{aligned}
$$

How NLO ME's ARE COMPUTED?

$$
\begin{aligned}
& \left.\mathcal{M}^{\text {NLO, virt }} \sim \mathcal{A}_{U}^{(\mathrm{loop})}\right|_{\text {non- } R_{2}} \mathcal{B}^{\star} \\
& =\sum_{\text {colour }} \sum_{h=1, H}\left(\sum_{l=1, L} \lambda_{l}^{(1)} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h, l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i, l}}\right)\left(\sum_{b=1, B} \lambda_{b}^{(0)} \mathcal{B}_{h, b}\right)^{\star} \\
& =\sum_{h=1, H} \sum_{l=1, L} \sum_{b=1, B} \operatorname{Red}\left[\int d^{d} \bar{\ell} \frac{\mathcal{N}_{h, l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i, l}}\right] \Lambda_{l b} \mathcal{B}_{h, b}^{\star}
\end{aligned}
$$

How NLO ME's ARE COMPUTED?

$$
\begin{aligned}
& \left.\mathcal{M}^{\text {NLO,virt }} \sim \mathcal{A}_{U}^{(\text {loop })}\right|_{\text {non- } R_{2}} \mathcal{B}^{\star} \\
& =\sum_{\text {colour }} \sum_{h=1, H}\left(\sum_{l=1, L} \lambda_{l}^{(1)} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h, l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i, l}}\right)\left(\sum_{b=1, B} \lambda_{b}^{(0)} \mathcal{B}_{h, b}\right)^{\star} \\
& =\sum_{h=1, H} \sum_{l=1, L} \sum_{b=1, B} \operatorname{Red}\left[\int d^{d} \bar{\ell} \frac{\mathcal{N}_{h, l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i, l}}\right] \Lambda_{l b} \mathcal{B}_{h, b}^{\star} \\
& =\sum_{t=1, T} \operatorname{Red}\left[\int d^{d} \bar{\ell} \frac{\sum_{h} \sum_{l \in t} \sum_{b} \mathcal{N}_{h, l}(\ell) \Lambda_{l b} \mathcal{B}_{h, b}^{\star}}{\prod_{i=0}^{m_{t}-1} \bar{D}_{i, t}}\right]
\end{aligned}
$$

HOW LOOP-INDUCED ME'S ARE COMPUTED

$$
\mathcal{M}^{L I}=\left|\mathcal{A}^{L I}\right|^{2}=\left|\mathcal{A}_{\text {non- } R_{2}}^{L I}\right|^{2}+2 \Re\left(\mathcal{A}_{\text {non- } R_{2}}^{L I} \mathcal{A}_{R_{2}}^{L I *}\right)+\left|\mathcal{A}_{R_{2}}^{L I}\right|^{2}
$$

How Loop-Induced ME's ARE COMPUTED

$$
\begin{aligned}
& \mathcal{M}^{L I}=\left|\mathcal{A}^{L I}\right|^{2}=\left|\mathcal{A}_{\text {non }-R_{2}}^{L I}\right|^{2}+2 \Re\left(\mathcal{A}_{\text {non- } R_{2}}^{L I} \mathcal{A}_{R_{2}}^{L I *}\right)+\left|\mathcal{A}_{R_{2}}^{L I}\right|^{2} \\
&\left|\mathcal{A}_{\text {non }-R_{2}}^{L I}\right|^{2}=\sum_{\text {color }} \sum_{h=1, H}\left(\sum_{l_{1}=1, L} \lambda_{l_{1}} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h, l_{1}}(\ell)}{\prod_{i=0}^{m_{l_{1}-1}-1} \bar{D}_{i, l_{1}}}\right) \\
& \cdot\left(\sum_{l_{2}=1, L} \lambda_{l_{2}} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h, l_{2}}(\ell)}{\prod_{i=0}^{m_{l_{2}}-1} \bar{D}_{i, l_{2}}}\right)^{\star}
\end{aligned}
$$

How LOOP-INDUCED ME'S ARE COMPUTED

$$
\begin{gathered}
\mathcal{M}^{L I}=\left|\mathcal{A}^{L I}\right|^{2}=\left|\mathcal{A}_{\text {non- } R_{2}}^{L I}\right|^{2}+2 \Re\left(\mathcal{A}_{\text {non- } R_{2}}^{L I} \mathcal{A}_{R_{2}}^{L I *}\right)+\left|\mathcal{A}_{R_{2}}^{L I}\right|^{2} \\
\left|\mathcal{A}_{\text {non- }}^{L I}\right|^{2}=\sum_{\text {color }} \sum_{h=1, H}\left(\sum_{l_{1}=1, L} \lambda_{l_{1}} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h, l_{1}}(\ell)}{\prod_{i=0}^{m_{1}-1} \bar{D}_{i, l_{1}}}\right) \\
\cdot\left(\sum_{l_{2}=1, L} \lambda_{l_{2}} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h, l_{2}}(\ell)}{\prod_{i=0}^{m l_{2}-1} \bar{D}_{i, l_{2}}}\right)^{\star} \\
=\sum_{h=1, H} \sum_{l_{1}=1, L} \sum_{l_{2}=1, L}(\operatorname{Red}\left[\frac{\mathcal{N}_{h, l_{1}(}(\ell)}{\prod_{i=0}^{m_{1}-1} \bar{D}_{i, l_{1}}}\right] \operatorname{Red}\left[\frac{\mathcal{N}_{h l_{2}}(\ell)}{\prod_{i=0}^{m_{2}-1} \bar{D}_{i, l_{2}}}\right]_{\underbrace{*}_{\Lambda_{l_{1}, l_{2}}} \sum_{\text {color }} \lambda_{l_{1}} \lambda_{l_{2}}^{*}}^{*})
\end{gathered}
$$

