Glauber-gluon effects and $B \rightarrow \pi \pi$, *K* π puzzles

XIN LIU(刘新)

Department of Physics, Jiangsu Normal University

Collaborated with Prof. H.-n. Li and Prof. Z.-j. Xiao

April 2016

Presented at Shanghai JiaoTong University

Outline

Motivation

Factorization formulas

Numerical results and discussions

Summary

Motivation

> Experimentally, the current data on the BR of $B^0 \rightarrow \pi^0 \pi^0$

 $\begin{cases} (1.83 \pm 0.21 \pm 0.13) \times 10^{-6} & \text{(BaBar),} \\ (0.90 \pm 0.12 \pm 0.10) \times 10^{-6} & \text{(Belle),} \\ (1.17 \pm 0.13) \times 10^{-6} & \text{(HFAG),} \end{cases}$

M. Petric@ICHEP2014 arXiv: 1412.7515[hep-ex]

Hierarchy,

$$Br\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right) > (\sim) \qquad Br\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right) > Br\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)$$

and on the $\triangle A_{K\pi} \equiv A_{CP}^{dir}(K^{\pm}\pi^{0}) - A_{CP}^{dir}(K^{\pm}\pi^{\mp})$ $\Delta A_{K\pi} = 0.119 \pm 0.022$ arXiv: 1412.7515[hep-ex] $A_{CP}^{dir}(B^{\pm} \to K^{\pm}\pi^{0}) = +0.037 \pm 0.021, \quad A_{CP}^{dir}(B^{0} \to K^{\pm}\pi^{\mp}) = -0.082 \pm 0.006,$ > Theoretically, e.g., in the NLO pQCD formalism,

$$Br (B^{0} \rightarrow \pi^{+}\pi^{-}) > Br (B^{+} \rightarrow \pi^{+}\pi^{0}) >> Br (B^{0} \rightarrow \pi^{0}\pi^{0})$$

Phys.Rev.D 73, 114014(2006), Li and Mishima Phys.Rev.D 90, 014029(2014), Zhang *et al.*

In particular, in the factorization theorems,

$$Br (B^0 \rightarrow \pi^0 \pi^0) \sim (0.2 - 0.3) \times 10^{-6}$$

For $B \rightarrow K\pi$ decays,

$$A_{\rm CP}^{\rm dir}(B^0 \to K^{\pm} \pi^{\mp}) \sim A_{\rm CP}^{\rm dir}(B^{\pm} \to K^{\pm} \pi^0)$$

> The above contradictions between theory and experiment for the $B \rightarrow \pi\pi$ decay rates and the differences of the $B \rightarrow K\pi$ direct CP asymmetries have been known as long-standing puzzles.

$$\mathcal{B}(B^0 \to \rho^0 \rho^0) = \begin{cases} (0.92 \pm 0.32 \pm 0.14) \times 10^{-6} & \text{(BaBar)}, \\ (1.02 \pm 0.30 \pm 0.15) \times 10^{-6} & \text{(Belle)}, \\ (0.97 \pm 0.24) \times 10^{-6} & \text{(HFAG)}, \end{cases}$$

arXiv: 1412.7515[hep-ex]

Can C be larger? How to reach? Sub-leading corrections or new QCD mechanism?

The $B \rightarrow \rho \rho$ data seriously constrained the possibility of resolving the $B \rightarrow \pi \pi$ puzzle. Phys.Rev.D 73, 114014 (2006), Li and Mishima

> Many efforts have been made on this puzzle. But, no satisfactory resolution can be achieved yet. (Naively enhancing the hard spectator amplitudes(HSA) to C!)

> To our best knowledge, all the strategies in the literature adopted to resolve this puzzle either evaded the $B^0 \rightarrow \rho^0 \rho^0$ constraint or did not survive the constraint in the SM.

A new mechanism is demanded!

Mechanism must differentiate pion from ρ meson!

