Theories for heavy quarkonium production

Yan-Qing Ma

Peking University

QCD study group 2016, Shanghai Jiao Tong University, Shanghai, Apr. 2nd, 2016

Heavy quarkonium

> Bound state of $Q\overline{Q}$ pair under strong interaction

Eg: $J/\psi \ \psi', \chi_{cJ}, \Upsilon(nS), \chi_{bJ}(nP) \cdots$

- ✓ The simplest system in QCD: two-body problem
- ✓ "Hydrogen atom in QCD", "an ideal laboratory in QCD"

Property

> A non-relativistic QCD system: $v \ll 1$

Charmonium: $v^2 \approx 0.3$

Bottomonium: $v^2 \approx 0.1$

SJTU, Apr. 2nd, 2016

> Multiple well-separated scales :

Quark mass:MMomentum:MvMvMv >> Mv >> Mv^2 $\sim \Lambda_{QCD}$ Energy:Mv²

Involving both perturbative and nonperturbative physics

> Production: ideal to understand hadronization, to study QGP **Historical theories for quarkonium production**

1. 1974 - Discovery of J/ψ **, CSM and CEM**

CSM: IR divergence, ψ' surplus

Einhorn, Ellis (1975), Chang (1980), Berger, Jone (1981), ...

CEM: wrong for ratio Fritzsch (1977), Halzen (1977), ...

2. 1994 - NRQCD Bodwin, Braaten, Lepage, 9407339, ...

No divergence up to now, solving many puzzles

Plain NRQCD fails when $p_T \gg M$ or $p_T \ll M$, leak all order proof

3. 2014 -

High p_T : collinear factorization Flem

Kang, Qiu, Sterman, 1109.1520 Fleming, Leibovich, Mehen, Rothstein 1207.2578 Kang, YQM, Qiu, Sterman, 1401.0923, ...

Low p_T : **CGC+NRQCD** Kang, YQM, Venugopalan, 1309.7337 Qiu, Sun, Xiao, Yuan, 1310.2230, ...

.....: ?????

SJTU, Apr. 2nd, 2016

I. NRQCD: what we learned from NLO?

II. High p_T : collinear factorization up to NLP

Outline

III. Low p_T : CGC+NRQCD

SJTU, Apr. 2nd, 2016

IV. Improved CEM: Renaissance of CEM? (New)

Mainly talk about production in hadron colliders!

NRQCD Factorization

Factorization formula

Bodwin, Braaten, Lepage, 9407339

> LO NRQCD: polarization puzzle

• Dominated by ${}^{3}S_{1}^{[8]}$, LO NRQCD predicts transversely

CDF, 0704.0638

polarized J/ψ , contradicts with CDF data

 J/ψ @hadron colliders

FIG. 4 (color online). Prompt polarizations as functions of p_T : (a) J/ψ and (b) $\psi(2S)$. The band (line) is the prediction from NRQCD [4] (the k_T -factorization model [9]).

History of high order calculation: pp collision

• 0703113: Campbell, Maltoni, Tramontano

NLO, cross section, S-wave

• 0802.3727: Gong, Wang

NLO, polarization, S-wave

• 0806.3282: Artoisenet, Campbell, Lansberg, Maltoni, Tramontano

NNLO*, S-wave

- 1002.3987: YQM, Wang, Chao
- 1009.3655: YQM, Wang, Chao
- 1009.5662: Butenschöen, Kniehl

NOT fully comprehensive!!!

Complete NLO (S- and P-wave), cross section

- 1201.1872: Butenschöen, Kniehl
- 1201.2675: Chao,YQM,Shao,Wang,Zhang
- 1205.6682: Gong,Wan,Wang,Zhang

SJTU, Apr. 2nd, 2016

Complete NLO (S- and P-wave), with polarization

Discovery (1): large correction at high p_T

> S-wave (
$${}^{3}S_{1}^{[1]}$$
):

 Large corrections are found for NLO and NNLO*

Campbell, Maltoni, Tramontano, 0703113, Artoisenet, Campbell, Lansberg, Maltoni, Tramontano, 0806.3282

P-wave (³P^[1,8]_{J=0,1,2}): Large NLO corrections are found

• Large NLO corrections are found for both CS and CO channel

YQM, Wang, Chao, 1002.3987 YQM, Wang, Chao, 1009.3655 Butenschöen, Kniehl, 1009.5662