HOW LOOP-INDUCED ME'S ARE COMPUTED

$$
\begin{gathered}
\mathcal{M}^{L I} \supset \sum_{h=1, H} \sum_{l_{1}=1, L} \sum_{l_{2}=1, L}(\operatorname{Red}\left[\frac{\mathcal{N}_{h, l_{1}}(\ell)}{\prod_{i=0}^{m_{1}-1} \bar{D}_{i, l_{1}}}\right] \operatorname{Red}\left[\frac{\mathcal{N}_{h, l_{2}}(\ell)}{\prod_{i=0}^{m_{2}-1} \bar{D}_{i, l_{2}}}\right]^{*} \underbrace{\sum_{\text {color }} \lambda_{l_{1}} \lambda_{l_{2}}^{*}}_{\Lambda_{l_{1}, l_{2}}^{*}}) \\
\left(\mathcal{M}^{\mathrm{NLO}, \text { virt }} \sim \sum_{t=1, T} \operatorname{Red}\left[\int d^{d} \bar{\ell} \frac{\sum_{h} \sum_{l \in t} \sum_{b} \mathcal{N}_{h, l}(\ell) \Lambda_{l b} \mathcal{B}_{h, b}^{\star}}{\prod_{i=0}^{m_{t}-1} \bar{D}_{i, t}}\right]\right)
\end{gathered}
$$

- A) For a given helicity, the number of terms in this squaring is: ' $\mathrm{L} \times \mathrm{L}$ '
(It was 'L×B' for NLO MEs)
- B) Impossible to do reduction at the squared amplitude level in this case. The number of calls to Red[] scales like ' $\mathrm{L} \times \mathrm{H}^{\prime}$ ' (It was ' T ' for NLO MEs)
-A) The number of terms in this squaring is $L \cdot L$ (It was for $L \cdot B$ for NLO MEs).

$$
\left.\left.\left|\mathcal{A}_{\text {non- }}^{L I}\right|^{2}\right|^{2}=\sum_{h=1, H} \sum_{l_{1}=1, L, L l_{2}=1, L} \sum_{\operatorname{Red}}\left[\frac{\mathcal{N}_{h, l_{1}}(\ell)}{\prod_{i=0}^{m_{1}-1} \bar{D}_{i, l_{1}}}\right] \operatorname{Red}\left[\frac{\mathcal{N}_{h, l_{2}}(\ell)}{\prod_{i=0}^{m_{2}-1} \bar{D}_{i, l_{2}}}\right]_{\Lambda_{\Lambda_{1,1}, l_{2}}^{*}}^{\sum_{c=10 r} \lambda_{l_{1}} \lambda_{l_{2}}^{*}}\right)
$$

- A) The number of terms in this squaring is $\mathrm{L} \cdot \mathrm{L}$ (It was for $\mathrm{L} \cdot \mathrm{B}$ for NLO MEs).

$$
\left|\mathcal{A}_{\text {non- } R_{2}}^{L I}\right|^{2}=\sum_{h=1, H} \sum_{l_{1}=1, L} \sum_{l_{2}=1, L}(\operatorname{Red}\left[\frac{\mathcal{N}_{h, l_{1}}(\ell)}{\prod_{i=0}^{m_{l_{1}}-1} \bar{D}_{i, l_{1}}}\right] \operatorname{Red}\left[\frac{\mathcal{N}_{h, l_{2}}(\ell)}{\prod_{i=0}^{m_{l_{2}}-1} \bar{D}_{i, l_{2}}}\right]^{*} \underbrace{\sum_{\text {color }} \lambda_{l_{1}} \lambda_{l_{2}}^{*}}_{\Lambda_{l_{1}, l_{2}}})
$$

Solution : Project onto color flows (i.e. use partial color amplitudes)

$$
\begin{aligned}
& \lambda_{l}=\sum_{i=1, K} \underbrace{\left(\lambda_{l} \otimes \kappa_{i}\right)}_{\alpha_{l, i}} \kappa_{i} \\
&\left|\mathcal{A}_{\mathrm{non}-R_{2}}^{L I}\right|^{2}=\sum_{\text {color }} \kappa_{i} \kappa_{j}^{*}=K_{i j} \\
& J_{j, h}:=\sum_{l=1, L} \sum_{i=1, K}\left(J_{i, h} J_{j, l}^{*} \tilde{L}_{l, h}\right. \\
&\left.\tilde{L}_{l, j}\right) \\
&:=\operatorname{Red}\left[\frac{\mathcal{N}_{l, h}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i, l}}\right]
\end{aligned}
$$

- A) The number of terms in this squaring is $L \cdot L$ (It was for $L \cdot B$ for NLO MEs).
$\mid \mathcal{A}_{\text {non- } R_{2}}^{L I}$
More simply said, the projection onto the color-flow basis allows to turn

