Weekly Meeting

Qi Li IHEP 1/25/2016

MC status

All are referring to WWγγ

Mass points	smhh	260	275	300	325	350	400	450	500	BKG
status	done	Studyin g	_	_	_	_	Studyin g	_	_	

All the existed studies are for non-res

Cut flow

ϵ — jjlu $\gamma\gamma$	SM Higgs Pair			
Generated	100%			
Trigger	78.5%			
GRL		78.5%		
Detector DQ	Pre-	78.5%		
has PV	slece	78.5%		
2 loose photons	Pre-slecetion	65.0%		
e-y ambiguity	64.4%			
tight ID	53.8%			
Isolation	45.2%			
rel.Pt cuts	43.0%			
Jet Multiplicity	39.2%			
Bveto	28.7%			
Lepton	9.6%			
$105 < m_{\gamma\gamma} < 160$	9.6%			

ϵ — jjjj $\gamma\gamma$	SM Higgs Pair			
Generated	100%			
Trigger	78.5%			
GRL	GRL			
Detector DQ	78.5%			
has PV	sele	78.5%		
2 loose photons	Pre-selection	65.0%		
e-y ambiguity	64.4%			
tight ID	53.8%			
Isolation	45.2%			
rel.Pt cuts	43.0%			
Jet Multiplicity	28.3%			
Bveto	18.0%			
$105 < m_{\gamma\gamma} < 160$	18.0%			

Background Estimation

These are for jjlυγγ

ϵ	ggH	VBF	WH	ZH	ttH
Jet Multiplicity	9.6%	20.7%	15.5%	15.8%	31.4%
Bveto	8.8%	18.4%	12.4%	11.2%	23.8%
Lepton	0.099%	0.20%	1.0%	0.64%	0.93%
$105 < m_{\gamma\gamma} < 160$	0.099%	0.20%	0.99%	0.63%	0.92%

	ggH	VBF	WH	ZH	ttH
Event yeild					

Background Estimation

These are for jjjjγγ

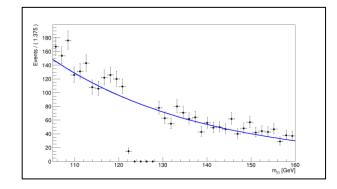
ϵ	ggH	VBF	WH	ZH	ttH
Jet Multiplicity	10.5%	24.5%	17.5%	17.9%	32.3%
Bveto	9.6%	21.7%	14.0%	12.7%	2.4%
$105 < m_{\gamma\gamma} < 160$	9.6%	21.7%	13.9%	12.6%	2.4%

	ggH	VBF	WH	ZH	ttH
Event yeild					

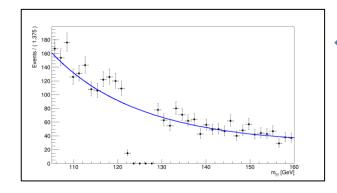
jjlυγγ

- 1) jjluyy ($p_{\mu}^{T} > 10$ GeV, $p_{e}^{T} > 10$ GeV)
 - I. BKG: Sideband, estimated from 2jets+2photons inclusive events

II.
$$\epsilon_{\gamma\gamma}^{B} = 0.1383$$


III.
$$S = \epsilon \times L \times \sigma \times Br(hh \rightarrow WW\gamma\gamma \rightarrow jjjj\gamma\gamma) = 0.130$$

IV.
$$B = \frac{\epsilon_{\gamma\gamma}^B}{1 - \epsilon_{\gamma\gamma}^B} \times 9 = 1.44$$


V.
$$Z = \sqrt{2[(S+B) \times \ln\left(\frac{S+B}{B}\right) - S]} = 0.11$$

$$\epsilon_{\gamma\gamma}^{B} = 0.1300$$

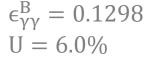
U = 5.9%

The efficiency $\epsilon^B_{\gamma\gamma}$ using e^{ax} for continuous background extracted with 2jets+2photons events

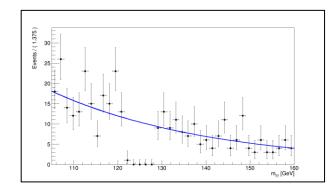
The efficiency $\epsilon_{\gamma\gamma}^B$ using 2nd order e^{ax+bx^2} for continuous background extracted with 2jets+2photons events

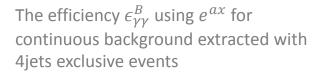
jjjjγγ

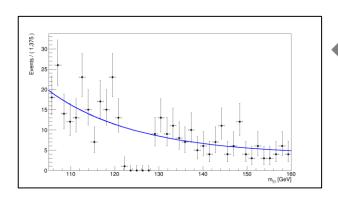
2) jjjjyy


- BKG: Sideband, estimated form 4-jets inclusive events

$$- \epsilon_{\gamma\gamma}^{B} = 0.1382$$


-
$$S = \epsilon \times L \times \sigma \times Br(hh \rightarrow WW\gamma\gamma \rightarrow jjjj\gamma\gamma) = 0.257$$


$$- B = \frac{\epsilon_{\gamma\gamma}^B}{1 - \epsilon_{\gamma\gamma}^B} \times 405 = 65.0$$


$$- Z = \sqrt{2[(S+B) \times \ln\left(\frac{S+B}{B}\right) - S]} = 0.032$$

The efficiency $\epsilon^B_{\gamma\gamma}$ using 2nd order e^{ax+bx^2} for continuous background extracted with 4jets exclusive events

Next to do

- Optimize the cuts at $jjlv\gamma\gamma$
- Extract the uncertainties at jjlυγγ
- Calculate the upper limits at at $j l \nu \gamma \gamma$