- NLO predictions significantly different from LO
- How reliable is the perturbative expansion?

collinear factorization, p_T expansion (Part II)

SJTU, Apr. 2nd, 2016

Discovery (2): failure at low p_T

♦ When p_T ≪ m_H, fixed order gives
 ^{dσ}/_{dp_T} ∝ ¹/_{p_T}, data goes to zero
 ♦ Naively, fixed order calculation can describe data with p_T ≥ m_H
 ♦ For J/ψ (m_{J/ψ} = 3.1GeV) production,

NLO calculation found only to well

describe data with $p_T > 7 \text{GeV}$

SJTU, Apr. 2nd, 2016

YQM, Wang, Chao, 1009.3655 Gong,Wan,Wang,Zhang,1205.6682 Bodwin, Chung, Kim, Lee, 1403.3612 Faccioli,Knunz,Lourenco,Seixas,Wohri,1403.3970

• How to understand low p_T data? Saturation effect (Part III)

Discovery (3): J/ψ polarization

• Fit to J/ψ cross section requires a very small

$$M_{1} = \langle O\left({}^{3}S_{1}^{[8]} \right) \rangle - 0.56 \left\langle O\left({}^{3}\boldsymbol{P}_{0}^{[8]} \right) \right\rangle / m_{c}^{2}$$

YQM, Wang, Chao, 1009.3655

Transverse polarization proportional to

SJTU, Apr. 2nd, 2016

$$\mathsf{M'}_{1} = \langle O\left(\ {}^{3}\mathsf{S}_{1}^{[8]} \right) \rangle - 0.52 \left\langle O\left(\ {}^{3}\boldsymbol{P}_{0}^{[8]} \right) \right\rangle / m_{c}^{2}$$

Chao,YQM,Shao,Wang,Zhang,1201.2675

• Cross section requires small transverse polarization consistent with data!!!

Explain J/ψ polarization

> Transverse polarization cancelled between ${}^{3}S_{1}^{[8]}$ and ${}^{3}P_{I}^{[8]}$ channel, ${}^{1}S_{0}^{[8]}$ may dominate

Chao, YQM, Shao, Wang, Zhang, 1201.2675

${}^{1}S_{0}^{[8]}$ dominant mechanism: agreed by new studies

SJTU, Apr. 2nd, 2016

χ_{cJ} @hadron colliders

- $\succ \chi_{cJ} \text{ production: } d\sigma_{\chi_{cJ}} \approx d\hat{\sigma}_{_{3P_{I}^{[1]}}} \langle O\left({}^{_{3}P_{0}^{[1]}} \right) \rangle + (2J+1)d\hat{\sigma}_{_{3S_{1}^{[8]}}} \langle O\left({}^{_{3}S_{1}^{[8]}} \right) \rangle$
 - $\langle O\left({}^{3}P_{0}^{[1]} \right) \rangle$: can be determined by potential model
 - $\langle O\left({}^{3}S_{1}^{[8]} \right) \rangle$: a number, the only free parameter, fit $d\sigma_{\chi_{c2}}/d\sigma_{\chi_{c1}}$ data

SJTU, Apr. 2nd, 2016

Prediction

Comparison with new data

ATLAS, 1404.7035

Perfect agreement!

NRQCD: summary

- Most puzzles can be understood qualitatively at NLO
 - Including J/ψ polarization puzzle

> Fails at very high p_T or very low p_T region

• Other methods are needed for these extreme regions

> Leak all order proof of NRQCD factorization

• Factorization correct at least up to NNLO Nayak, Qiu, Sterman, 0509021

I. NRQCD: what we learned from NLO?

II. High p_T : collinear factorization up to NLP

III. Low p_T : CGC+NRQCD

IV. Improved CEM: Renaissance of CEM? (New)

Collinear factorization for high p_T production

- > When $p_T \gg m$, power expansion m^2/p_T^2 first, then α_s
- Leading power: collinear factorization, single parton fragmentation
 Collins, Soper (1982) Braaten, Yuan, 9303205

NLP: important for heavy quarkonium produciton
Kang, Qiu, Sterman, 1109.1520

SJTU, Apr. 2nd, 2016

A rigorous collinear factorization method up to NLP

Kang, YQM, Qiu, Sterman, 1401.0923 Kang, YQM, Qiu, Sterman, 1411.2456

Nayak, Qiu, Sterman, 0509021

Collinear factorization approach

> Ideas:

> Factorization correct to all order

Qiu, Sterman (1991) Kang, YQM, Qiu, Sterman, 1401.0923

Factorization

> Factorization formalism:

 $\kappa = v, a, t$ for spin, and 1, 8 for color.

