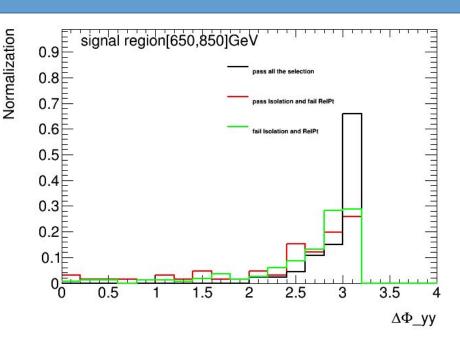

cross check

Yu Zhang 01.11

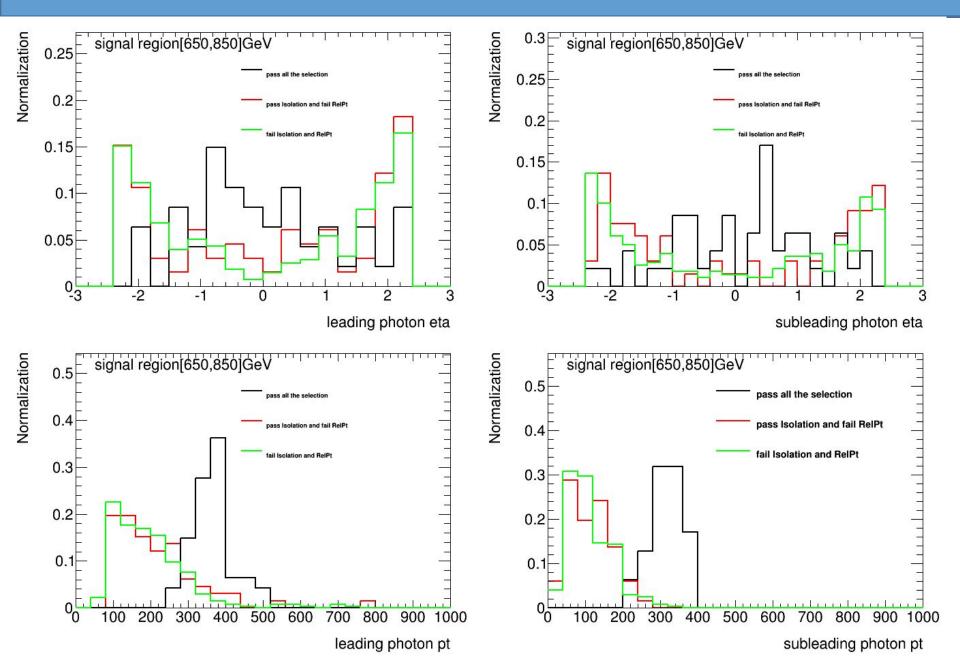
kinematics

3.5

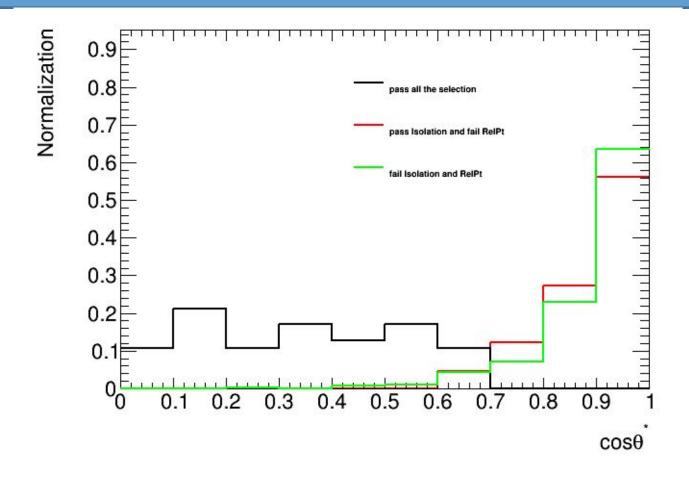
3

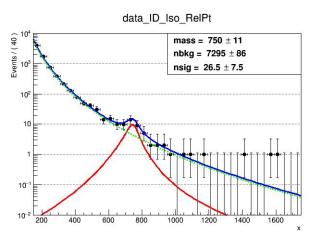

4.5

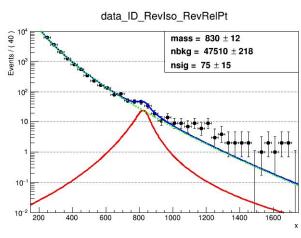
5

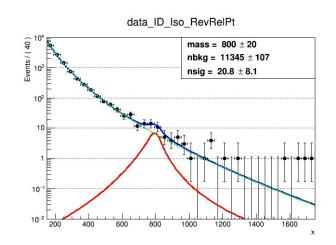

5.5

∆R_yy


2.5

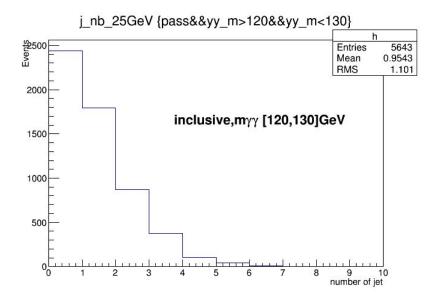

kinematics




cos theta star

