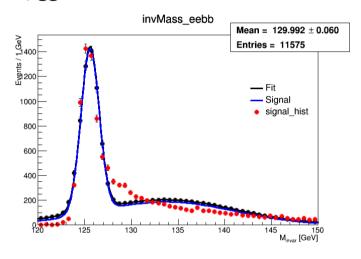
Update for Combination Measurement of CEPC

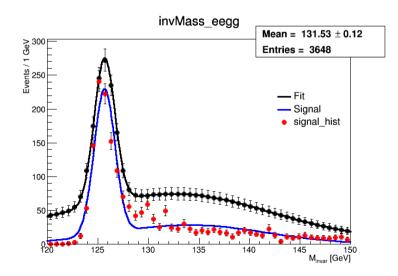
ZhangKaili

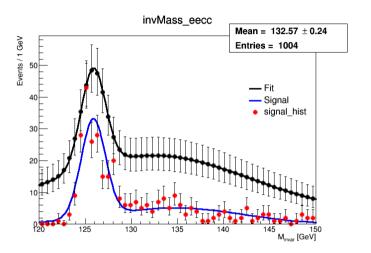
IHEP

2016-08-08

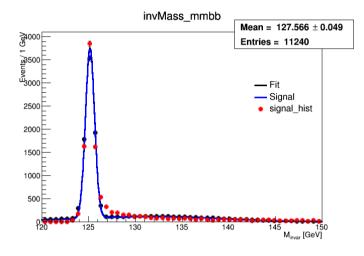
Dilepton channel like ee and emu have no specific Br so not included

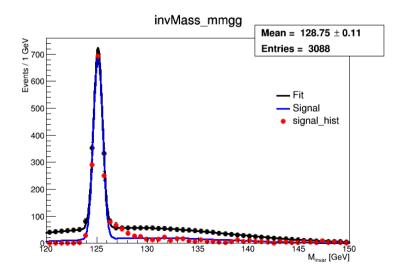

Subchannels Table

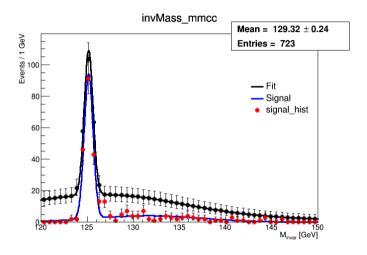

Signal		ما ما ما	Who	Chahua	Signal		a la la v	Who	Chatara
Z	Н	abbr.	takes charge	Status	Z	Н	abbr.	takes charge	Status
ee	bb	eebb	ZhonVing	Considering Algorithm method.	VV	ZZ(Iljj)	VVZZ		need rescale
	СС	eecc			μμ	ZZ(vvjj)	μμΖΖ	Yuqian	
	gg	eegg			ee	ZZ(vvjj)	eeZZ		
μμ	bb	mmbb	ZhenXing		μμ	WW(μνμν)		Libo	need rescale
	СС	mmcc				WW(evev)			
	gg	mmgg				WW(evμv)			
qq	bb	qqbb	Bai Yu		ee	WW(μνμν)			Undergoing
	СС	qqcc				WW(evev)		Libo	
	gg	qqgg				WW(evμv)			
II		llaa			μμ	ττ	μμττ	Dan	
vv	γγ	nnaa	Feng		Inclusive	μμ		Cui	July
qq		qqaa			qq	ZZ(vvvv)		Mo Xin	July

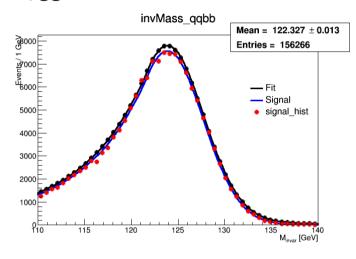

No new data updates since 7.25

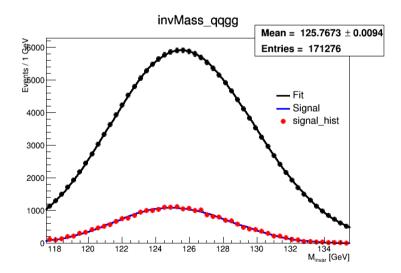
In code we use cb pdf to decribe signal shape, check the accuracy;
Plot the signal histogram to compare

