Charm and strange quark masses and f_{D_s} from LQCD

Zhaofeng Liu (IHEP) SJTU, April 3, 2016

 χ QCD Collaboration: Y.-B. Yang et al., PRD92, 2015 ZL et al., PRD90, 2014

Quantum ChromoDynamics (QCD)

- QCD is an important part of the Standard α_s(Q) Model.
- At low energies, QCD can not be solved by perturbation theory.
- Nonperturbative treatment of QCD is needed to connect hadron properties to those of quarks.
- Lattice QCD are calculating some properties of hadrons precisely and can test SM to a precision of ~1%.

Weak decays and LQCD

- LQCD can calculate form factors and meson decay constants appearing in weak decays of hadrons.
- Combined with experiments, they can give us CKM matrix elements.
- Test the SM (is CKM unitary?).
- Or using V_{ab} to test QCD (compare LQCD results with experiments).

$$(\mathbf{P} \to \ell \nu) = \frac{\mathbf{G}_{F}^{2} |\mathbf{V}_{q_{1}q_{2}}|^{2}}{8\pi} (\mathbf{f}_{P}^{2} \mathbf{m}_{\ell}^{2} \mathbf{M}_{P} (1 - \frac{\mathbf{m}_{\ell}^{2}}{\mathbf{M}_{P}^{2}})^{2}$$

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cd} & V_{cd} \\ V_{td} & V_{td} & V_{td} \end{pmatrix}$$

Can be calculated by LQCD

Pseudoscalar decay constants

$$\cdot \left< 0 | \overline{q} \gamma_{\mu} \gamma_{5} c | P \right> = f_{P} p_{\mu}$$

• Let $O = \overline{q} \gamma_{\mu} \gamma_5 c$, the above matrix element can be obtained from

$$C(t) = \langle 0 | O(t) O^{\dagger}(0) | 0 \rangle \xrightarrow{t \to \infty} |\langle 0 | O | P \rangle|^2 e^{-m_P t}$$

Heavier hadrons with quantum numbers of *O* are suppressed.

LQCD

• LQCD is based on the path integral formalism in Euclidean space.

•
$$\langle \boldsymbol{O} \rangle = \frac{\int DA_{\mu} D\overline{\psi} D\psi \boldsymbol{O}[A, \overline{\psi}, \psi] e^{-\int \mathcal{L}_{QCD} d^{4}x}}{\int DA_{\mu} D\overline{\psi} D\psi e^{-\int \mathcal{L}_{QCD} d^{4}x}},$$

where $\mathcal{L}_{QCD} = \overline{\psi} M[A] \psi + \mathcal{L}_{G}$, $M = \gamma \cdot D + m_{q}$

• On the 4D lattice, the **A** fields are put on the links

$$U(x,\mu)=e^{igaA_{\mu}}.$$

• Integrating over quark fields: $\langle O \rangle = \frac{\int DU_{\mu}O[U, M^{-1}[U]]Det[M[U]]e^{-S_{G}}}{\int DU_{\mu}Det[M[U]]e^{-S_{G}}}$

LQCD

•
$$\langle \boldsymbol{O} \rangle = \frac{\int DU_{\mu} \boldsymbol{O}[\boldsymbol{U}, \boldsymbol{M}^{-1}[\boldsymbol{U}]] Det[\boldsymbol{M}[\boldsymbol{U}]] e^{-S_{G}}}{\int DU_{\mu} Det[\boldsymbol{M}[\boldsymbol{U}]] e^{-S_{G}}}$$

- Valence quark propagators $M^{-1}[\dot{U}]$
- Sea quark effects **Det**[*M*[*U*]]
- Generate gluon fields *U* (numerically very challenging.)
- Calculate valence quark propagators and combine them to get hadron correlators (numerically costly, data intensive).
- Fit for masses and matrix elements.
- Determine a and fix m_q to get physical results.

Flavor physics and LQCD

- Other examples: $D \to \pi l \nu, D \to K l \nu$ can be used to determine $|V_{cd}|$ 和 $|V_{cs}|$. $\frac{d\Gamma(D \to K \ell \nu)}{dq^2} = (\text{known}) |\mathbf{p}_K|^3 |V_{cs}|^2 |f_+^{D \to K}(q^2)|^2$
- The form factor $|f_+|^2$ parametrizes the matrix element.

$$\langle K|V^{\mu}|D\rangle = f_{+}(q^{2})\left(p_{D}^{\mu} + p_{K}^{\mu} - \frac{m_{D}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}\right) + f_{0}(q^{2})\frac{m_{D}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}$$

- There are varies lattice calculations on meson decay constants and form factors. ($f_{\pi}, f_{K}, f_{D}, ..., f_{+}^{D \to K}, ...$)
- The Flavor Lattice Averaging Group (FLAG) was set up to review the current status of lattice results related to flavor physics.