Solu

$$
\begin{aligned}
& L_{1} \cdot L_{1}+L_{1} \cdot L_{2}+L_{1} \cdot L_{3}+ \\
& L_{2} \cdot L_{1}+L_{2} \cdot L_{2}+L_{2} \cdot L_{3}+ \\
& L_{3} \cdot L_{1}+L_{3} \cdot L_{2}+L_{3} \cdot L_{3}+
\end{aligned}
$$

into

$$
\left(L_{1}+L_{2}+L_{3}\right) \cdot\left(L_{1}+L_{2}+L_{3}\right)
$$

Hence trading 9 multiplications for 1 multiplication and 6 additions!

$$
\tilde{L}_{l, h}:=\operatorname{Red}\left[\frac{\mathcal{N}_{l, h}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i, l}}\right]
$$

ADDITIONAL PERKS OF COLOR FLOWS

- Necessary for event color assignation for loop-induced processes with MadEvent.
- Using NLO color partial amplitudes for SCET NLO hard functions.
- Could be used in NLO matrix-element improved showers (a.k.a Vincia)
- In a matched computation when using a fixed-color ME generator such as COMIX for both reals AND subtraction terms, i.e. Monte Carlo over colors
- MadLoop keeps track of the factorized couplings in the partial color amplitudes, so that mixed expansions or interference computations are possible.
- In general, it increases MadLoop flexibility.
- B) Impossible to do reduction at the squared amplitude level in the LI case. The number of calls to Red[] scales like 'L•H' (It was 'T' for NLO MEs)

$$
\tilde{L}_{l, h}:=\operatorname{Red}\left[\frac{\mathcal{N}_{l, h}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i, l}}\right]
$$

Solution B1: Perform MC over helicity config (and stick to OPP).

- B) Impossible to do reduction at the squared amplitude level in the LI case. The number of calls to $\operatorname{Red}[]$ scales like ' $L \cdot H^{\prime}$ ' (It was ' T ' for NLO MEs)

$$
\tilde{L}_{l, h}:=\operatorname{Red}\left[\frac{\mathcal{N}_{l, h}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i, l}}\right]
$$

Solution B1 : Perform MC over helicity config (and stick to OPP).
Solution B2 : Reduce with TIR whose inputs are independent on the helicity

$$
\left\{T^{(r), \mu_{1} \cdots \mu_{r}} \equiv \int d^{d} \bar{\ell} \frac{\ell^{\mu_{1}} \ldots \ell^{\mu_{r}}}{\prod_{i=0}^{m_{l_{t}}-1} \bar{D}_{i, l_{t}}}, C_{\mu_{1} \ldots \mu_{r} ; h, l}^{(r)}\right\}_{r=0}^{r_{\max }}
$$

The tensor coefficients must be computed once only and can then be recycled for all helicity configuration

- B) Impossible to do reduction at the squared amplitude level in the LI case. The number of calls to Red $[$ scales like ' $L \cdot H$ ' (It was ' T ' for NLO MEs)

$$
\tilde{L}_{l, h}:=\operatorname{Red}\left[\frac{\mathcal{N}_{l, h}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i, l}}\right]
$$

Solution B1 : Perform MC over helicity config (and stick to OPP).
Solution B2 : Reduce with TIR whose inputs are independent on the helicity

$$
\left\{T^{(r), \mu_{1} \cdots \mu_{r}} \equiv \int d^{d} \bar{\ell} \frac{\ell^{\mu_{1}} \ldots \ell^{\mu_{r}}}{\prod_{i=0}^{m_{l_{t}}-1} \bar{D}_{i, l_{t}}}, C_{\mu_{1} \ldots \mu_{r} ; h, l}^{(r)}\right\}_{r=0}^{r_{\max }}
$$

The tensor coefficients must be computed once only and can then be recycled for all helicity configuration

- Which one is best? It depends on:
A) How faster OPP is w.r.t. TIR.
B) How good is the Monte-Carlo sampling over helicity configurations

OPP Vs TIR

	$g g \rightarrow h h$	$g g \rightarrow h h g$	$g g \rightarrow h h g g$	$g g \rightarrow h g g g$
\# loop Feynman diagrams	16	108	952	2040
\# topologies	8	54	380	540
\# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7 s	21s	269s	1 h 36 m
Output code size	0.5 Mb	0.7 Mb	1.8 Mb	3.2 Mb
Runtime RAM usage	4.7 Mb	20.5 Mb	102 Mb	240 Mb
Run time (OPP, single hel.)	2.6 ms (81\%)	$40.7 \mathrm{~ms} \mathrm{(84} \mathrm{\%)}$	859ms (83\%)	1.27s (85\%)
Run time (IREGI, single hel.)	17.5 ms (97%)	1.14 s (99\%)	$65 \mathrm{~s}(100 \%)$	70s (100\%)
Run time (PJFry, single hel.)	3.2 ms (85\%)	190 ms (96\%)	29s (100\%)	30s (100\%)
Run time (Golem95, single hel.)	$15.1 \mathrm{~ms} \mathrm{(97} \mathrm{\%)}$	615 ms (99\%)	18s (99\%)	19s (99\%)
Run time (OPP, hel. summed)	$5.2 \mathrm{~ms} \mathrm{(82} \mathrm{\%)}$	328 ms (85\%)	14.7 s (81\%)	41s (86\%)
Run time (IREGI, hel. summed)	$18.4 \mathrm{~ms} \mathrm{(95} \mathrm{\%)}$	1.19s (96\%)	68.2 s (96\%)	75.6 s (92\%)
Run time (PJFry, hel. summed)	3.8 ms (75\%)	243 ms (79%)	30.5 s (91\%)	33.7 s (83\%)