Kang, YQM, Qiu, Sterman, 1401.0923

> Independence of the factorization scale:

 $\frac{d}{d\ln(\mu)}\sigma_{A+B\to HX}(P_T) = 0$

> Evolution equations at NLP:

produce pair between $[1/p_T, 1/m_Q]$

$$\frac{d}{d\ln\mu^2} D_{H/f}(z, m_Q, \mu) = \sum_j \frac{\alpha_s}{2\pi} \gamma_{f \to j}(z) \otimes D_{H/j}(z, m_Q, \mu) + \frac{1}{\mu^2} \sum_{[Q\bar{Q}(\kappa)]} \frac{\alpha_s^2}{(2\pi)^2} \Gamma_{f \to [Q\bar{Q}(\kappa)]}(z, \zeta, \zeta') \otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_Q, \mu)$$

Evolution

$$\frac{d}{d\ln\mu^2} \mathcal{D}_{H/[Q\bar{Q}(c)]}(z,\zeta,\zeta',m_Q,\mu) = \sum_{[Q\bar{Q}(\kappa)]} \frac{\alpha_s}{2\pi} K_{[Q\bar{Q}(c)]\to[Q\bar{Q}(\kappa)]}(z,\zeta,\zeta') \otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z,\zeta,\zeta',m_Q,\mu)$$

Large $log(p_T/m)$: can be resumed by solving evolution equation

SJTU, Apr. 2nd, 2016

Calculation of short-distance hard parts in pQCD: Kang, YQM, Qiu, Sterman, 1411.2456

- Power series in α_s , without large logarithms
- LO is now available for all partonic channels

> Calculation of evolution kernels in pQCD:

Kang, YQM, Qiu, Sterman, 1401.0923

• Power series in α_s , without large logarithms

SJTU, Apr. 2nd, 2016

• LO is now available for both mixing kernels and pair evolution kernels of all spin states of heavy quark pairs

> Universality of input fragmentation functions at the initial scale μ_0

\succ FFs at μ_0 : fit from data

- Complicated: different quarkonium states require different input distributions!
- > NRQCD factorization: plausible at $\mu_0 \sim m_Q$

Apply NRQCD to the input distributions at initial scale

NLO is now available for all channels

SJTU, Apr. 2nd, 2016

YQM, Zhang, Qiu, 1311.7078 YQM, Zhang, Qiu, 1401.0524 YQM, Zhang, Qiu, 1501.04556

• For CS to CS channel, see also Deshan Yang's talk

Reproducing plain NRQCD

YQM, Qiu, Sterman, Zhang, 1407.0383 LO LP+NLP comparing with NLO NRQCD

SJTU, Apr. 2nd, 2016

The collinear factorization framework is ready to use, potentially better convergence

A lot of works to be done!

Solving the double parton evolution equations Resummation of $log(p_T/m)$

Calculating hard parts to NLO

SJTU, Apr. 2nd, 2016

Before resummation, potentially can reproduce NNLO NRQCD

Global analysis, based on collinear factorization formalism including NLP and evolution

- I. NRQCD: what we learned from NLO?
- II. High p_T : collinear factorization up to NLP

III. Low p_T : CGC+NRQCD

IV. Improved CEM: Renaissance of CEM? (New)

Low p_T quarkonium production

\succ Moderate p_T region: fine

> Small p_T region

- When $p_T \ll m_H$, fixed order gives
 - $\frac{d\sigma}{dp_T} \propto \frac{1}{p_T}$, data goes to zero
- Far from understood
- Dominate the total cross section