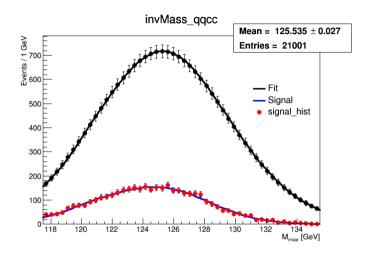

ee+bb/cc/gg

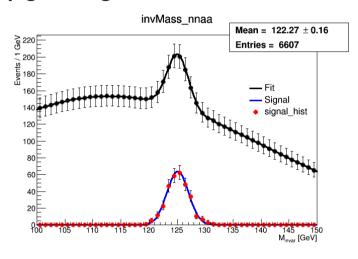


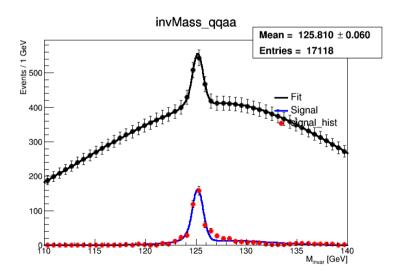


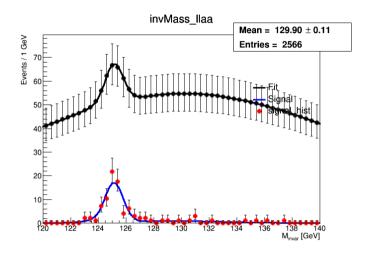

μμ+bb/cc/gg



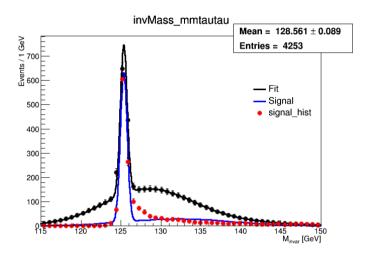


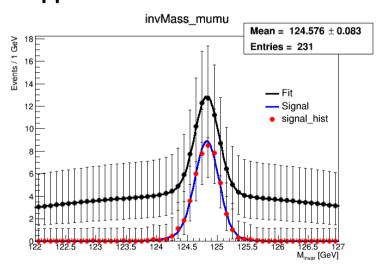

qq+bb/cc/gg



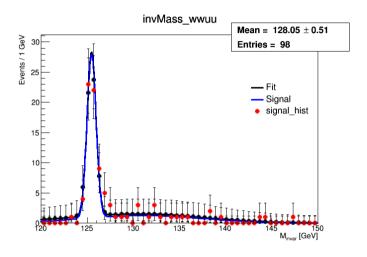


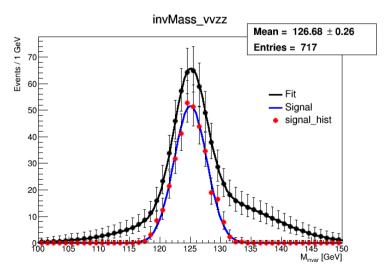
II/vv/qq+gammagamma

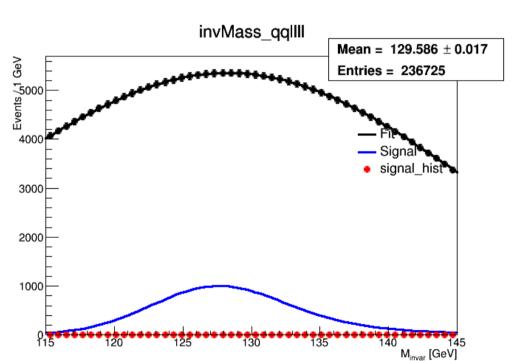




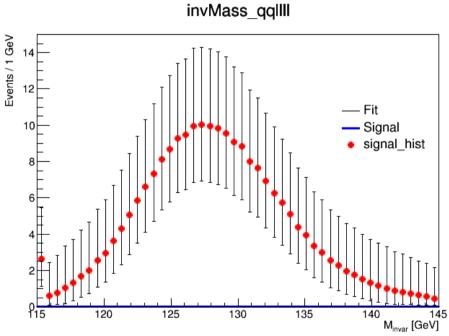
Ww channel seems bkg no pdf; (only 6 events)
Need rescale;