OPP Vs TIR

	$g g \rightarrow h h$	$g g \rightarrow h h g$	$g g \rightarrow h h g g$	$g g \rightarrow h g g g$
\# loop Feynman diagrams	16	108	952	2040
\# topologies	8	54	380	540
\# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7 s	21s	269s	1 h 36 m
Output code size	0.5 Mb	0.7 Mb	1.8 Mb	3.2 Mb
Runtime RAM usage	4.7 Mb	20.5 Mb	102 Mb	240 Mb
Run time (OPP, single hel.)	$2.6 \mathrm{~ms} \mathrm{(81} \mathrm{\%)}$	$40.7 \mathrm{~ms} \mathrm{(84} \mathrm{\%)}$	859ms (83\%)	$1.27 \mathrm{~s}(85 \%)$
Run time (IREGI, single hel.)	17.5 ms (97\%)	1.14 s (99\%)	65s (100\%)	70s (100\%)
Run time (PJFry, single hel.)	3.2 ms (85\%)	190 ms (96\%)	29s (100\%)	30s (100\%)
Run time (Golem95, single hel.)	$15.1 \mathrm{~ms} \mathrm{(97} \mathrm{\%)}$	615 ms (99\%)	18s (99\%)	19s (99\%)
Run time (OPP, hel. summed)	$5.2 \mathrm{~ms} \mathrm{(82} \mathrm{\%)}$	$328 \mathrm{~ms} \mathrm{(85} \mathrm{\%)}$	14.7 s (81\%)	41s (86\%)
Run time (IREGI, hel. summed)	18.4ms (95\%)	1.19 s (96\%)	68.2s (96\%)	75.6s (92\%)
Run time (PJFry, hel. summed)	$3.8 \mathrm{~ms}(75 \%)$	243 ms (79%)	30.5 s (91\%)	33.7 s (83\%)

OPP Vs TIR

	$g g \rightarrow h h$	$g g \rightarrow h h g$	$g g \rightarrow h h g g$	$g g \rightarrow h g g g$
\# loop Feynman diagrams	16	108	952	2040
\# topologies	8	54	380	540
\# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7 s	21s	269s	1 h 36 m
Output code size	0.5 Mb	0.7 Mb	1.8 Mb	3.2 Mb
Runtime RAM usage	4.7 Mb	20.5 Mb	102 Mb	240 Mb
Run time (OPP, single hel.)	2.6 ms (81\%)	$40.7 \mathrm{~ms} \mathrm{(84} \mathrm{\%)}$	$859 \mathrm{~ms} \mathrm{(83} \mathrm{\%)}$	1.27s (85\%)
Run time (IREGI, single hel.)	$17.5 \mathrm{~ms} \mathrm{(} 97 \%$)	1.14s (99\%)	65 s (100\%)	70s (100\%)
Run time (PJFry, single hel.)	3.2ms (85\%)	190ms (96\%)	29s (100\%)	30s (100\%)
Run time (Golem95, single hel.)	$15.1 \mathrm{~ms} \mathrm{(97} \mathrm{\%)}$	615ms (99\%)	18s (99\%)	19s (99\%)
Run time (OPP, hel. summed)	5.2 ms (82\%)	328 ms (85%)	14.7s (81\%)	41s (86\%)
Run time (IREGI, hel. summed)	18.4ms (95\%)	1.19s (96\%)	68.2s (96\%)	75.6s (92\%)
Run time (PJFry, hel. summed)	3.8ms (75\%)	243ms (79\%)	30.5s (91\%)	$33.7 \mathrm{~s}(83 \%)$

OPP Vs TIR

	$g g \rightarrow h h$	$g g \rightarrow h h g$	$g g \rightarrow h h g g$	$g g \rightarrow h g g g$
\# loop Feynman diagrams	16	108	952	2040
\# topologies	8	54	380	540
\# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7 s	21s	269s	1 h 36 m
Output code size	0.5 Mb	0.7 Mb	1.8 Mb	3.2 Mb
Runtime RAM usage	4.7 Mb	20.5 Mb	102 Mb	240 Mb
Run time (OPP, single hel.)	2.6 ms (81\%)	$40.7 \mathrm{~ms} \mathrm{(84} \mathrm{\%)}$	$859 \mathrm{~ms} \mathrm{(83} \mathrm{\%)}$	1.27 s (85\%)
Run time (IREGI, single hel.)	$17.5 \mathrm{~ms}(97 \%)$	1.14s (99\%)	65s (100\%)	70s (100\%)
Run time (PJFry, single hel.)	3.2ms (85\%)	190ms (96\%)	29s (100\%)	30s (100\%)
Run time (Golem95, single hel.)	$15.1 \mathrm{~ms} \mathrm{(97} \mathrm{\%)}$	615ms (99\%)	18s (99\%)	19s (99\%)
Run time (OPP, hel. summed)	$5.2 \mathrm{~ms} \mathrm{(82} \mathrm{\%)}$	328 ms (85\%)	14.7s (81\%)	41s (86\%)
Run time (IREGI, hel. summed)	18.4ms (95\%)	1.19s (96\%)	68.2s (96\%)	75.6s (92\%)
Run time (PJFry, hel. summed)	3.8ms (75\%)	243ms (79\%)	30.5s (91\%)	33.7s (83\%)

- OPP with efficient MC over helicity configurations is the dominant approach.

