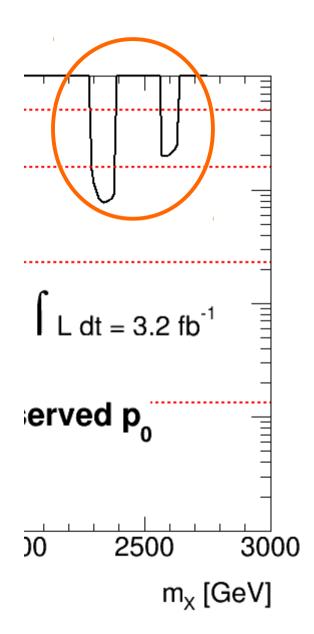

Unbinned fit in Zy boosted analysis

Xiaohu SUN IHEP 2016-06-13

p0 issue @ 2.6TeV

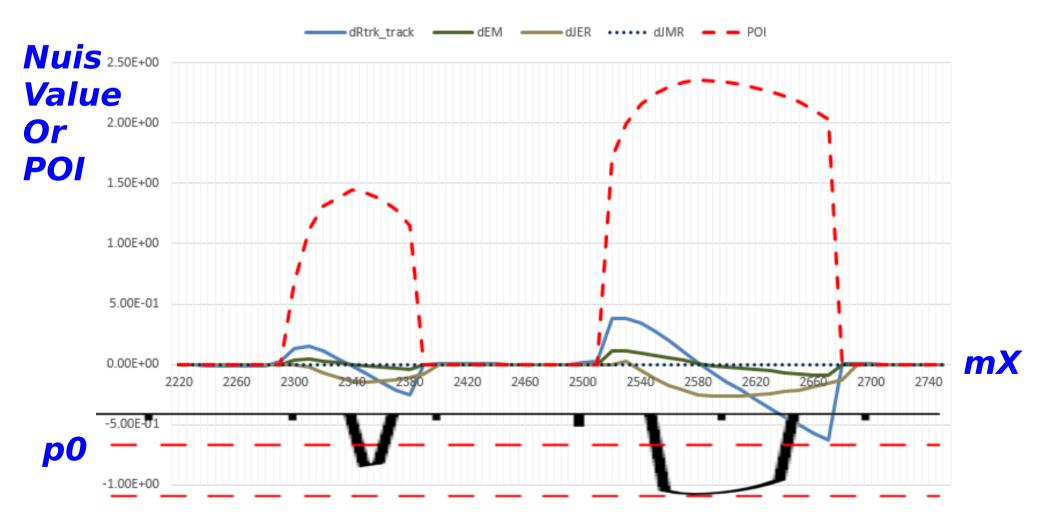
Bill asked:

Fig 13 b shows p-values where the event at 2.35 TeV makes a deltafunction spike, while that at 2.6 TeV is much broader.



Add ghost events at 2339GeV

@ ~2339GeV, there is only one event in data

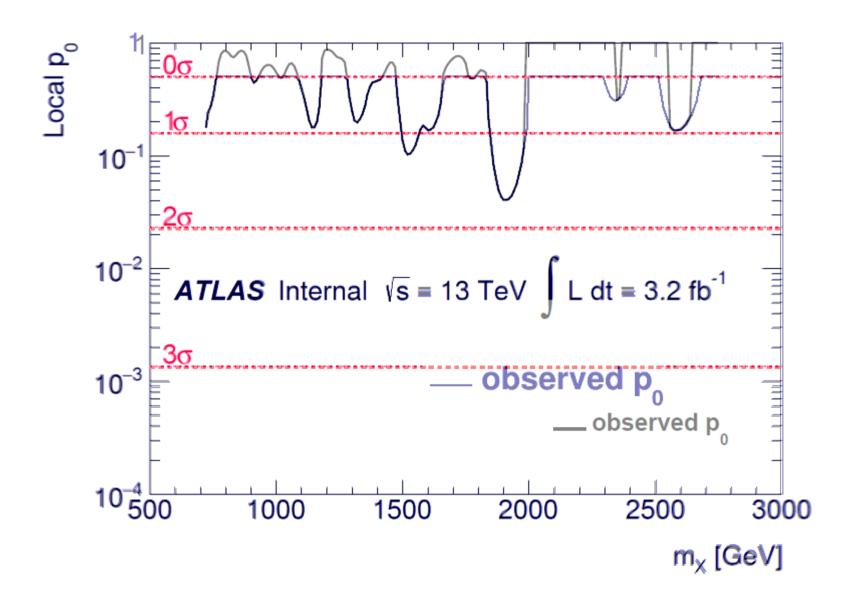

Test with larger data excess

Add one ghost event @ 2339 GeV, width and height increase

Check on nuisance parameters

Following experts' suggestions, check best fitted nuis value vs mX dRtrk_track,dEM affect CB mean dJER affects CB sigma dJMR affects CB acceptance
Nuisance parameters behave expected

Yet another script


Use a simple script to get p0 (capped) Run AsymptoticCalculator

Much more stable in low stats region

Compare the two scripts

The previous fancy script (uncapped p0) is on bottom in black. The new simply script (capped p0) is on top in blue.