μμ+ττ


Inclusive+μμ


WW combined

vv+ZZ


For qqllll channel, it contains lots bkg with Z peak~90GeV, to exclude this, choose signal window >115GeV (precison from 255% to 160%)

For signal pdf, most of them fit well Need better description?

For bkg pdf, meet a problem about scaling.

Show next week.

~230000 bkg and 225 signal, Amplify signal 100 times for demonstration;

bb/cc/gg fit method

ZhenXing and Yu used template fit, in μμ channel

Will repeat 2000 times

```
COVARIANCE MATRIX CALCULATED SUCCESSFULLY-
           FCN=-238312 FROM HESSE
                                  STATUS=0K
                                                    35 CALLS
                                                                   192 TOTAL
           ERROR MATRIX ACCURATE-
                                            STRATEGY= 1
            EXT PARAMETER
                                                  INTERNAL
                                                              INTERNAL-
                NAME
                         VALUE
                                        ERROR
                                                  STEP SIZE
                                                               VALUE-
           NO.
               nbka1
                      2.16588e+03
                                      4.76443e+01
                                                  5.00000e-01 -1.61065e+00-
Nsig1: Bb
               nbka2
                          2.12553e+03
                                     1.71672e+02
                                                  1.19328e-03 1.53428e-01
Nsig2: Cc
               nsig1
                                                  1.25816e-03 -8.18957e-03-
                          1.23162e+04
                                     1.18378e+02
            4 nsiq2
                                    5.66060e+01 2.19926e-03 -1.53002e-01
                          5.57837e+02
Nsig3: Gg
             5 nsig3
                          1.80757e+03 1.42506e+02
                                                  1.10861e-03 -1.16318e-02-
            NPAR= 5
                                                      ERR DEF=0.5
           EXTERNAL ERROR MATRIX.
                                 NDIM=
                                      25
           9.994e+01 9.536e+01 -2.771e+01 -1.143e+02 -4.269e+02
           9.536e+01 2.978e+04 -4.184e+03 -4.414e+03 -1.990e+04
           -2.771e+01 -4.184e+03 1.401e+04 2.188e+02 2.514e+03
           -1.143e+02 -4.414e+03 2.188e+02 3.243e+03 2.529e+03
           -4.269e+02 -1.990e+04 2.514e+03 2.529e+03 2.048e+04
           PARAMETER CORRELATION COEFFICIENTS
           GLOBAL
                              1
           - - 1 0.49632 1.000 0.055 -0.023 -0.201 -0.298
                                                                  bb/cc
                                                                           :3.2%?
           2 0.86566 0.055 1.000 -0.205 -0.449 -0.806
                                                                  Cc/gg
                                                                           :31%?
           3 0.22314 -0.023 -0.205 1.000 0.032 0.148
                                                                  Bb/gg
                                                                           :14.8%?
           4 0.51981 -0.201 -0.449
                                       0.032
                                             1.000
                                                   0.310-
           5 0.85280 -0.298 -0.806
                                       0.148
                                              0.310 1.000
```

