Systematics & Spurious signal

Huijun ZHANG

Migration due to systematic

Category	Nominal 4 fb ⁻¹	Migrations	Relatively
TTH hadronic	0.04	0.00	2.07% ± 1.03%
TTH leptonic	0.00	0.00	-
VH 2 leptons	0.00	0.00	-
VH leptonic	0.00	0.00	$2.40\% \pm 14.82\%$
VH MET	0.04	0.00	3.04% ± 1.44%
VH hadronic	2.15	0.06	$2.62\% \pm 0.17\%$
VBF cutbased	0.92	0.02	2.69% ± 0.26%
GGF	154.39	3.96	$2.57\% \pm 0.02\%$
VBF mva high	0.92	0.02	$2.31\% \pm 0.23\%$
VBF mva low	2.43	0.06	2.46% ± 0.15%

Table 96: "PH_EFF_ID_Uncertainty__1up"

- All the systematics on all the processes have been calculated
 - Grouped in: Flavor tagging, Jet, Lepton, MET, Photon related
- Have been added to the Supporting document in the appendix section
- Several general ideas:
 - Photon related systematics should consider inclusively
 - Most analyses need to consider jet related systematics, e.g. VH met, which has no jets requirement
 - Some categories have extremely low statistic, which are hard to see what happened

MVA based category

- The bug I showed last time is fixed. ->due to a issue of unit
- We are planning to import the MVA based categorization for VBF process to the Hgam Framework for h011
- Now we have CatCoup_dev and CatCoup_Moriond2016, maybe we should delete the second one?
- Any changings from other categories? VH_had ?

Spurious signals

- Calculated using HGamTool
 - Using the workspace from Marc
 - 5 different BKG models are tested
- Using the AF2 sample
 - To have more statistics and less bumps on background shape
 - Only consider yy sample, because the yj sample is with low statistic
- Since the scale of the MC is wrong, we rescale the MC to data

spurious signal for t	he model	SS/dS, <20%	SS/S_reference < 1 is the SM expected	0%, which signal yield
Function	S	<pre>max(S/deltaS)</pre>	<pre>max(S/Sref)</pre>	Result
Bern3	0.04	-1.5 %	0.0 %	Pass
Bern4	0.04	1.5 %	0.0 %	Pass
Bern5	0.04	-1.3 %	0.0 %	Pass
ExpPoly1	0.10	-3.8 %	0.1 %	Pass
ExpPoly2	0.05	1.7 %	0.0 %	Pass
Dijet	0.05	2.5 %	0.0 %	Pass

Eunction	S	<pre>max(S/deltaS)</pre>	<pre>max(S/Sref)</pre>	Result
Bern3	40.10	-48.9 %	27.6 %	Fail
Bern4	47.64	53.2 %	32.7 %	Fail
Bern5	52.71	52.2 %	36.1 %	Fail
ExpPoly1	102.37	-126.6 %	71.9 %	Fail
ExpPoly2	49.91	59.9 %	34.3 %	Fail
Dijet	49.51	73.4 %	33.9 %	Fail
==> No PDF	passes all th	ne selections		

sample

tool

Jet systematic for different scenarios

- We are trying to understand the effect of different way to group JES
- thank you to Chris, Tony et al., for the dedicated production of this study
- The 4 scenarios refer to 4 different algorisms of grouping
- The sum-sqrt of each scenario is calculated:
 - If they are similar, we could continue to use the h010 result, which only considered scenario 1
 - Otherwise we may need to consider the JES component one by one
- The calculation is only with VBF and ggH sample
- May need some further discussion with jet experts

GGH

channel	GGF	VBF mva high	VBF mva low
Nominal	154.39	0.92	2.43
Scenario 1	$-0.31\% \pm 0.00\%$	$-0.13\% \pm 0.01\%$	$7.40\% \pm 0.44\%$
Scenario 2	$-0.02\% \pm 0.00\%$	$-7.91\% \pm 0.80\%$	$8.96\% \pm 0.53\%$
Scenario 3	$-0.29\% \pm 0.00\%$	$1.98\% \pm 0.19\%$	$15.87\% \pm 0.93\%$
Scenario 4	$-0.32\%\pm0.00\%$	$1.98\%\pm0.19\%$	$15.87\%\pm0.93\%$