OPP Vs TIR

	$g g \rightarrow h h$	$g g \rightarrow h h g$	$g g \rightarrow h h g g$	$g g \rightarrow h g g g$
\# loop Feynman diagrams	16	108	952	2040
\# topologies	8	54	380	540
\# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7 s	21s	269s	1 h 36 m
Output code size	0.5 Mb	0.7 Mb	1.8 Mb	3.2 Mb
Runtime RAM usage	4.7 Mb	20.5 Mb	102 Mb	240 Mb
Run time (OPP, single hel.)	$2.6 \mathrm{~ms} \mathrm{(81} \mathrm{\%)}$	$40.7 \mathrm{~ms} \mathrm{(84} \mathrm{\%)}$	$859 \mathrm{~ms} \mathrm{(83} \mathrm{\%)}$	1.27 s (85\%)
Run time (IREGI, single hel.)	$17.5 \mathrm{~ms} \mathrm{(97} \mathrm{\%)}$	1.14 s (99\%)	$65 \mathrm{~s}(100 \%)$	70s (100\%)
Run time (PJFry, single hel.)	3.2ms (85\%)	190ms (96\%)	29s (100\%)	30s (100\%)
Run time (Golem95, single hel.)	$15.1 \mathrm{~ms} \mathrm{(97} \mathrm{\%)}$	615 ms (99\%)	18s (99\%)	19s (99\%)
Run time (OPP, hel. summed)	$5.2 \mathrm{~ms} \mathrm{(82} \mathrm{\%)}$	328 ms (85\%)	14.7 s (81\%)	41s (86\%)
Run time (IREGI, hel. summed)	$18.4 \mathrm{~ms} \mathrm{(95} \mathrm{\%)}$	1.19 s (96\%)	$68.2 \mathrm{~s}(96 \%)$	75.6 s (92\%)
Run time (PJFry, hel. summed)	3.8 ms (75\%)	243ms (79\%)	30.5 s (91\%)	$33.7 \mathrm{~s}(83 \%)$

- The modern OPP reduction algorithms SAMURAI and NINJA now available too.
- OPP with efficient MC over helicity configurations is the dominant approach.

ENHANCED PARALLELIZATION

MadEvent

$$
|M|^{2}=\frac{\left|M_{1}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|^{2}+\frac{\left|M_{2}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|^{2}
$$

ENHANCED PARALLELIZATION

MadEvent

$$
\int|M|^{2}=\int \frac{\left|M_{1}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|^{2}+\int \frac{\left|M_{2}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|^{2}
$$

MadEvent

$$
\int|M|^{2}=\left.\int \frac{\left|M_{1}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|^{2}\left|+\int \frac{\left|M_{2}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}\right| M\right|^{2}
$$

- Iteration 1
- Grid Refinement
- Iteration 1
- Grid Refinement
- Iteration 2
- Grid Refinement
- Grid Refinement

ENHANCED PARALLELIZATION

MadEvent

$$
\int|M|^{2}=\left.\int \frac{\left|M_{1}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|^{2}\left|+\iint \frac{\left|M_{2}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}\right| M\right|^{2}
$$

- Iteration 1
 -Grid Refinement

-|teration 2
-Grid Refinement

- Iteration 1
- Grid Refinement
- Iteration 2
- Grid Refinement

ENHANCED PARALLELIZATION

New MadEvent

$$
\int|M|^{2}=\left.\int \frac{\left|M_{1}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|^{2}\left|+\int \frac{\left|M_{2}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}\right| M\right|^{2}
$$