S+B fit ---Large Width (bkg shape from bkg only fit)

- Large Width result in note
 - Background events:
 - Signal events:


7299±86

22.4±7.4

summary

- Due to low statistic, it is hard to check the property of this resonance
- associated with some jets
- some excess events in control region

back up

isolation efficiency(copy)

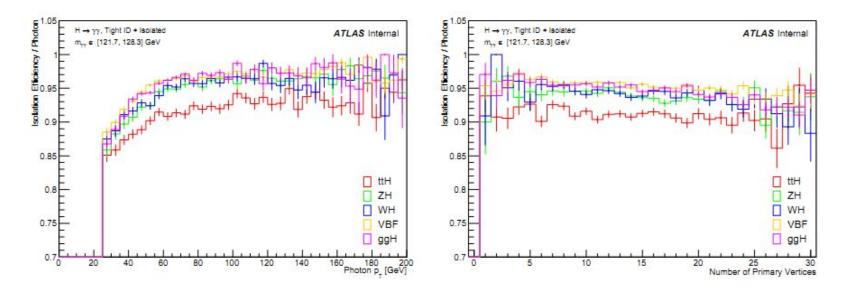
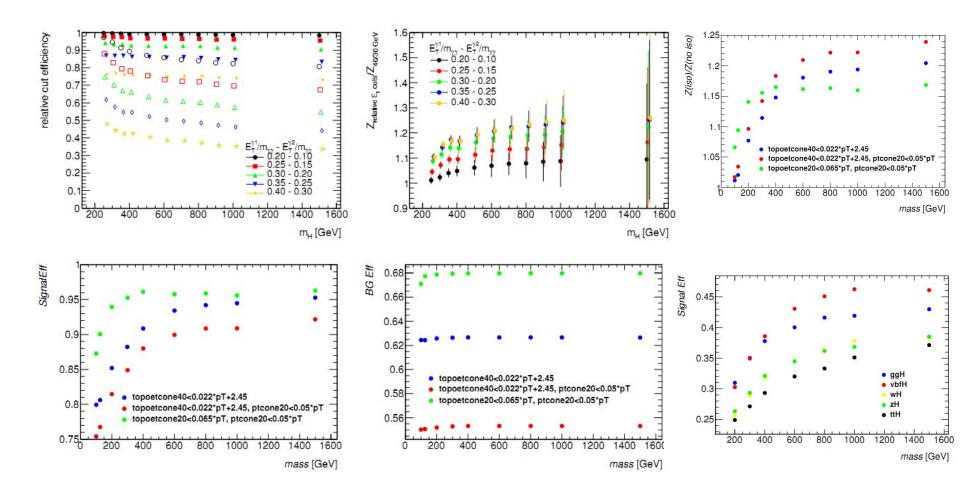