Table 1: "JET_GroupedNP_1__1up"

channel	GGF	VBF mva high	VBF mva low
Nominal	154.39	0.92	2.43
Scenario 1	$-0.04\% \pm 0.00\%$	$0.00\% \pm 0.00\%$	$-3.21\% \pm 0.20\%$
Scenario 2	$0.07\% \pm 0.00\%$	$-8.75\% \pm 0.88\%$	$-11.72\% \pm 0.74\%$
Scenario 3	$0.01\% \pm 0.00\%$	$0.00\% \pm 0.00\%$	$1.41\% \pm 0.09\%$
Scenario 4	$-0.02\%\pm0.00\%$	$0.03\%\pm0.00\%$	$-5.23\%\pm0.32\%$

Table 4: "JET_GroupedNP_2_1down"

channel	GGF	VBF mva high	VBF mva low
Nominal	154.39	0.92	2.43
Scenario 1	$0.17\% \pm 0.00\%$	$-8.72\% \pm 0.88\%$	$-12.55\% \pm 0.79\%$
Scenario 2	$0.13\% \pm 0.00\%$	$-7.71\% \pm 0.78\%$	$-6.28\% \pm 0.39\%$
Scenario 3	$0.26\% \pm 0.00\%$	$-16.76\% \pm 1.74\%$	$-18.68\% \pm 1.20\%$
Scenario 4	$0.29\%\pm0.00\%$	$-16.76\%\pm1.74\%$	$-18.76\% \pm 1.21\%$

GGF VBF mva high VBF mva low channel Nominal 154.390.92 2.43 $10.49\% \pm 0.62\%$ Scenario 1 $-0.05\% \pm 0.00\%$ $6.50\% \pm 0.63\%$ Scenario 2 $-0.12\% \pm 0.00\%$ $-1.69\% \pm 0.17\%$ $12.94\% \pm 0.76\%$ Scenario 3 $0.01\% \pm 0.00\%$ $0.00\% \pm 0.00\%$ $0.00\% \pm 0.00\%$ Scenario 4 $0.00\% \pm 0.00\%$ $0.00\% \pm 0.00\%$ $0.00\% \pm 0.00\%$

Table 2: "JET_GroupedNP_1_1down"

Table 5: "JET_GroupedNP_3__1up"

channel	GGF	VBF mva high	VBF mva low
Nominal	154.39	0.92	2.43
Scenario 1	$0.05\% \pm 0.00\%$	$0.08\% \pm 0.01\%$	$3.09\% \pm 0.19\%$
Scenario 2	$-0.06\% \pm 0.00\%$	$-6.78\% \pm 0.68\%$	$10.64\% \pm 0.63\%$
Scenario 3	$-0.02\% \pm 0.00\%$	$0.00\% \pm 0.00\%$	$-6.19\% \pm 0.38\%$
Scenario 4	$0.03\% \pm 0.00\%$	$0.01\%\pm0.00\%$	$3.11\% \pm 0.19\%$

VBF mva low GGF VBF mva high channel 0.922.43Nominal 154.39 $-15.37\% \pm 0.98\%$ Scenario 1 $0.00\% \pm 0.00\%$ $-2.77\% \pm 0.28\%$ $0.16\% \pm 0.00\%$ $-8.72\% \pm 0.88\%$ $-20.14\% \pm 1.30\%$ Scenario 2 Scenario 3 $-0.02\% \pm 0.00\%$ $0.01\% \pm 0.00\%$ $1.41\% \pm 0.09\%$ $0.00\% \pm 0.00\%$ $0.00\% \pm 0.00\%$ Scenario 4 $0.00\% \pm 0.00\%$

Table 3: "JET_GroupedNP_2__1up"

Table 6: "JET_GroupedNP_3_1down"

	channel	GGF	VBF mva high	VBF mva low
	Nominal	11.50	2.02	2.59
VKF	Scenario 1	$-0.79\%\pm 0.01\%$	$5.10\% \pm 0.10\%$	$5.85\% \pm 0.10\%$
	Scenario 2	$-0.51\% \pm 0.00\%$	$2.32\% \pm 0.04\%$	$3.74\% \pm 0.06\%$
	Scenario 3	$-0.89\% \pm 0.01\%$	$5.93\% \pm 0.11\%$	$8.25\% \pm 0.14\%$
	Scenario 4	$-0.96\% \pm 0.01\%$	$5.91\% \pm 0.11\%$	$8.35\% \pm 0.14\%$