- Iteration 1
- Grid Refinement

- Iteration 2
-Grid Refinement

User Input

- generate g g > h [QCD]
-output
-launch
Loop Induced

$$
\sigma_{\text {loop }}=15.74(2) p b
$$

HEFT

$$
\sigma_{h e f t}=17.63(2) p b
$$

User Input

- generate g g > h [QCD]
-output
-launch
Loop Induced

$$
\sigma_{\text {loop }}=15.74(2) p b
$$

HEFT

No bottom loop

$$
\sigma_{\text {heft }}=17.63(2) p b
$$

$$
\sigma_{\text {toploop }}=17.65(2) p b
$$

VALIDATION P P > H J

VALIDATION P P > H J

VALIDATION P P > H J

Important b-mass effects at low-pt but the expected naive rescaling at high-pt

MATCHING / MERGING

$\mathrm{K}_{\mathrm{T}}-\mathrm{MLM}$ merging scheme

$Q_{\text {match }}=50 G e V$

BSM: Z+A/H

Exact Phase-Space integration

	$g g \rightarrow Z h^{0}$	$g g \rightarrow Z H^{0}$	$g g \rightarrow Z A^{0}$
B1	$113.6_{-21.2 \%}^{+28.9 \%}{ }_{-1.2 \%}^{+1.0 \%}$	$682.4_{-21.5 \%}^{+29.6 \%}{ }_{-1.2 \%}^{+1.2 \%}$	$0.6203_{-23.0 \%}^{+32.5 \%}{ }_{-1.9 \%}^{+1.9 \%}$
B2	$85.59_{-21.4 \%}^{+29.9 \%}{ }_{-1.1 \%}^{+1.4 \%}$	$1545_{-21.8 \%}^{+30.1 \%}{ }_{-1.3 \%}^{+1.3 \%}$	$0.8614_{-23.3 \%}^{+33.0 \%}{ }_{-2.0 \%}^{+2.0 \%}$
B3	$169.9_{-19.9 \%}^{+28.1 \%}{ }_{-0.5 \%}^{+1.4 \%}$	$0.8968_{-22.3 \%}^{+31.2 \%}{ }_{-1.6 \%}^{+1.5 \%}$	$1317_{-20.8 \%}^{+2.4 \%}{ }_{-1.0 \%}^{+1.0 \%}$

Reweighting (1503.01656)

	$g g \rightarrow Z h^{0}$	$g g \rightarrow Z H^{0}$	$g g \rightarrow Z A^{0}$
B1	$113_{-21 \%}^{+30 \%}$	$686_{-22 \%}^{+30 \%}$	$0.622_{-23 \%}^{+32 \%}$
B2	$85.8_{-21 \%}^{+30.1 \%}$	$1544_{-22 \%}^{+30 \%}$	$0.869_{-23 \%}^{+34 \%}$
B3	$167_{-19 \%}^{+31 \%}$	$0.891_{-21 \%}^{+33 \%}$	$1325_{-21 \%}^{+28 \%}$

BSM: Z+A/H

Exact Phase-Space integration

	$g g \rightarrow Z h^{0}$	$g g \rightarrow Z H^{0}$	$g g \rightarrow Z A^{0}$
B1	$113.6{ }_{-21.2 \%}^{+28.9 \%}{ }_{-1.2 \%}^{+1.0 \%}$	$682.4_{-21.5 \%}^{+29.6 \%}{ }_{-1.2 \%}^{+1.2 \%}$	$0.6203_{-23.0 \%}^{+32.5 \%}{ }_{-1.9 \%}^{+1.9 \%}$
B2	$85.59{ }_{-21.4 \%}^{+29.9 \%}{ }_{-1.1 \%}^{+1.4 \%}$	$1545_{-21.8 \%}^{+30.1 \%}{ }_{-1.3 \%}^{+1.3 \%}$	$0.8614_{-23.3 \%}^{+33.0 \%}{ }_{-2.0 \%}^{+2.0 \%}$
B3	$169.9{ }_{-19.9 \%}^{+28.1 \%}{ }_{-1.5 \%}^{+1.4 \%}$	$0.8968_{-22.3 \%}^{+31.2 \%}{ }_{-1.6 \%}^{+1.5 \%}$	$1317_{-20.8 \%}^{+28.4 \%}{ }_{-1.0 \%}^{+1.0 \%}$

Reweighting (1503.01656)

	$g g \rightarrow Z h^{0}$	$g g \rightarrow Z H^{0}$	$g g \rightarrow Z A^{0}$
B1	$113_{-21 \%}^{+30 \%}$	$686_{-22 \%}^{+30 \%}$	$0.622_{-23 \%}^{+32 \%}$
B2	$85.8_{-21 \%}^{+30.1 \%}$	$1544_{-22 \%}^{+30 \%}$	$0.869_{-23 \%}^{+34 \%}$
B3	$167_{-19 \%}^{+31 \%}$	$0.891_{-21 \%}^{+33 \%}$	$1325_{-21 \%}^{+28 \%}$

BSM: Z+A/H

Exact Phase-Space integration

	$g q \rightarrow Z h^{0}$			$g g \rightarrow Z H^{0}$	$g g \rightarrow Z A^{0}$
B1	113.6	$\stackrel{+28.9 \%}{+28.2 \%}$	${ }_{-1.2 \%}^{+1.0 \%}$	$682.4{ }_{-215 \%}^{+29.5 \%}{ }_{-1.2 \%}^{+1.2 \%}$	$0.6203{ }_{-2.0 \%}^{+32.5 \%}{ }_{-1.9 \%}^{+1.9 \%}$
B2	85.59	${ }_{-21.4 \%}^{+29.9 \%}$	${ }_{-1.1 \%}^{+1.4 \%}$	$1545{ }_{-21.8 \%}^{+30.1 \%}{ }_{-1.3 \%}^{+1.3 \%}$	$0.8614_{-23.3 \%}^{+33.0 \%}{ }_{-2.0 \%}^{+2.0 \%}$
B3	169.9	$\begin{aligned} & +{ }^{+}+8.1 \% \\ & -19.9 \% \end{aligned}$	$\begin{aligned} & +1.4 \% \\ & { }_{-0.5 \%} \end{aligned}$	$0.8968{ }_{-22.3 \%}^{+31.2 \%}{ }_{-1.6 \%}^{+1.5 \%}$	$1317_{-20.8 \%}^{+28.4 \%}{ }_{-1.0 \%}^{+1.0 \%}$