Small p_T v.s. small x

Sudakov double logarithm

Berger, Qiu, Wang, 0404158 Sun, Yuan, Yuan, 1210.3432 Watanabe, Xiao, 1507.06564

- Sudakov resummation: $\log^2(p_T/m_H)$ important at small p_T regime
- Sudakov resummation can be dominant for Y production
- But, itself still hard to describe the J/ψ production
- > Why $\log^2(p_T/m_H)$ resummation is not enough?
 - Total cross section is free of $\log(p_T/m_H)$
- Total cross section can be negative
- Fixed order NRQCD fails to explain data
- Small-x effect can be important

• The only large logarithm is log(x)

SJTU, Apr. 2nd, 2016

CGC effective field theory

Color Glass Condensate

McLerran, Venugopalan, 9309289

• A tool to deal with small-*x* physics

SJTU, Apr. 2nd, 2016

- An effective field theory of QCD: separate $x < x_0$ configuration from $x > x_0$ configuration
- Small-x configuration: large saturation scale, perturbatively calculable
- ◆ Large-*x* configuration: Δt⁺ ~ 1/(k⁻) = 2k⁺/(k²)/(k²) ~ x, life time of parton is long, determined before the collision, randomly distributed, CGC average
 ◆ JIMWLK evolution: guarantees the separation point x₀ independence

> NRQCD factorization:

Kang, YQM, Venugopalan, 1309.7337 Qiu, Sun, Xiao, Yuan, 1310.2230

• Control the formation of quarkonium from $Q\bar{Q}$ -pair

CGC+NRQCD

$$d\sigma_H = \sum_{\kappa} d\hat{\sigma}^{\kappa} \langle \mathcal{O}^H_{\kappa} \rangle$$

Via many channels, both CS and CO

> CGC: production of $c\bar{c}$ -pair

Using CGC to calculate gluon distribution
 Small *x* resummation is accounted by solving JIMWLK or BK evolution equations

Dilute-dense formula at LO

Kang, YQM, Venugopalan, 1309.7337 Short distance for CS channels in CGC

$$\frac{d\hat{\sigma}^{\kappa}}{d^{2}\boldsymbol{p}_{\perp}dy} \stackrel{\text{CS}}{=} \frac{\alpha_{s}\pi R_{A}^{2}}{(2\pi)^{7}(N_{c}^{2}-1)} \int_{\boldsymbol{k}_{1\perp}} \frac{\varphi_{p,y_{p}}(\boldsymbol{k}_{1\perp})}{k_{1\perp}^{2}} \int_{\boldsymbol{\Delta}_{\perp},\boldsymbol{r}_{\perp},\boldsymbol{r}_{\perp}'} e^{-i(\boldsymbol{p}_{\perp}-\boldsymbol{k}_{1\perp})\cdot\boldsymbol{\Delta}_{\perp}} \times \left(Q_{\frac{\boldsymbol{r}_{\perp}}{2},\boldsymbol{\Delta}_{\perp}+\frac{\boldsymbol{r}_{\perp}'}{2},\boldsymbol{\Delta}_{\perp}-\frac{\boldsymbol{r}_{\perp}'}{2},-\frac{\boldsymbol{r}_{\perp}}{2}} - D_{\boldsymbol{r}_{\perp}}D_{\boldsymbol{r}_{\perp}'}\right)\Gamma_{1}^{\kappa},$$

Short distance for CO channels in CGC

$$\frac{d\hat{\sigma}^{\kappa}}{d^2\boldsymbol{p}_{\perp}dy} \stackrel{\text{CO}}{=} \frac{\alpha_s(\pi R_A^2)}{(2\pi)^7 (N_c^2 - 1)} \int_{\boldsymbol{k}_{1\perp}, \boldsymbol{k}_{\perp}} \frac{\varphi_{p,y_p}(\boldsymbol{k}_{1\perp})}{k_{1\perp}^2} \mathcal{N}(\boldsymbol{k}_{\perp}) \mathcal{N}(\boldsymbol{p}_{\perp} - \boldsymbol{k}_{1\perp} - \boldsymbol{k}_{\perp}) \Gamma_8^{\kappa}$$

Scope of application:

SJTU, Apr. 2nd, 2016

- High energy p+A or p+p collision
- Quarkonium produced in forward rapidity region

High p_T and NLO

With LO calculation: can only describe small p_T region data!