Table 1: "JET_GroupedNP_1__1up"

channel	GGF	VBF mva high	VBF mva low
Nominal	11.50	2.02	2.59
Scenario 1	$0.77\% \pm 0.01\%$	$-3.84\% \pm 0.07\%$	$-4.73\%\pm 0.08\%$
Scenario 2	$0.19\% \pm 0.00\%$	$-2.08\% \pm 0.04\%$	$-3.02\%\pm 0.05\%$
Scenario 3	$0.72\% \pm 0.01\%$	$-6.63\% \pm 0.13\%$	$-6.33\% \pm 0.11\%$
Scenario 4	$0.75\% \pm 0.01\%$	$-6.41\% \pm 0.12\%$	$-6.44\% \pm 0.11\%$

GGF VBF mva high VBF mva low channel 11.50 2.02Nominal 2.59 $4.97\%\pm 0.09\%$ $5.27\% \pm 0.09\%$ Scenario 1 $-0.37\% \pm 0.00\%$ $-0.67\% \pm 0.01\%$ $4.66\% \pm 0.09\%$ $7.19\% \pm 0.12\%$ Scenario 2 Scenario 3 $0.01\% \pm 0.00\%$ $-0.51\% \pm 0.01\%$ $0.06\% \pm 0.00\%$ $0.00\% \pm 0.00\%$ Scenario 4 $0.00\% \pm 0.00\%$ $-0.00\% \pm 0.00\%$

Table 5: "JET_GroupedNP_3__1up"

Table 2: "JET_GroupedNP_1_1down"

channel	GGF	VBF mva high	VBF mva low
Nominal	11.50	2.02	2.59
Scenario 1	$-0.06\% \pm 0.00\%$	$1.27\%\pm 0.02\%$	$0.97\% \pm 0.02\%$
Scenario 2	$-0.65\% \pm 0.01\%$	$3.79\% \pm 0.07\%$	$4.51\% \pm 0.07\%$
Scenario 3	$-0.05\%\pm 0.00\%$	$-0.10\% \pm 0.00\%$	$-0.20\% \pm 0.00\%$
Scenario 4	$-0.19\% \pm 0.00\%$	$1.23\%\pm 0.02\%$	$1.25\%\pm 0.02\%$

Table 3: "JET_GroupedNP_2__1up"

channel	GGF	VBF mva high	VBF mva low
Nominal	11.50	2.02	2.59
Scenario 1	$0.07\% \pm 0.00\%$	$-0.71\% \pm 0.01\%$	$-1.05\%\pm 0.02\%$
Scenario 2	$0.38\% \pm 0.00\%$	$-3.57\% \pm 0.07\%$	$-3.47\% \pm 0.06\%$
Scenario 3	$-0.02\% \pm 0.00\%$	$-0.33\% \pm 0.01\%$	$0.20\%\pm 0.00\%$
Scenario 4	$-0.06\% \pm 0.00\%$	$-1.38\% \pm 0.03\%$	$-0.58\% \pm 0.01\%$

Table 4: "JET_GroupedNP_2_1down"

channel	GGF	VBF mva high	VBF mva low
Nominal	11.50	2.02	2.59
Scenario 1	$0.14\% \pm 0.00\%$	$-4.64\% \pm 0.09\%$	$-4.23\%\pm 0.07\%$
Scenario 2	$0.36\% \pm 0.00\%$	$0.24\%\pm0.00\%$	$0.48\% \pm 0.01\%$
Scenario 3	$-0.03\% \pm 0.00\%$	$0.23\%\pm0.00\%$	$0.00\% \pm 0.00\%$
Scenario 4	$-0.09\% \pm 0.00\%$	$0.00\% \pm 0.00\%$	$0.00\% \pm 0.00\%$

Table 6: "JET_GroupedNP_3_1down"

On VBF

• GGH

• VBF_high

• VBF_low

Scenario(%)	1	2	3	4	
Up	0.87	1.06	0.89	0.98	
down	0.78	0.55	0.72	0.76	
	4	2	2	4	
Scenario(%)	1	Z	3	4	
Up	7.2	6.5	5.9	6.0	
down	6.0	4.2	6.6	6.6	
Scenario(%)	1	2	3	4	
Up	8.0	9.2	8.3	8.5	
down	6.4	4.6	6.3	6.4	

On ggH sample

• GGH

• VBF_high

• VBF_low

		$\overline{}$		
Scenario	1	2	3	4
Up	0.31	0.13	0.29	0.32
down	0.17	0.21	0.26	0.29
Scenario	1	2	3	4
Up	6.5	10.0	2.0	2.0
down	9.1	14.5	16.8	16.8
Scenario	1	2	3	4
Up	16.7	19.0	17.0	16.2
down	20.0	24.1	18.1	19.0

Backup

• Some preliminary results

Spurious signals • The tool still have some bugs(cannot select the best function automatically) and under developing