Reweighting (1503.01656)

	$g g \rightarrow Z h^{0}$	$g g \rightarrow Z H^{0}$	$g g \rightarrow Z A^{0}$
B1	$113_{-21 \%}^{+30 \%}$	$686_{-22 \%}^{+30 \%}$	$0.622_{-23 \%}^{+32 \%}$
B2	$85.8_{-21 \%}^{+30.1 \%}$	$1544_{-22 \%}^{+30 \%}$	$0.869_{-23 \%}^{+34 \%}$
B3	$167_{-19 \%}^{+31 \%}$	$0.891_{-21 \%}^{+33 \%}$	$1325_{-21 \%}^{+28 \%}$

[Also another independent cross-check against $\mathrm{g} \mathrm{g}>\mathrm{z} \mathrm{z}$ with MadLoop+Sherpa]

AUTOMATION AT WORK

SM TABLES (I)

Process		Syntax	Cross section (pb)	$\Delta_{\hat{\mu}} \quad \Delta_{P D F}$
Single boson + jets			$\sqrt{s}=13 \mathrm{TeV}$	
a. 1	$p p \rightarrow H$	$\mathrm{p} \mathrm{p}>\mathrm{h}$ [QCD]	17.79 ± 0.060	$+31.3 \%{ }_{-23.1 \%}^{+0.5 \%}{ }_{-0.9 \%}$
a. 2	$p p \rightarrow H j$	$\mathrm{p} p>\mathrm{h}$ j [QCD]	12.86 ± 0.030	${ }^{+27.3 \%}{ }_{-27}+{ }_{-0.6 \%}$
a. 3	$p p \rightarrow H j j$	$\mathrm{p} p>\mathrm{h} \mathrm{j} \mathrm{j}$ QED=1 [QCD]	6.175 ± 0.020	$\begin{aligned} & +61.8 \%+0.7 \% \\ & -35.6 \%-0.9 \% \end{aligned}$
* a .4	$g g \rightarrow Z g$	$\mathrm{g} \mathrm{g}>\mathrm{z} \mathrm{g}$ [QCD]	43.05 ± 0.060	$+43.7 \% ~+0.7 \%$ $-28.4 \%-1.0 \%$
\dagger a. 5	$g g \rightarrow Z g g$	$\mathrm{g} \mathrm{g}>\mathrm{z} \mathrm{g} \mathrm{g}$ [QCD]	20.85 ± 0.030	$+64.5 \%-1.0 \%$ ${ }_{-36.5 \%}{ }^{-1.1 \%}$
${ }^{\dagger} \mathrm{a} .6$	$g g \rightarrow \gamma g$	$\mathrm{g} \mathrm{g}>\mathrm{a} \mathrm{g}$ [QCD]	75.61 ± 0.200	$\begin{aligned} & +73.8 \%+0.7 \% \\ & -41.6 \%-1.1 \% \end{aligned}$
${ }^{\dagger} \mathrm{a} .7$	$g g \rightarrow \gamma g g$	$\mathrm{g} \mathrm{g}>\mathrm{ag} \mathrm{g}$ [QCD]	14.50 ± 0.030	$\begin{aligned} & +76.2 \%+0.6 \% \\ & -40.7 \%-1.0 \% \end{aligned}$

* : Not publicly available.
\dagger : Computed here for the first time.

SM TABLES (II)

Process Double bosons + jet		Syntax	Cross section (pb)	$\Delta_{\hat{\mu}}$	$\Delta_{P D F}$
b.1	$p p \rightarrow H H$		$\sqrt{s}=13$		TeV

* : Not publicly available.
\dagger : Computed here for the first time.

SM TABLES (III)