✓ No final state radiation

SJTU, Apr. 2nd, 2016

Correct only if initial state radiation dominate (*p_T* can not be much larger than the saturation scale)
 NLO calculation is needed for CGC+NRQCD formula to give a consistent description of full *p_T* region

J/ψ **@p+p:** p_T dependence

> Agree with all small p_T data

YQM, Venugopalan, 1408.4075

- ✓ Evolution of peaks agree!
- At moderate *p_T* region,
 smoothly matches with pQCD
 calculation: NLO NRQCD
- ✓ J/ψ production at all p_T region can be described now!

RHIC data at central rapidity: agreement is not very good

As expected: CGC+NRQCD good for high energy and forward rapidity

SJTU, Apr. 2nd, 2016

J/ψ @p+A: p_T dependence

Solution States Agree with all small p_T data, similar to p+p

- ✓ Evolution of peaks agree!
 ✓ At moderate p_T region,
 smoothly matches with pQCD
 calculation: NLO NRQCD
 - ✓ J/ψ production at all p_T region can be described

Small p_T : summary

> NRQCD+CGC: rigorous method for small p_T

- Good description for J/ψ production at p+p and p+A collisions
- Is there a rigorous method for A+A collision?
- To descripe Y production, Sudakov resummation is needed
 - Sudakov resummation in CEM+CGC : Watanabe, Xiao, 1507.06564
 - How to resum in NRQCD+CGC?

> Apply for other quarkonium states is possible

Plenty of data at LHC

SJTU, Apr. 2nd, 2016

> NLO calculation in CGC+NRQCD framework is important!!

- I. NRQCD: what we learned from NLO?
- II. High p_T : collinear factorization up to NLP
- III. Low p_T : CGC+NRQCD

IV. Improved CEM: Renaissance of CEM? (New)

≻ CEM:

• A fixed fraction to become ψ if the invariant mass of $c\bar{c}$ -pair is below the *D*-meson threshold

CEM

$$\frac{d\sigma_{\psi}(P)}{d^3P} = F_{\psi} \int_{2m_c}^{2M_D} dM \frac{d\sigma_{c\bar{c}}(M,P)}{dMd^3P}$$

- > Nice features of CEM:
 - 1. Simply and intuitive
 - **2.** Factorization holds to all order in α_s Collins, Soper, Sterman, NPB(1986)
 - 3. Naturally predicts quarkonium to be unpolarized

But Wrong prediction for ratio of two quarkonia: constant

SJTU, Apr. 2nd, 2016

Picture

YQM, Vogt, In progress

General diagram

- *P_S*: exchanged soft gluons
- P_X : emitted soft gluons
- $\blacklozenge P = P_S + P_X + P_{\psi}$

Kinematics

Expectation values

P = (M, 0, 0, 0) $\langle P_S \rangle = (\langle P_S^0 \rangle, 0, 0, 0)$ $\langle P_X \rangle = (\langle P_X^0 \rangle, 0, 0, 0)$ $\langle P_\psi \rangle = (\langle P_\psi^0 \rangle, 0, 0, 0)$

• $\langle P_S^0 \rangle \approx 0$: energy of exchanged soft gluons • $\langle P_X^0 \rangle > 0$: energy of emitted soft gluons

\succ Lower limit for *M*

SJTU, Apr. 2nd, 2016

 $M > M - \langle P_X^0 \rangle = \langle P_{\psi}^0 \rangle > M_{\psi}$

On average, hadronization of quarkonium happens by only emitting energy!

Improved CEM

> More precisely

YQM, Vogt, In progress

$$\langle P_{\psi} \rangle = \frac{M_{\psi}}{M}P + O(\Lambda_{\rm QCD}^2/M)$$

> The model:

$$\frac{d\sigma_{\psi}(P)}{d^{3}P} = F_{\psi} \int_{M_{\psi}}^{2M_{D}} d^{3}P' dM \frac{d\sigma_{c\bar{c}}(M,P')}{dMd^{3}P'} \delta^{3}(P - \frac{M_{\psi}}{M}P')$$

Comparing with traditional CEM

$$\frac{d\sigma_{\psi}(P)}{d^3P} = F_{\psi} \int_{2m_c}^{2M_D} dM \frac{d\sigma_{c\bar{c}}(M,P)}{dMd^3P}$$

SJTU, Apr. 2nd, 2016

Comparing with data

YQM, Vogt, In progress

Ratio explained by I-CEM!

