

April 2-4, 2016

Evolution equation for quasi PDF

Rui-Lin Zhu

In collaboration with Prof. Xiangdong Ji, Prof. Wei Wang, Shuai Zhao

Shanghai Jiao Tong University

QCD Study Group 2016

Content

Over a content of a content of

Collinear factorization

Cross section for some hard process in hadron-hadron collisions

$$\sigma = \int dx_1 f_{q/p}(x_1, \mu^2) \int dx_2 f_{\bar{q}/\bar{p}}(x_2, \mu^2) \,\hat{\sigma}(x_1 p_1, x_2 p_2, \mu^2) \,, \quad \hat{s} = x_1 x_2 s$$

- ► Measure total cross section ↔ need to know PDFs to be able to test hard part (e.g. Higgs electroweak couplings).

*****Parton distribution function (PDF)

> Defined on light cone, i.e. in the infinite momentum frame

$$q(x) \sim \lim_{P_z \to \infty} \int \mathrm{d}^2 k_\perp \mathrm{d} k^z n(\vec{k}, P^z) \delta(x - k^z/P^z) \; .$$

Fundamental field operators description

$$q(x,\mu^{2}) = \int \frac{d\xi^{-}}{4\pi} e^{-i\xi^{-}xP^{+}} \langle P|\overline{\psi}(\xi^{-})\gamma^{+}\mathcal{P}\exp\left(-ig\int_{0}^{\xi^{-}}d\eta A^{+}(\eta)\right)\psi(0)|P\rangle ,$$

$$xg(x,\mu^{2}) = \int \frac{d\xi^{-}}{2\pi P^{z}} e^{-i\xi^{-}xP^{+}} \langle P|G_{\mu}^{+}(\xi^{-})\mathcal{P}\exp\left(-ig\int_{0}^{\xi^{-}}d\eta A^{+}(\eta)\right)G^{\mu+}(0)|P\rangle ,$$

Non local, time dependent, on light cone

*****Other Methods to extract PDF

> Nucleon's wave function (wave function is model-dependent)

$$|P\rangle = \sum_{n\alpha,\lambda_i} \int \prod_i \frac{\mathrm{d}x_i \mathrm{d}^2 k_{\perp i}}{\sqrt{2x_i}(2\pi)^3} \psi_{n\alpha}(x_i, k_{\perp i}, \lambda_i) \left| n\alpha : x_i P^+, k_{\perp,i}, \lambda_i \right\rangle$$

- > Operator product expansion (only limited to the first few moments)
- > Lattice calculation (can not be performed on light cone)
- Large momentum effective theory (LaMET)

quasi PDFs related to light cone PDF s can be measured on lattice X.D Ji,PRL110,262002(2013);

> Definition (nonlocal, time independent, related to Lattice measurements)

$$\tilde{q}(x,\mu^2,P^z) = \int \frac{dz}{4\pi} e^{izxP^z} \langle P|\overline{\psi}(z)\gamma^z \mathcal{P} \exp\left(-ig\int_0^z dz'_z A^z(z')\right)\psi(0)|P\rangle ,$$

$$x \tilde{g}(x,\mu^2,P^z) = \int \frac{dz}{2\pi} e^{izxP^z} \langle P | G^z_{\ \mu}(z) \mathcal{P} \exp\left(-ig \int_0^z dz'_z A^z(z')\right) G^{\mu z}(0) | P \rangle \ ,$$

X.D Ji, PRL110, 262002(2013); Xiong-Ji-Zhang-Zhao, PRD90, 014051(2014)

Finite momentum

> Large scale : Pz, Λ

> Matching condition exists between quasi PDF and light cone PDF.

