weekly report

outline

- resolved $Z(qq)\gamma$
- categorization on high-mass diphoton

Introduction

- Selection(preliminary, not decided)
 - GRL,DQ,PV, trigger:HLT_g120_loose
 - Photon:
 - pT>125GeV, |eta|<2.37,remove crack region
 - Author, OQ, Ambiguity, Tight ID
 - Isolation: FixedCutCaloOnly, topoetcone40<0.022*Et+2.45GeV
 - Jet:
 - pT>25GeV, |eta|<4.4, JVT>0.64, jet cleaning
 - Overlap Removal
 - Overlap removal with boost analysis
- Normalization
 - scale factor ~1.4 is used on mc

dijet combination

- four strategy
 - ①leading dijet
 - ②dijet closest to Z mass
 - ③leading and another closest jet
 - ④leading and another jet to reconstruct best M_Z
- use ④ finally. rate of correct match with truth in table

$\langle S^2 \rangle = \frac{1}{2} \int \frac{(\hat{y}_s(y) - \hat{y}_b(y))^2}{\hat{y}_s(y) + \hat{y}_b(y)} dy$ optimization

- separation power and correlation of candidate variables
 - can get them easily from TMVA, but failed due to memory

issue	•	discussion
variables	separation power	M_yj1 correlated to Myjj
M_yj1	0.637	many variables correlated to photon pt
M_yjj	0.625	corr in signal : jj_pt 0.488 jet1_pt 0.379
photon_pt	0.597	 Proton puis powerful than relative puis dR ii is not powerful
HT_yj2	0.578	 > definitely, mjj will be used
HT_yjj	0.564	first use photon_pt and mjj to optimize
HT_yj1	0.556	
dPt_y_j2	0.519	
jj_pt	0.492	
pT_yj2	0.455	
jet1_pt	0.375	
dPt_jj	0.263	
dR ii	0 190	

optimization

- strategy
 - significance improvement : eff(s)/sqrt[eff(b)], since no assumption on signal cross section
 - first scan photon pt cut, then scan mjj cut
 - working point : photon pt > 300 GeV, |Z mass-90| < 18 GeV</p>

signal efficiency and upper limit

8

- rough etsimation on upper limit (plan to tight the selection)
 - sqrt(bkg yields)/eff(s)/lumi, bkg yields is number of events in [700,800]GeV, 9136 events, upper limit is 221 fb, worse

	signal efficiency absolute (relative)	than boost68% or 95%	$\begin{array}{c} 1000 \\ 10$
pre-selection and remove boost	0.539(0.539)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
photon pt	0.335(0.622)	bad resolution ×	$m_{\gamma jj}$ 10 ³ <i>ATLAS</i> Internal $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ <i></i> Observed <i></i> Expected
Z mass	0.206(0.613)	σ(<u>gg</u> →X)×BR	10^2 $\pm 1\sigma$ expected $\pm 2\sigma$ expected 10
yjj mass in [700,800]	0.135(0.655) [⊭]		unbinned 500 1000 1500 2000 2500 300 m. [GeV]

discussion

- dR_jj and dPt_jj seem to have low power after photon pt cut
- myjj has bad resolution
- plan to do a fit on m_yjj and obtain the resolution

jet multiplicity

• data/mc comparison on jet multiplicity in different mass range

Njet

10

categorization on 750GeV diphoton11

- two strategy
 - 0jet,1jet,>=2jet
 - BB(two photons in |eta|<0.75),nBB
- normalize
 - signal ggH750_W6p, scale to fitted signal yield
 - bkg: irreducible bkg from Sherpa DP (92.6%)
 - : reducible bkg from RevID(fail ID, but pass other cut
- jet multiplicity reweight

jet multiplicity

- solid line is data , dashed iline is MC
- statisitc error is dominant in high mass region

fraction of jet component

13

reweight

- take the distribution of jet multiplicity in [600,700] as that in [700,800]
- data-sideband as signal distribution
- scale MC signal to data-sideband
- reweight number of jet in diphoton MC

result

count the signal and bkg yield in [700,800]

	0jet	1jet	>=2jet	reweight inclusive	inclusive
signal	8.86	2.81	4.23	15.90	16.12
bkg	3.28	3.88	6.00	13.16	12.77
significance	3.75	1.29	1.56	3.77	3.82
combined		4.26		improve: 13%	improve: 11.5%

result

- jet multiplicity reweight on signal and bkg(diphoton)
- count the signal and bkg number in [700,800]GeV
- before reweight

	inc	0jet	1jet	>=2jet	BB	nBB
signal	16.12	2.89	5.50	7.33	5.79	10.33
bkg	13.16	3.28	3.88	6.00	3.11	10.05
signif	3.82	1.42	2.36	2.70	2.67	2.86
comb	3.82	3.85(improve:0.79%)			3.91(2	2.36%)

only reweight signal

	inc	0jet	1jet	>=2jet	BB	nBB
signal	15.90	8.86	2.81	4.23	5.68	10.22
bkg	13.16	3.28	3.88	6.00	3.11	10.05
signif	3.77	3.75	1.29	1.57	2.63	2.83
comb	3.77	4.27(improve:13.26%)			3.86(2	2.39%)

result

17

• only reweight signal

	inc	0jet	1jet	>=2jet	BB	nBB
signal	15.90	8.86	2.81	4.23	5.68	10.22
bkg	13.16	3.28	3.88	6.00	3.11	10.05
signif	3.77	3.75	1.29	1.57	2.63	2.83
comb	3.77	4.27(improve:13.26%)			3.86(2	2.39%)

reweight both signal and bkg(diphoton)

	inc	0jet	1jet	>=2jet	BB	nBB
signal	15.90	8.86	2.81	4.23	5.68	10.22
bkg	13.11	3.78	3.82	5.51	3.09	10.02
signif	3.78	3.58	1.30	1.62	2.63	2.83
comb	3.78	4.14(improve:9.52%)			3.86(2	2.39%)

eta category

- According study from other group, it seems that mc is higher than data in some region and it results in lower significance.
- The improvement in eta category needs to be compared with other group:
- https://indico.cern.ch/event/527796/ (Wednesday)
- https://indico.cern.ch/event/522132/ (Tuesday)
- Hongtao's result seems still ~15%
- https://indico.cern.ch/event/527796/contributions/2165185/attachments/1271237/188 5236/eta_categorization_update_wisconsin.pdf

Summary

Zgam

- determine the dijet combination
- use photon pt and mjj to do the first optimization
- upper limit is 221fb (I think it is 68% upper limit...)
- 750GeV diphoton
 - with mc based method , ~10% improvement in jet category after jet multiplicity reweight , while ~2% improvement in eta category .
- to do
 - Zgam:
 - test further selection
 - do CB+GA fit and obtain the resolution
 - 750 diphoton: spurious signal and fit quality
 - VBF : estimated the contribution of NLO EW background

back up---fit on data

0jet, 1jet, >=2jet

data

	0jet	1jet	>=2jet	inclusive
signal	10.32	3.95	2.04	16.27
bkg	2.53	3.24	5.65	11.52
significance	4.59	1.89	0.82	4.05
combined		5.03		improve:24%