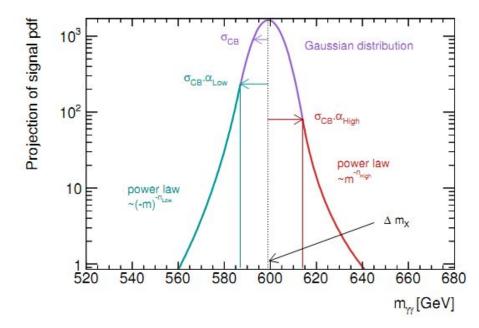
Figure 22: This figure shows the per photon isolation efficiency vs. Photon p_T and the number of primary vertices. Photons are selected to satisfy a tight ID, and fall in the mass range of 125 ± 3.3 GeV.

background modeling(copy)

from dijet analysis

$$f_{k;d}(x; b, \{a_k\}) = (1 - x^d)^b x^{\sum_{j=0}^k a_j \log(x)^j}$$

- spurious sinal, fit goodness
 - use S+B function to fit background sample
 - uncertainty of fitted background number of events $f_{k=0;d=1/3}(x;b,d,\{a_k\}) = (1-x^{1/3})^b x^{a_0}$
 - fitted signal strength
 - user B only function to fit background sample ,
 Chi2/ndf
 - final choice


signal modeling(copy)

Double-Sided Crystal Ball (DSCB)

- asymmetric and non-Gaussian low and high mass tails
- six parameters: μ _{CB}, σ _{CB}, α _{Low}, α _{High}, N_{Low}, N_{High}

$$N \cdot \begin{cases} e^{-t^{2}/2} & \text{if } -\alpha_{Low} \geq t \geq \alpha_{High} \\ \frac{e^{-0.5\alpha_{Low}^{2}}}{\left[\frac{\alpha_{Low}}{n_{Low}}\left(\frac{n_{Low}}{\alpha_{Low}} - \alpha_{Low} - t\right)\right]^{n_{Low}}} & \text{if } t < -\alpha_{Low} \\ \frac{\left[\frac{\alpha_{Low}}{n_{Low}}\left(\frac{n_{Low}}{\alpha_{Low}} - \alpha_{Low} - t\right)\right]^{n_{Low}}}{\left[\frac{\alpha_{High}}{n_{High}}\left(\frac{n_{High}}{\alpha_{High}} - \alpha_{High} + t\right)\right]^{n_{High}}} & \text{if } t > \alpha_{High}, \end{cases}$$

$$t = \Delta m_{X}/\sigma_{CB}, \Delta m_{X} = m_{X} - \mu_{CB}.$$

signal modeling(copy)

- parameter dependence on mass, $m_{nX} = \frac{m_X 100}{100}$.
- Narrow Width Approximation(NWA)

Parameter	Parameterization	a	b	С
Δm_X	$a + bm_{nX} + cm_{nX}^2$	-0.014 ± 0.011	-0.042 ± 0.003	0.0008 ± 0.0003
$\sigma_{\it CB}$	$a + bm_{nX}$	1.528 ± 0.010	0.605 ± 0.002	
α_{Low}	$a+b/(m_{nX}+c)$	1.372 ± 0.013	5.466 ± 1.167	16.431 ± 4.587
n_{Low}	а	5.95		
α_{High}	$a+b/(m_{nX}+c)$	2.305 ± 0.015	-0.451 ± 0.112	2.0652 ± 0.527
n _{High}	а	3.15		

$$\Delta m_{X} = a + bm_{nX} + cm_{nX}^{2}$$

$$\sigma_{CB} = a + bm_{nX}$$

$$\alpha_{Low,High} = a + b/(m_{nX} + c)$$

$$N_{Low,High} = const$$

Large Width

Crystal Ball parameter	Mass-dependence parameter	Value at $\alpha_X = 0.06$	Value at $\alpha_X = 0.10$
A	а	-0.00637	0.901
Δm_X	b	-0.222	-1.19
	c	-0.0200	0.0146
2211	а	3.64	4.19
σ_{CB}	b	2.73	4.12
0.	а	-0.0220	-3.04
α_{Low}	b	30.6	673
	С	24.8	173
n_{Low}		2.5	6
1-110	а	1.26	1.09
α_{Hi}	b	-0.0141	-0.160
	c	-0.803	-0.479
n_{Hi}		2.1	3.39