Current progresses in Quasi PDF

> Matching between quasi PDF and light cone PDF (Non-singlet)

$$\tilde{q}(x,\Lambda,P^z) = \int_{-1}^{1} \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\Lambda}{P^z},\frac{\mu}{P^z}\right) q(y,\mu)$$

X.N.Xiong, X.D.Ji, J.H.Zhang, Y.Zhao, PRD90,014051(2014)

- > Quasi distribution factorization, Y.Q. Ma, J.W. Qiu, arXiv:1404.6860
- General quasi PDF: Ji –Schafer-Xiong –Zhang,PRD92,014039(2015)
- Renormalization of quasi PDF: Ji-Zhang, PRD92,034006(2015)
- Quasi TMD PDF:Ji-Sun-Xiong-Yuan,PRD91,074009(2015)
- Quasi DA of Heavy Quarkonia, Y. Jia, X.N. Xiong, arXiv:1511.04430
- > Non-dipolar Wilson links for Quasi PDF: H.N. Li, arXiv:1602.075075
- Lattice QCD: Chen-Cohen-Ji-Lin-Zhang, arXiv:1603.06664; PRD92,014502(2015);K.F. Liu, arXiv:1603.07352
- **>** And so on:
- Many challenging problems: renormalization, light-cone divergences (see talks of Prof. X.N. Li and Dr. J.H. Zhang)

✤Quasi PDF to light cone PDF

> quark quasi distribution matching equation (Xiong-Ji-Zhang-Zhao2015)

$$\tilde{q}(x,\mu^2,P^z) = \int_0^1 \frac{dy}{|y|} Z_{QQ}\left(\frac{x}{y},\frac{\mu}{P^z}\right) q(y,\mu^2)$$

> gluon quasi distribution matching equation

$$\tilde{g}(x,\mu^2,P^z) = \int_0^1 \frac{dy}{|y|} Z_{GG}\left(\frac{x}{y},\frac{\mu}{P^z}\right) g(x,\mu^2) + \mathcal{O}\left(\Lambda^2/(P^z)^2, M^2/(P^z)^2\right) ,$$

✤Quark to quark (Xiong-Ji-Zhang-Zhao2015)

✤Quark to quark (Xiong-Ji-Zhang-Zhao2015)

$$Z^{(1)}(\xi)/C_F = \left(\frac{1+\xi^2}{1-\xi}\right) \ln \frac{\xi}{\xi-1} + 1 + \frac{1}{(1-\xi)^2} \frac{\Lambda}{P^z}, \qquad \text{For } \xi > 1,$$

$$Z^{(1)}(\xi)/C_F = \left(\frac{1+\xi^2}{1-\xi}\right) \ln \frac{(P^z)^2}{\mu^2} + \left(\frac{1+\xi^2}{1-\xi}\right) \ln[4\xi(1-\xi)] - \frac{2\xi}{1-\xi} + 1 + \frac{\Lambda}{(1-\xi)^2 P^z}, \qquad 0 < \xi < 1$$

$$Z^{(1)}(\xi)/C_F = \left(\frac{1+\xi^2}{1-\xi}\right) \ln \frac{\xi-1}{\xi} - 1 + \frac{\Lambda}{(1-\xi)^2 P^z}.$$
 If or $\xi < 0$

♦ Gluon to Gluon

 μ_1, c_1

including both gauge links and non-abelian contributions

$$G_{\mu\nu} = T^a G^a_{\mu\nu} = -\frac{i}{g} [D_\mu, D_\nu] = T^a (\partial_\mu A^a_\nu - \partial_\nu A^a_\mu - g f_{abc} A^b_\mu A^c_\nu).$$

✤Quark to Gluon, Gluon to Quark

*Take an example

$$g_2 = \frac{\alpha_S C_F}{2x\pi} \left\{ \begin{array}{ll} 0 \ , & x > 1 \ {\rm or} \ x < 0 \ , \\ \frac{x^2(x+1)}{x-1} \log \left(\frac{m^2 \left(x^2 - x + 1 \right)}{\Lambda^2} \right) \ , & 0 < x < 1 \ , \end{array} \right.$$

$$\tilde{g}_{2} = \frac{\alpha_{S}C_{F}}{2x\pi} \begin{cases} \frac{x((x+1)\log(\frac{x-1}{x})x+2x-1)}{x-1} - \frac{x\Lambda}{(x-1)p^{z}}, & x > 1, \\ \frac{x^{2}(x+1)}{x-1}\log(\frac{m^{2}(x^{2}+1-x)}{4x(1-x)(p^{z})^{2}}) + \frac{x(2x^{2}-2x+1)}{x-1} - \frac{x\Lambda}{(x-1)p^{z}}, & 0 < x < 1, \\ -\frac{x(x(x+1)\log(\frac{x-1}{x})+2x-1)}{x-1} - \frac{x\Lambda}{(x-1)p^{z}}, & x < 0, \end{cases}$$