SM Higgs coupling combination

Xiaohu SUN IHEP 2016-06-13

Structure

People start to play with workspaces separately Had first EB meeting last Tuesday morning Had first presents last Wednesday afternoon

Currently:

Using Stefan's tool: Carsten Lydia Xiaohu Kaili

Using Haoshuang's tool Jared Jana

Introduction

• First looks at the available workspaces and try to understand

• Modify POIs for mu scheme tests

• Make 2D likelihood contours

HGam workspace

- Version: /afs/cern.ch/atlas/project/HSG7/Run2/Kickoff2016/ HGam/WS-HGam-Coupling.root
- POIs (in ModelConfig):
 - · mu (handler of all CATs and production modes)
 - · mu XS ggH
 - · mu_XS_VBF
 - · mu XS WH
 - · mu_XS_ZH
 - · mu_XS_ttH
 - mH (125.09 Constant)
- Other POIs (not in ModelConfig):
 - · mu_XS_tHjb
 - · mu_XS_WtH
 - · mu_XS_bbH
- · Categories: 10 in total
- Very complicated workspace, print out pdf in tree mode ~26K lines

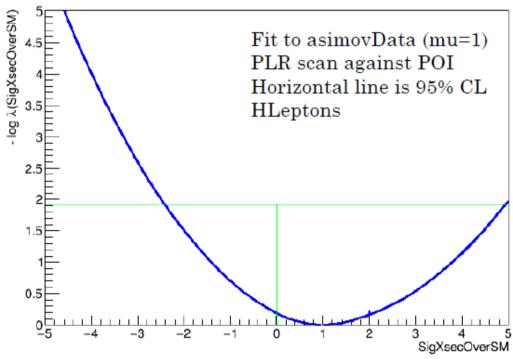
HLepton workspace

- Version /afs/cern.ch/atlas/project/HSG7/Run2/Kickoff2016/ HLeptons/125.root
- POIs (in ModelConfig):
 - SigXsecOverSM (overall handler)
- Other POIs (not in ModelConfig):
 - mu_XS13_ggH_tautau
 - mu_XS13_VBF_tautau
- Categories: 11 in total

Hbb workspace

- Version /afs/cern.ch/atlas/project/HSG7/Run2/Kickoff2016/ Hbb/125.root
- POIs (in ModelConfig):
 - SigXsecOverSM (overall handler)
- Other POIs (not in ModelConfig):
 - · Not found
- · Categories: 18 in total
- Only VH production

Test upper limits (asymptotics)

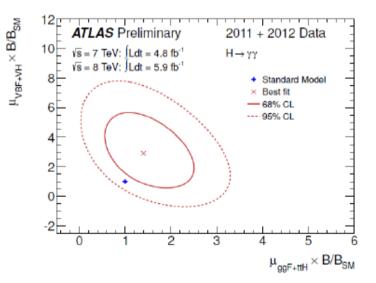

HGam (fit to AsimovSB)	HLeptons (fit to asimovData)	Hbb (fit to asimovData)
+2sigma: 1.74951	+2sigma: 7.39782	+2sigma: 4.32901
+1sigma: 1.1711	+1sigma: 5.47943	+1sigma: 3.13592
-1sigma: 0.580113	-1sigma: 2.82468	-1sigma: 1.5975
-2sigma: 0.432113	-2sigma: 2.10404	-2sigma: 1.18994
Median: 0.805091	Median: 3.92015	Median: 2.21704

Set one POI in each channel
Only use *overall handler* to get the upper limits
Remove any production-mode mu_XXX parameters in POI

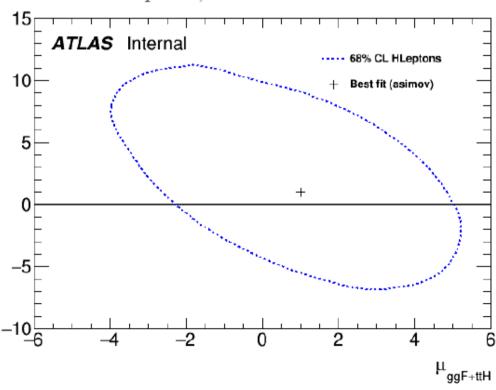
Use Aaron's iterative method to extract limits with asymptotic approx.

1D PLR scan

- So far only HLeptons succeeded
- In HLeptons, use only one overall handler as POI to make PLR scan



2D contour


- · Likelihood contour @ 68% CL
- Below is from ATLAS-CONF-2012-127

µvBF+VH

- Group mu_ggF & mu_ttH
- Group mu_VBF & mu_VH

- · Test with only Hleptons
 - Switch off overall handler: SigXsecOverSM
 - Switch on channels handlers (use 2 POIs): mu_XS13_ggH_tautau mu_XS13_VBF_tautau
- · asimovData (mu=1) is used
- Tried HGam+HLeptons and Hbb+HLeptons, fit failure

Summary

- · First looks at available workspaces
- Tested modifying POIs: switch on/off, rename/correlate
- Tested making 2D likelihood contour with mu grouping
- Need workspaces without systematics: essential to make combination and test POI parametrization detaching huge amount of nuisance parameters
- Need domain analyzers to provide knowledge: POI and categories;
 Datasets
- Need to think how to parametrize current POI to accommodate our plan (mu scheme, SXS); mu scheme example as below

Combination parametrization	HGam	HLepton	Hbb
mu_ggH_ttH	mu_XS_ggH, mu_XS_ttH	mu_XS13_ggH_ta utau	-
mu_VBF_VH	mu_XS_VBF, mu_XS_WH, mu_XS_ZH	mu_XS13_VBF_ta utau	${\bf SigXsecOverSM}$

Backup