Improved CEM: summary

- Inherit all nice features of CEM
 - Simple, factorization, polarization
- > Can describe cross section ratio $\sigma_{\psi(2S)}/\sigma_{J/\psi}$
- > More studies are needed!

Thank you!

Hadronization

> Produced at initial:

- Partons
- > Observed by detector:
 - Hadrons

SJTU, Apr. 2nd, 2016

- Hadronization in QCD
- > Why hadronization? How hadronization?
 - Study hadron production!

Factorization and hadronization models

Short-distance and long distance parts

> Approximation: on-shell pair + hadronization

$$\sigma_{AB \to H+X} = \sum_{n} \int_{n} d\Gamma_{(Q\bar{Q})_{n}} \left[\frac{d\hat{\sigma}(Q^{2})}{d\Gamma_{(Q\bar{Q})_{n}}} \right] F_{(Q\bar{Q})_{n} \to H} \left(p_{Q}, p_{\bar{Q}}, P_{H} \right)$$

Hadronization: isolated from perturbative effects

SJTU, Apr. 2nd, 2016

• Different treatment for F: different factorization model

J/ψ@hadron colliders

$> {}^{1}S_{0}^{[8]}$ dominant mechanism:

✓ agreed by new studies

CGC+CEM

> CEM:

SJTU, Apr. 2nd, 2016

Fujii, Gelis, Venugopalan, 0603099 Fujii, Watanabe, 1304.2221 Ducloue, Lappi, Mantysaari, 1503.02789 Watanabe, Xiao, 1507.06564

• A fixed fraction to become J/ψ if the invariant mass of

 $c\bar{c}$ -pair is below the *D*-meson threshold

$$\frac{d\sigma_{J/\psi}}{d^2\boldsymbol{p}_{\perp}dy} = F_{J/\psi} \int_{4m_c^2}^{4m_D^2} dM^2 \frac{d\sigma_{c\bar{c}}}{dM^2 d^2 \boldsymbol{p}_{\perp}dy}$$

> CGC: production of $c\bar{c}$ -pair

Using CGC to calculate gluon distribution

Small x resummation is accounted by solving JIMWLK or BK evolution equations

CGC+CEM

≻ CEM:

Fujii, Gelis, Venugopalan, 0603099 Fujii, Watanabe, 1304.2221 Ducloue, Lappi, Mantysaari, 1503.02789 Watanabe, Xiao, 1507.06564

• A fixed fraction to become J/ψ if the invariant mass of

 $c\bar{c}$ -pair is below the *D*-meson threshold

$$\frac{d\sigma_{J/\psi}}{d^2\boldsymbol{p}_{\perp}dy} = F_{J/\psi} \int_{4m_c^2}^{4m_D^2} dM^2 \frac{d\sigma_{c\bar{c}}}{dM^2 d^2 \boldsymbol{p}_{\perp}dy}$$

A simply and intuitive model

≻ But

- Wrong prediction for the ratio of two quarkonia
- Effectively dominated by ${}^{3}S_{1}^{[8]}$ channel in NRQCD language, overshoot data at hight p_{T} region
- A special case of NRQCD

SJTU, Apr. 2nd, 2016

CGC+CEM: p+p

Bad agreement:

Fujii, Watanabe, 1304.2221

Yan-Qing Ma, Peking University

SJTU, Apr. 2nd, 2016

0

CGC+CEM: p+A

Bad agreement:

Fujii, Watanabe, 1304.2221

Yan-Qing Ma, Peking University

SJTU, Apr. 2nd, 2016

CGC+CEM: R_{pA}

> LHC:

Disagree with data

SJTU, Apr. 2nd, 2016

Rule out the CGC method???

ALICE, 1308.6726

are also shown. Within our uncertainties, both the model based on shadowing only and the coherent energy loss approach are able to describe the data, while the CGC-based prediction overestimates the observed suppression) None of these models include a suppression related to the break-up of the $c\overline{c}$ pair.

Yan-Qing Ma, Peking University

0.8

0.6

0.4

ΛL

EPS09 NLO (Vogt) CGC (Fujii et al.) 0.2 - ELoss, q_=0.075 GeV²/fm (Arleo et al.)