✤Quasi PDF evolution equation

$$\begin{array}{ll} \displaystyle \frac{d}{d\log p^z} \tilde{q}(x,p^z) &= \displaystyle \frac{\alpha_s}{\pi} \int \frac{dy}{y} \left[\tilde{P}_{q\leftarrow q}(y) \tilde{q} \left(\frac{x}{y}, \frac{\mu}{P^z} \right) + \tilde{P}_{q\leftarrow g}(y) \tilde{g} \left(\frac{x}{y}, \frac{\mu}{P^z} \right) \right] , \\ \displaystyle \frac{d}{d\log p^z} \tilde{\tilde{q}}(x,p^z) &= \displaystyle \frac{\alpha_s}{\pi} \int \frac{dy}{y} \left[\tilde{P}_{q\leftarrow q}(y) \tilde{q} \left(\frac{x}{y}, \frac{\mu}{P^z} \right) + \tilde{P}_{q\leftarrow g}(y) \tilde{g} \left(\frac{x}{y}, \frac{\mu}{P^z} \right) \right] , \\ \displaystyle \frac{d}{d\log p^z} \tilde{g}(x,p^z) &= \displaystyle \frac{\alpha_s}{\pi} \int \frac{dy}{y} \left[\tilde{P}_{q\leftarrow q}(y) \sum_f \left(\tilde{q}_f \left(\frac{x}{y}, \frac{\mu}{P^z} \right) + \tilde{q}_f \left(\frac{x}{y}, \frac{\mu}{P^z} \right) \right) + \tilde{P}_{q\leftarrow g}(y) \tilde{g} \left(\frac{x}{y}, \frac{\mu}{P^z} \right) \right] \\ \text{We found that:} \\ \text{Pz evolution kernels} \\ \text{are identical to} \\ \text{Splitting func. of PDF} \quad \tilde{P}_{q\leftarrow g}(y) &= C_F \begin{cases} 0, & y > 1 \text{ or } y < 0 , \\ \frac{1+y^2}{(1-y)^2} + \frac{3}{2}\delta(1-y) , & 0 < y \leq 1 . \end{cases} \\ \tilde{P}_{g\leftarrow q}(y) &= C_F \begin{cases} 0, & y > 1 \text{ or } y < 0 , \\ \frac{y^2 + (1-y)^2}{y} , & 0 < y \leq 1 . \end{cases} \\ \tilde{P}_{g\leftarrow q}(y) &= C_F \begin{cases} 0, & y > 1 \text{ or } y < 0 , \\ \frac{1+(1-y)^2}{y} , & 0 < y \leq 1 . \end{cases} \\ \tilde{P}_{g\leftarrow g}(y) &= C_F \begin{cases} 0, & y > 1 \text{ or } y < 0 , \\ \frac{1+(1-y)^2}{y} , & 0 < y \leq 1 . \end{cases} \\ \tilde{P}_{g\leftarrow g}(y) &= \left\{ \begin{array}{c} 0, & y > 1 \text{ or } y < 0 , \\ \frac{2C_A(1-y+y^2)^2}{y(1-y)^+} + \frac{\beta_0}{2}\delta(1-y) , & 0 < y \leq 1 . \end{array} \right\} \\ \tilde{P}_{g\leftarrow g}(y) &= \left\{ \begin{array}{c} 0, & y > 1 \text{ or } y < 0 , \\ \frac{2C_A(1-y+y^2)^2}{y(1-y)^+} + \frac{\beta_0}{2}\delta(1-y) , & 0 < y \leq 1 . \end{cases} \right\} \end{array} \right\}$$

\$ Quasi PDFs link light cone PDFs and Lattice measurements

Many progresses are made in the last three years

The Pz evolution equation of Quasi PDFs is obtained.

Thank you for your attention!