Process Triple bosons		Syntax	Cross section (pb)	$\Delta_{\hat{\mu}} \quad \Delta_{P D F}$
			$\sqrt{s}=13 \mathrm{TeV}$	
${ }^{\dagger}$ c. 1	$p p \rightarrow \mathrm{HHH}$	$\mathrm{p} \mathrm{p} \mathrm{>} \mathrm{~h} \mathrm{~h} \mathrm{~h} \mathrm{[QCD]}$	$3.968 \pm 0.010 \cdot 10^{-5}$	${ }_{-2.6 \%}^{+31.8 \%}{ }_{-1.4 \%}^{+1.4 \%}$
${ }^{\dagger}$ c. 2	$g \mathrm{~g} \rightarrow \mathrm{HHZ}$	$\mathrm{g} \mathrm{g}>\mathrm{hh} \mathrm{h}$ [QCD]	$5.260 \pm 0.009 \cdot 10^{-5}$	${ }_{-22.2 \%}^{+32.2 \%}{ }_{-1.3 \%}^{+1.3 \%}$
${ }^{\dagger}$ c. 3	$g g \rightarrow H Z Z$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{~h} \mathrm{z}$ z [QCD]	$1.144 \pm 0.004 \cdot 10^{-4}$	${ }_{-22.2 \%}^{+31.1 \%}{ }_{-1.3 \%}^{+1.2 \%}$
${ }^{\dagger} \mathrm{c} .4$	$g g \rightarrow H Z \gamma$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{~h}$ z a [QCD]	$6.190 \pm 0.020 \cdot 10^{-6}$	
${ }^{\dagger}$ c. 5	$p p \rightarrow H \gamma \gamma$	$\mathrm{p} p>\mathrm{h}$ a a [QCD]	$6.058 \pm 0.004 \cdot 10^{-6}$	
${ }^{\dagger}$ c. 6	$p p \rightarrow H W^{+} W^{-}$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{~h} \mathrm{w+} \mathrm{w-} \mathrm{[QCD]}$	$2.670 \pm 0.007 \cdot 10^{-4}$	
${ }^{\dagger}$ c. 7	$g g \rightarrow Z Z Z$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z} \mathrm{z} \mathrm{z} \mathrm{[QCD]}$	$6.964 \pm 0.009 \cdot 10^{-5}$	${ }_{-22.1 \%}^{+30.9 \%}{ }_{-1.3 \%}^{+1.2 \%}$
${ }^{\dagger} \mathrm{c} .8$	$g g \rightarrow Z Z \gamma$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z} \mathrm{z} \mathrm{a} \mathrm{[QCD]}$	$3.454 \pm 0.010 \cdot 10^{-6}$	${ }_{-20.9 \%}^{+28.7 \%}{ }_{-1.1 \%}^{+0.9 \%}$
${ }^{\dagger}$ c. 9	$g g \rightarrow Z \gamma \gamma$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z} \mathrm{a} \mathrm{a} \mathrm{[QCD]}$	$3.079 \pm 0.005 \cdot 10^{-4}$	$\begin{aligned} & { }_{-20.9 \%}^{+28.0 \%}{ }_{-1.0 \%}^{+1.7 \%} \\ & { }_{-20}^{+0.7 \%} \end{aligned}$
${ }^{\dagger} \mathrm{c} .10$	$g g \rightarrow Z W^{+} W^{-}$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z} \mathrm{w+} \mathrm{w-} \mathrm{[QCD]}$	$8.595 \pm 0.020 \cdot 10^{-3}$	$\begin{aligned} & { }_{-19.5 \%}^{+26.9 \%}{ }_{-0.6 \%}^{+0.6 \%} \end{aligned}$
	$g g \rightarrow \gamma W^{+} W^{-}$	g g > a w+ w- [QCD]	$1.822 \pm 0.005 \cdot 10^{-2}$	$\begin{aligned} & { }_{-2.9 \%}^{+28.7 \%}{ }_{-1.1 \%}^{+0.9 \%} \end{aligned}$

* : Not publicly available.
\dagger : Computed here for the first time.

SM TABLES (IV)

*: Not publicly available.
\dagger : Computed here for the first time.

Process Bosonic decays		Syntax	Partial width (GeV)
g. 1	$H \rightarrow j j$	$\mathrm{h}>\mathrm{j} \mathrm{j}$ [QCD]	$1.740 \pm 0.0006 \cdot 10^{-4}$
* g .2	$H \rightarrow j j j$	$\mathrm{h}>\mathrm{j} \mathrm{j} j$ [QCD]	$3.413 \pm 0.010 \cdot 10^{-4}$
${ }^{\dagger} \mathrm{g} .3$	$H \rightarrow j j j j$	$\mathrm{h}>\mathrm{j} \mathrm{j} \mathrm{j} \mathrm{j}$ QED=1 [QCD]	$1.654 \pm 0.004 \cdot 10^{-4}$
g. 4	$H \rightarrow \gamma \gamma$	$\mathrm{h}>\mathrm{a}$ a [QED]	$9.882 \pm 0.002 \cdot 10^{-6}$
${ }^{\dagger} \mathrm{g} .5$	$H \rightarrow \gamma \gamma j j$	$\mathrm{h}>\mathrm{a}$ a j j [QCD]	$7.448 \pm 0.030 \cdot 10^{-13}$
* g .7	$Z \rightarrow g . g g$	$\mathrm{z}>\mathrm{g} \mathrm{g} \mathrm{g} \mathrm{[QCD]}$	$3.986 \pm 0.010 \cdot 10^{-6}$

[Implementation for decays is inefficient for now, but sufficient for most relevant decays]
*: Not publicly available.
\dagger : Computed here for the first time.

TAKE-HOME MESSAGE

- Direct loop-induced process simulation with MG5_aMC@NLO finalized:
- $2>2$ on a laptop
- $2>3$ on a small size cluster
- $2>4$ case-by-case but typically requires a large size cluster

TAKE-HOME MESSAGE

- Direct loop-induced process simulation with MG5_aMC@NLO finalized:
- $2>2$ on a laptop
- $2>3$ on a small size cluster
- $2>4$ case-by-case but typically requires a large size cluster
- Thanks to an efficient MC over helicity, OPP is competitive for loopinduced processes. TIR remains however a great stability rescue mechanism.

TAKE-HOME MESSAGE

- Direct loop-induced process simulation with MG5_aMC@NLO finalized:
- $2>2$ on a laptop
- $2>3$ on a small size cluster
- $2>4$ case-by-case but typically requires a large size cluster
- Thanks to an efficient MC over helicity, OPP is competitive for loopinduced processes. TIR remains however a great stability rescue mechanism.
- BSM-flexible and readily available on https://launchpad.net/mg5amenlo

THANKS.