FLAG

- First set up in 2007. http://itpwiki.unibe.ch/flag
- FLAG-2, Eur. J. Phys. C74 (2014) 2890, arXiv:1310.8555
- Continuum extrapolation(# a's, <0.1 fm?)
- Chiral extrapolation of light quark masses $(m_{\pi,min} < 200 \text{ MeV}, 400 \text{ MeV}?)$
- Finite volume($m_{\pi,\min}L > 4$, or 3?)
- Renormalization(non-perturbative? 1-loop?)
- Heavy quark treatment (O(a) improved?)
- Publication status (published, preprint, conference)

Included in the average.
Not included, but pass quality criteria.
Other results.

FLAG2013 for f_{D_s}

Eur. J. Phys. C74 (2014) 2890

- Different LQCD collaborations use different lattice actions.
 - Various lattice spacings and volumes.
- Different range of light quark masses.
- Thus different systematic errors.
- The consistency of values from different collaborations is important.

m_c , m_s and f_{D_s} from overlap fermions

 2+1-flavor domain wall fermion configurations from the RBC-UKQCD Collaborations. Two a's: ~0.08 fm, ~0.11 fm. O(100) configurations.

β	$L^3 \times T$	$m_s^{(s)}a$		$m_l^{(s)}a$	
2.13	$24^{3} \times 64$	0.04	0.005	0.01	0.02
2.25	$32^{3} \times 64$	0.03	0.004	0.006	0.008

• Multi-mass algorithm is used to compute valence overlap quark propagators. $\beta = 2.13 \ m_s a \ 0.0576 \ 0.063 \ 0.067 \ 0.071 \ 0.077$

0.33 0.35 0.40 $m_c a 0.29$ 0.38 0.42 0.45 0.480.50 0.53 0.550.58 0.60 0.61 0.63 0.65 0.67 0.68 0.700.73 0.75 $\beta = 2.25 \ m_s a \ 0.039 \ 0.041 \ 0.043 \ 0.047$ $m_c a 0.38$ 0.46 0.48 0.50 0.57

Y.-B. Yang et al. (χ QCD Collaboration), PRD92, 2015

Meson masses

 Masses of pseudo-scalar and vector mesons of cs and cc are calculated from 2-point functions.

 $M^{(0)}(m_c, m_s, m_l) = A_0 + A_1 m_c + A_2 m_s + A_3 m_l + \cdots$

Meson masses

Taking into account discretization effects:

$$\begin{split} M(m_c, m_s, m_l, a) \\ &= M(m_c, m_s, m_l) \times (1 + B_1 (m_c a)^2 + B_2 (m_c a)^4 \\ &+ O((m_c a)^6)) + C_1 a^2 + O(a^4). \end{split}$$

- Applying the above to a correlated fit of M_{D_s} gives $\chi^2/d.o.f = 4.6$
- The above linear behavior expects a linear quark mass dependence in the mass difference of the vector and pseudoscalar mesons.
- Experiments tell a different story:

 $M_{\rho} - M_{\pi} \sim 630 \text{ MeV}, \quad M_{K^*} - M_K \sim 400 \text{ MeV}, \quad M_{D^*} - M_D \sim 140 \text{ MeV}, \quad M_{D_s^*} - M_{D_s} \sim 140 \text{ MeV}, \quad M_{J/\psi} - M_{\eta_c} \sim 117 \text{ MeV}$

Hyperfine splitting

We observe the combined quantity $\Delta_{HFS} \sqrt{m_{q_1}^R + m_{q_2}^R}$ is consistent with a constant for the charm-strange system:

Correlated Global fit

• The global fit function for the meson masses is (the quark masses are renormalized):

~450 data points $M(m_c^R, m_s^R, m_l^R, a)$ ~20 parameters $= \left[A_0 + A_1 m_c^R + A_2 m_s^R + A_3 m_l^R\right]$ χ^2 /d.o.f = 1.05 $+(A_4+A_5m_l^R)\frac{1}{\sqrt{m_s^R+m_s^R+\delta m}}$ $\times (1 + B_0 a^2 + B_1 (m_c^R a)^2 + B_2 (m_c^R a)^4) + C_1 a^2$ Inputs: $M_{D_s} = 1.9685$ GeV Outputs: $r_0 = 0.465(4)(9)$ fm $m_s^{\overline{\text{MS}}}(2 \text{ GeV}) = 0.101(3)(6) \text{ GeV}$ $M_{D_{s}^{*}} - M_{D_{s}} = 0.1438 \text{ GeV}$ $M_{I/\psi} = 3.0969 \, \text{GeV}$

