Unbinned fit in Zy boosted analysis

Xiaohu SUN IHEP 2016-04-05

New rel pT cut

- Background has a reduction of ~40%
- Signal has small loss in low mass; but large loss in high mass

Before After Rel pT cut	before	after
MC (Sherpa y+jet)	425.659	243.565

BKG (MC)

- Compare background shapce m(Jy) with MC before/after relative pT cut
- Large reduction appears since intermediate mass region

Expectation limit changes

Limit changes before/after relative pT cut

Expectation limit changes (ratio)

Limit changes before/after relative pT cut

Observation

P0 against mass

Edge effects

- Use different fitting range (starting point), check the variation on expected limits
- Take into account the signal eff loss due to the fit range

Additional singlet

- Additional singlet
- One lighter Higgs h, the other is heavier H
- I calculated xs (scaling from SM values, regardless EW corrections); Nikos provided BRs with sHDECAY
- I developed codes for a friendly interface
 - To be release this week
 - https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsBSMSingletrecomme ndations
- For now, no interpolation is implemented; so user has to query phase points only defined in our grid
 - Help() function states everything
 - Get xs: s.xs("PROCESS_NAME", mh2, sinalpha);
 - Get br: s.br("PROPERTIES", mh2, tanbeta, sinalpha);

Singlet

 An example of BR (h2_BR_Zgam) vs tanBeta given a certain sinAlpha

Backup

Edge effects

- Use different fitting range (starting point), check the variation on expected limits
- NOT take into account the signal eff loss due to the fit range

