VBF Theoretical Systematics

Yaquan Fang (IHEP), Jin Wang (USYD), Yu Zhang (IHEP)

2016/2/29

IHEP Weekly Meeting

1

ggF+2jets cross section uncertainty

- Higher-order perturbative correction uncertainty for ggF+2jets cross section
 - missing higher-order perturbative corrections to the ggF+2jets prediction
- Vary the scale between mH=2 to 2mH in MCFM to evaluate the uncertainty
 - use Stewart-Tackmann method
 - differential cross section covariance matrix in 29 bins of $\Delta \phi_{\gamma\gamma,jj}$ generated using MCFM at NLO : uncert_i*corr(i,j)*uncert_j gives uncertainty
 - the covariance between the total cross section, the exclusive 2 jet cross section (= the cumulant), and the inclusive 3 jet cross section (= the inverted cumulant) are fully determined
 - the cumulant uncertainties are translated into differential uncertainties in $\Delta \phi_{\gamma\gamma,ii}$
 - $\Delta \phi_{\gamma\gamma,ij}$ is binned up for > 2.94 to avoid the highest uncertainty and negative cross section
 - need to find the $\Delta \phi_{\gamma\gamma,ii}$ region with current BDT cuts

ggF+2jets cross section uncertainty

• $\Delta \phi_{\gamma\gamma,ii}$ in loose and tight VBF category

- Obtained ggF+2jets cross section uncertainty
 - loose VBF: 25.5%
 - tight VBF: 39.5%

IHEP Weekly Meeting

Mis-modeling of $\Delta \phi_{ij}$ and η^*

- 4
- The angular correlation between the two jets is not well modeled by powheg+pythia8
 - the second jet in the generation of ggF events by powheg-box+pythia8 predominantly comes from the parton shower generated by pythia8
 - reweighting the nominal gluon fusion POWHEG sample to MINLO HJJ, which models the second jet in gluon fusion to NLO accuracy

Variable comparison between 8TeV and 13TeV

- Simple propagation from 8TeV reweighting function does not look like a good solution due to the difference between 8TeV and 13TeV
 - need MinoNLO jj samples from 13TeV

IHEP Weekly Meeting

2016/3/1