 $m_c^{\overline{\text{MS}}}(2 \text{ GeV}) = 1.118(6)(24) \text{ GeV}$

Systematic errors

- Statistical error in Z_m
- Systematic error in Z_m
- Chiral extrapolation function form
- Strange sea quark mass mistuned
- Cutoff for the small eigenvalues of the correlation matrix in the global fit
- Electromagnetic effects

	$\chi^2/d.o.f$	$r_0(\mathrm{fm})$	$m_c(\text{GeV})$	$m_s(\text{GeV})$
PDG [28]			1.09(3)	0.095(5)
This work	1.05	0.465	1.118	0.101
$\sigma(\text{stat})$		0.004	0.006	0.003
$\sigma(r_0/a)$		0.002	0.001	0.000
$\sigma(\frac{\partial r_0}{\partial a^2})$		0.005	0.007	0.004
$\sigma(MR/stat)$		0.001	0.022	0.000
$\sigma(MR/sys)$		_	0.003	0.000
$\sigma(SSQMD)$		0.006	0.004	0.002
$\sigma(\delta m)$		0.001	0.001	0.000
σ (chiral)		0.004	0.006	0.003
$\sigma(u-d)$		0.001	0.001	0.000
$\sigma(a)$		0.002	0.002	0.001
$\sigma(cut)$		0.001	0.001	0.000
$\sigma(EM)$		0.002	0.002	0.001
σ (heavy)		0.005	0.007	0.001
$\sigma(\text{all sys})$		0.009	0.024	0.006
$\sigma(all)$		0.010	0.025	0.007

f_{D_s}

- $\cdot \left< 0 | \overline{s} \gamma_{\mu} \gamma_{5} c | D_{s} \right> = f_{D_{s}} p_{\mu}$
- The local current $\overline{s}\gamma_{\mu}\gamma_{5}c$ on the lattice needs renormalization Z_{A}
- Using the PCAC relation, one could also get f_{D_s} by

$$(m_s + m_c) \langle 0 | \bar{s} \gamma_5 c | D_s \rangle = f_{D_s} M_{D_s}^2$$

No renormalization is needed due to $Z_P Z_m = 1$

- f_{D_s} are obtained from both matrix elements in our calculation.
- We find $f_{D_s} = 254(2)(4)$ MeV

Renormalization: $O(\mu) = Z(\mu, a)O(a)$

- Quark mass renormalization Z_m and Z_A for the axial vector current are needed.
- Lattice perturbation theory is much more complicated than in the continuum. Most calculations only up to one-loop.
- We use the so called RI/MOM scheme and then convert to the popular \overline{MS} scheme.
- Work with Green functions, which can be calculated to all loops in LQCD (nonperturbative).

ZL et al., (χ QCD Collaboration), PRD90, 2014

Our result of f_{D_s} will be included in the new average FLAG-3.

ation ent of

A deli del									
Collaboration $\chi QCD 14sea$	Ref. N_f [10] 2+1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	f_{D_s} 254(2)(4)	f_{D_s}/f_D					
HPQCD 12A	[11] 2+1	A $\circ \circ \circ \star \checkmark 208.3(1.0)(3.3)$	246.0(0.7)(3.5)	1.187(4)(12)					
FNAL/MILC 11	[12] 2+1	A ○ ○ ○ ○ ✓ 218.9(11.3)	260.1(10.8)	1.188(25)					
PACS-CS 11	[13] 2+1	A \blacksquare ★ \blacksquare O \checkmark 226(6)(1)(5)	257(2)(1)(5)	1.14(3)					
HPQCD 10A	[14] 2+1	A $\star \circ \star \star \checkmark \checkmark 213(4)^*$	248.0(2.5)						
HPQCD/UKQCD 07	[15] 2+1	A \star \circ \circ \star \checkmark 207(4)	241(3)	1.164(11)					
FNAL/MILC 05	[16] 2+1	A $\circ \circ$ $\blacksquare \circ \checkmark 201(3)(17)$	249(3)(16)	1.24(1)(7)					

Private Communication

FLAG-3

Private Communication

Summary

- Charm, strange quark masses and f_{D_s} are determined by using overlap fermions on 2+1-flavor configurations.
- We are working on a lattice with almost physical pion mass:
 - $M_{\pi}^{(sea)} = 139.2(4) \text{ MeV}$ $L^3 \times T = 48^3 \times 96$ $La \sim 5.5 \text{ fm}$