EPS09 NLO + ELoss, q =0.055 GeV²/fm (Arleo et al.)

3

y_{cms}

CGC+CEM: improved (1)

Ducloue, Lappi, Mantysaari, 1503.02789

- Using the collinear "hybrid" frame work
- Introduce impact-parameter-dependent initial condition
- Marginally describe data

52/42

SJTU, Apr. 2nd, 2016

CGC+CEM: improved (2)

• With small- p_T resummation

Watanabe, Xiao, 1507.06564

FIG. 1. Double differential cross section of J/ψ as a function of p_{\perp} for Y = 2.25, 3.25, and 4.25 in pp collisions at $\sqrt{s} = 7$ TeV. Blue solid line is obtained by using Eq. (1) and the uncertainty band is coming from a change of factorization scales $(2 < \mu < 30 \text{ GeV})$ for the collinear gluon distribution function. Red solid line denotes the result of Eq. 5 at $b_{\text{max}} = 0.5$. We choose $F_{J/\psi} = 0.0975$ for Eq. (1) and 0.1495 for Eq. (5). The LHCb data for prompt production is taken from Ref. [16].

FIG. 2. Double differential cross section of $\Upsilon(1S)$ multiplied by a branching ratio of $\Upsilon(1S)$ decay into a lepton pair as a function of p_{\perp} for Y = 2.25, 3.25, and 4.25 in pp collisions at $\sqrt{s} = 7$ TeV (solid lines) and 14 TeV (dotted lines). We choose $F_{\Upsilon(1S)} = 0.488$ for Eq. (1) and 0.390 for Eq. (5). The LHCb data is taken from Ref. [19].

SJTU, Apr. 2nd, 2016

Comparison with other methods

➢ Quasi-classical approximation Kang, YQM, Venugopalan, 1309.7337

 $\begin{aligned} Q_{x_{\perp}x'_{\perp}y'_{\perp}y_{\perp}} \approx & D_{x_{\perp}-y_{\perp}} D_{x'_{\perp}-y'_{\perp}} - \frac{\ln(D_{x_{\perp}-y'_{\perp}} D_{x'_{\perp}-y_{\perp}}) - \ln(D_{x_{\perp}-x'_{\perp}} D_{y_{\perp}-y'_{\perp}})}{\ln(D_{x_{\perp}-y_{\perp}} D_{x'_{\perp}-y'_{\perp}}) - \ln(D_{x_{\perp}-x'_{\perp}} D_{y_{\perp}-y'_{\perp}})} \\ & \times \left(D_{x_{\perp}-y_{\perp}} D_{x'_{\perp}-y'_{\perp}} - D_{x_{\perp}-x'_{\perp}} D_{y_{\perp}-y'_{\perp}} \right). \\ \frac{d\sigma^{J/\psi}}{d^{2}p_{\perp}dy} \stackrel{\text{CSM}}{=} (\pi R_{A}^{2}) x_{p} f_{p/g}(x_{p}, Q^{2}) \int_{\Delta_{\perp}, r_{\perp}, r'_{\perp}} \frac{e^{ip_{\perp} \cdot \Delta_{\perp}}}{4(2\pi)^{4}} \Phi(r_{\perp}) \Phi(r'_{\perp}) \\ & \times \frac{4r_{\perp} \cdot r'_{\perp}}{(r_{\perp} + r'_{\perp})^{2} - 4\Delta_{\perp}^{2}} \left\{ e^{-\frac{Q_{s}^{2}}{16}[(r_{\perp} - r'_{\perp})^{2} + 4\Delta_{\perp}^{2}]} - e^{-\frac{Q_{s}^{2}}{8}(r_{\perp}^{2} + r'_{\perp}^{2})} \right\} \end{aligned}$

Our CS channel reproduce the work:

SJTU, Apr. 2nd, 2016

Dominguez, Kharzeev, Levin, Mueller, Tuchin, 1109.1250

\succ CEM has only CO contributions in large N_c limit

Only dipoles are involved in CEM calculation. No quadrupole.