bb/cc/gg fit method

Another fit

COVARIANCE MATRIX CALCULATED SUCCESSFULLY-FCN=-235743 FROM HESSE 41 CALLS 308 TOTAL-STATUS=0K - | - - | - - | - - | - - | - - | - - | EDM=0.00033392 STRATEGY= 1 ERROR MATRIX ACCURATE-INTERNAL **EXT PARAMETER** INTERNAL-VALUE FRR0R VALUE-NO. NAME STEP SIZE nbkg1 2.20908e+03 4.70116e+01 2.00000e-01 4.13434e+00nbka2 1.73041e+03 1.69403e+02 3.03572e-02 -2.18784e-01nsig1 1.21641e+04 1.17684e+02 2.52624e-03 1.37713e-03 nsig2 5.99942e+02 5.93700e+01 5.15570e-02 -1.02559e-01 nsig3 2.08108e+03 1.58169e+02 1.16489e-02 3.01938e-01 EXTERNAL ERROR MATRIX. NDTM= 25 NPAR= ERR DEF=0.5 1.492e+04 -2.088e+03 6.798e+02 2.728e+03 -2.088e+03 2.901e+04 -4.284e+03 -4.584e+03 -2.039e+04 6.798e+02 -4.284e+03 1.385e+04 3.339e+02 2.905e+03-2.728e+03 -4.584e+03 3.339e+02 3.567e+03 3.866e+03¬ 1.014e+04 -2.039e+04 2.905e+03 3.866e+03 2.530e+04-CORRELATION COEFFICIENTS PARAMETER NO. GLOBAL 5-3 4 0.74674 1.000 - 0.1000.047 0.374 0.522 bb/cc :4.7%? -0.100 1.000 -0.214 -0.451 -0.7530.86409 Cc/gg :40.7%? 0.23181 0.047 - 0.214 1.0000.155 0.047 0.58674 Bb/gg 0.374 - 0.451 0.0471.000 0.407 :15.5%? 0.88208 $0.522 - 0.753 \quad 0.155$ 0.407 1.000-Currently I didn't use this.

16/8/8

Nsig1: Bb

Nsig2: Cc

Nsig3: Gg

Discussion

- Checklist
 - Examine the pdf shape used in fit Crystal ball(seems OK), exp2, other form......
 - Nuisance parameter, and their effect on event yields.
 - Next step will try to introduce the NP ATLAS used in CEPC's analysis.
 - The template fit
 - Next step will import the mH distribution from their fit
- Coupling Constant

Signal events check

Н	Z	Ntuple	Theory (before cut)	Newer version	
bb		10853	20586		
СС	ee	319	961		
gg		1176	3062		
bb		10773	20586	12326	
СС	μμ	283	961	615	
gg		1815	3062	1755	
bb		148749	428876		
СС	qq	3887	20034		
gg		25564	63812		
	II	90	164		
γγ	VV	328	488		
	qq	630	1707		
ZZ(IIjj)	vv	563	548+54.8*		
WW(μνμν)		52	77		
WW(evev)	μμ	36	77		
WW(evμv)		105	154		
ττ	μμ	1658	2257		
ZZ(vvvv)	qq	225	784		
μμ	Inclusive	47	233		

Theoretic number calculated by 1.06e6(5000ifb)*Br Which recorded in PDG or Pre_CDR.

*WW fusion contributes ~10%.

Current $\frac{\Delta(Br*CrossX)}{Br*CrossX}$ Fit result

CrossSection Precision set to 0.5%; For 5000ifb;

	Fit type	μ	μ_bb	μ_cc	μ_gg	μ_zz	μ <u>_</u> aa	μ_tt	μ_ww	invisible	μμ
Му	$\frac{\Delta Br}{Br}$	0.554%	0.558%	3.083%	1.339%	6.472%	7.475%	1.790%	11.161%	160%	19.4%
	$\frac{\Delta(Br*CrossX)}{Br*CrossX}$	0.239%	0.248%	3.042%	1.242%	6.452%	7.458%	1.719%	11.151%	160%	19.4%
CDR's	$\frac{\Delta Br}{Br}$	\	0.57%	2.30%	1.70%	6.90%	9.00%	1.3%	1.60%*	0.28%	17%
	$\frac{\Delta(Br*CrossX)}{Br*CrossX}$	0.28%	0.28%	2.20%	1.60%	6.90%	9.00%	1.2%	1.50%*	/	17%

^{*}All WW channels included.