Parameters for p+p

> An approximation for quadrupole YQM, Venugopalan, 1408.4075

 $Q_{\mathbf{x}_{\perp}\mathbf{x}'_{\perp}\mathbf{y}'_{\perp}\mathbf{y}_{\perp}} \approx D_{\mathbf{x}_{\perp}-\mathbf{x}'_{\perp}} D_{\mathbf{y}'_{\perp}-\mathbf{y}_{\perp}} - D_{\mathbf{x}_{\perp}-\mathbf{y}'_{\perp}} D_{\mathbf{x}'_{\perp}-\mathbf{y}_{\perp}} + D_{\mathbf{x}_{\perp}-\mathbf{y}_{\perp}} D_{\mathbf{x}'_{\perp}-\mathbf{y}'_{\perp}}$

 $+\frac{1}{2}(D_{\boldsymbol{x}_{\perp}-\boldsymbol{y}_{\perp}'}D_{\boldsymbol{x}_{\perp}'-\boldsymbol{y}_{\perp}}-D_{\boldsymbol{x}_{\perp}-\boldsymbol{y}_{\perp}}D_{\boldsymbol{x}_{\perp}'-\boldsymbol{y}_{\perp}'})$

 $\times \left(D_{\mathbf{x}_{\perp}^{\prime}-\mathbf{y}_{\perp}} - D_{\mathbf{y}_{\perp}^{\prime}-\mathbf{y}_{\perp}} + D_{\mathbf{y}_{\perp}^{\prime}-\mathbf{x}_{\perp}} - D_{\mathbf{x}_{\perp}^{\prime}-\mathbf{x}_{\perp}} \right)$

- Self-consistent: exact when any two adjacent positions coincide
- Checked: a good approximation to the quadrupole

Dipole distributions:

SJTU, Apr. 2nd, 2016

- Dipole distribution at initial scale ($x = x_0 = 0.01$): using MV model Albacete, Dumitru, Fujii, Nara, 1209.2001
- All parameters are fixed from fits to the HERA DIS data
- $R_p = 0.48$ fm to match with collinear PDF at large x

> NRQCD CO matrix elements

Taken from fitting high p_T **data** Chao,YQM,Shao,Wang,Zhang,1201.2675

J/ψ @ p+p: \sqrt{S} dependence

Good agreement with data

Worst agreement with RHIC data at central rapidity

 J/ψ @ p+p: y dependence

Good agreement with

Worst agreement with RHIC data at central rapidity

YQM, Venugopalan, Zhang, 1503.07772

- > Two free parameters: $Q_{s0,A}$ and R_A
- > Self-consistent condition: $R_{pA} \rightarrow 1$ at high p_T limit

$$R_{pA} = \frac{d\sigma_{pA}}{A \times d\sigma_{pp}} \stackrel{\text{high } p_{\perp}}{\longrightarrow} \frac{R_A^2}{AR_p^2} \frac{\tilde{\mathcal{N}}_{Y_A}^A(\boldsymbol{p}_{\perp})}{\tilde{\mathcal{N}}_{Y_p}^A(\boldsymbol{p}_{\perp})} \approx \frac{R_A^2}{AR_p^2} \frac{Q_{s0,A}^{2\gamma}}{Q_{s0,p}^{2\gamma}} = 1$$

• $\gamma = 1$ in MV model, $Q_{s0,p}$ and R_p are known from p+p case

- $P_{s0,A}^{2} = N \times Q_{s0,p}^{2}$ Dusling, Gelis, Lappi, Venugopalan, 0911.2720 $Fitting HERA DIS data, N \approx 3 \text{ for } \gamma = 1.113, \text{ and } N \approx 1.5 \text{ for } \gamma = 1$
 - Set N = 2 as a tentative choice

J/ψ @ p+A: y dependence

Good agreement with data

SJTU, Apr. 2nd, 2016

Worst agreement with RHIC data at central rapidity

> Many uncertainties can be cancelled in the ratio

RnA

$$R_{pA} = \frac{d\sigma_{pA}}{A \times d\sigma_{pp}}$$

> Calculate R_{pA} for each NRQCD channel

- Combining curves of all channels to provide the prediction for J/ψ
- Results are independent of NRQCD matrix elements
- R_{pA} calculated in this way is almost parameter-independent

 R_{pA} : p_T and y dependence

Agreement with data

✓ R_{pA} → 1 at $p_T \approx 9$ GeV at LHC and $p_T \approx 4$ GeV at RHIC, both agree

SJTU, Apr. 2nd, 2016