Have checked the k_T factorization of the spectator nonfactorizable diagrams Phys. Rev. D 83, 034023 (2011); *ibid.* 90, 074018 (2014), Li and Mishima

Considered the factorization of M_2 meson wave function Observed the existence of Glauber gluons

Leading IR regions $l \sim (l^+, l^-, l_T)$

$$l^{+}(Q) \gg l_{T}(\Lambda_{QCD}) \gg l^{-}(\Lambda_{QCD}^{2} / Q) \qquad \text{Collinear}$$

$$l^{+}(\Lambda_{QCD}) \sim l_{T}(\Lambda_{QCD}) \sim l^{-}(\Lambda_{QCD}) \qquad \text{Soft}$$

$$l^{+}(\Lambda_{QCD}^{2} / Q) \sim l^{-}(\Lambda_{QCD}^{2} / Q) \ll l_{T}(\Lambda_{QCD}) \qquad \text{Glauber}$$

> Li and Mishima observed the glauber divergences with the NLO spectator amplitudes in the $k_{\rm T}$ factorization theorem, then gave universal phase factors by all-order summation.

Phys. Rev. D 83, 034023 (2011); ibid. 90, 074018 (2014), Li and Mishima

 \succ the phase factors associated with the emitted meson will turn the destructive interference between the LO spectator diagrams into a constructive one, then modify *C*;

$$I_a \approx \exp(iS_e)\mathcal{M}_a^{(0)}, \qquad I_b \approx \exp(-iS_e)\mathcal{M}_b^{(0)},$$

• like
$$1 - 1 \Rightarrow e^{iS_e} - e^{-iS_e}$$
 , large imaginary C

 \succ the phase factors associated with the recoiled meson will rotate the enhanced *C* then modify the interference between *C* and *T*. ► After treating the glauber phases as free real parameters $-\frac{\pi}{2}$ in the $B \rightarrow \pi\pi$ decays, the BR was $Br (B^0 \rightarrow \pi^0 \pi^0) \sim 1.2 \times 10^{-6}$

▷ the postulation on vanishing of glauber phases in the $B \rightarrow \rho \rho$ decays was made.

But, the question should be answered:

Why the color-suppressed tree amplitudes are so different in the $B \rightarrow \pi\pi$ and $B \rightarrow \rho\rho$ decays?

→ We attempt to answer this question by quantitatively estimating different glauber effects through convolution in the $B \rightarrow \pi \pi$ and $B \rightarrow \rho \rho$ decays.

Factorization formulas

➤ Glauber gluons have been identified from the higher order corrections to the spectator diagrams in $B \rightarrow M_1 M_2$ decays. Phys. Rev. D 83, 034023 (2011); *ibid.* 90, 074018 (2014), Li and Mishima

NLO spectator diagrams contain the glauber divergences associated with the M_2 meson for $B \rightarrow M_1 M_2$ decay. Other NLO diagrams with the glauber divergences are referred to Phys.Rev.D 83, 034023(2011).

NLO spectator diagrams contain the glauber divergences associated with the M_1 meson for $B \rightarrow M_1M_2$ decay. Other NLO diagrams with the glauber divergences are referred to Phys.Rev.D 90, 074018 (2014).

0

$$\int d^{2}\mathbf{b}_{1}d^{2}\mathbf{b}_{2} \int d^{2}\mathbf{b}_{s1}d^{2}\mathbf{b}_{s2}\bar{\phi}_{B}(\mathbf{b}_{1})\bar{\phi}_{1}(\mathbf{b}_{s1}+\mathbf{b}_{1},\mathbf{b}_{s1}) \\ \times \bar{\phi}_{2}(\mathbf{b}_{s2},\mathbf{b}_{s2}+\mathbf{b}_{2}) \exp\left[-iS(\mathbf{b}_{s1}-\mathbf{b}_{2})+iS(\mathbf{b}_{s2}-\mathbf{b}_{1})\right]H_{a}(\mathbf{b}_{1},\mathbf{b}_{2})$$

$$\int d^{2}\mathbf{b}_{1}d^{2}\mathbf{b}_{2} \int d^{2}\mathbf{b}_{s1}d^{2}\mathbf{b}_{s2}\bar{\phi}_{B}(\mathbf{b}_{1})\bar{\phi}_{1}(\mathbf{b}_{s1}+\mathbf{b}_{1},\mathbf{b}_{s1})$$

$$\times \bar{\phi}_{2}(\mathbf{b}_{s2}+\mathbf{b}_{2},\mathbf{b}_{s2})\exp\left[-iS(\mathbf{b}_{s1}-\mathbf{b}_{2})-iS(\mathbf{b}_{s2}-\mathbf{b}_{1})\right]H_{b}(\mathbf{b}_{1},\mathbf{b}_{2})$$
Comments:

 \succ the universal glauber factor associated with M_1 , same for both amplitudes

> the universal glauber factor associated with M_2 , "(-)+" denotes the glauber gluons radiated from valence (anti-)quark

> Though the glauber factor is universal, the glauber effect appears different through the convolution with the TMD wave functions $\bar{\phi}_1(\mathbf{b}_{s1} + \mathbf{b}_1, \mathbf{b}_{s1})$ and $\bar{\phi}_2(\mathbf{b}_{s2} + \mathbf{b}_2, \mathbf{b}_{s2})$ which contains different intrinsic *b* dependences for pion, kaon, and ρ meson.

Numerical analysis and discussions

- Two important elements:
 - (1) TMD meson wave function(different intrinsic $k_{\rm T}$)
 - ② parameterization of glauber phase factor
- \succ TMD meson wave function with the intrinsic $k_{\rm T}$ part in the
Gaussian formSLAC-PUB-2540, Brodsky et al., AIP Conf. Proc. 68,1000(1981), Huang

J.Phys.G 34, 1845 (2007), Yu et al.

$$\phi_M(x, \mathbf{k}_T) = \frac{\pi}{2\beta_M^2} \exp\left(-\frac{\mathcal{M}^2}{8\beta_M^2}\right) \frac{\phi_M(x)}{x(1-x)},$$

For pion: $\mathcal{M}^2 = \frac{k_T^2 + m^2}{x} + \frac{k_T^2 + m^2}{1-x},$
For kaon: $\mathcal{M}^2 = \frac{k_T^2 + m_q^2}{x} + \frac{k_T^2 + m_s^2}{1-x}$

Then the modified wave function is expressed as,

$$\bar{\phi}_{M}(x, \mathbf{b}', \mathbf{b}) \equiv \bar{\phi}_{M}(\mathbf{b}', \mathbf{b}) \phi_{M}(x) = \frac{2\beta_{M}^{2}}{\pi} \exp\left[-2\beta_{M}^{2}xb'^{2} - 2\beta_{M}^{2}(1-x)b^{2}\right] \phi_{M}(x)$$
$$\bar{\phi}_{K}(x, \mathbf{b}', \mathbf{b}) = \frac{2\beta_{K}^{2}}{\pi} \exp\left[-\frac{1}{8\beta_{K}^{2}}\left(\frac{m_{q}^{2}}{x} + \frac{m_{s}^{2}}{1-x}\right)\right] \times \exp\left[-2\beta_{K}^{2}xb'^{2} - 2\beta_{K}^{2}(1-x)b^{2}\right] \phi_{K}(x)$$

Solution We simply parameterize the glauber phase S(b) by a sinusoidal function,

$$S(\boldsymbol{b}) = r \pi \sin(p \boldsymbol{b})$$

Image: series of pion, kaon and ρ mesonI.Phys.G 34, 1845 (2007), Yu et al.

(1) widely adopted $\beta_{\pi} \sim 0.4$ GeV for pion in the literature (2) $\beta_{\rho} \sim 1/3 \beta_{\pi}$ fixed through the $B \rightarrow \rho$ form factor (3) $\beta_{K} \sim 0.25$ GeV fixed through the $B \rightarrow K$ form factor

Important implication:

▶ pion(ρ -meson) WF with a weak(strong) falloff in parton TM $k_{\rm T}$, and kaon WF reveals a stronger(weaker) falloff in $k_{\rm T}$ compared to the pion(ρ -meson) one, which means pion requires a tighter spatial distribution of its leading Fock state relative to higher Fock states.

> consistent with the dual role of pion as a massless NGB and as a qq bound state simultaneously.

Two sets of parameters *r* and *p* corresponding to largest BR of $B^0 \rightarrow \pi^0 \pi^0$ decay 15

× <i>r</i> ~ 0.47	$p \sim -0.632$	GeV	\checkmark $r \sim 0.60$), $p \sim 0.544 {\rm GeV}$
$Br(B^0 \rightarrow \pi^-)$	$(\pi^{-}) = 5.902$	×10 ⁻⁶	$Br(B^0 \rightarrow \pi^+)$	$(\pi^{-}) = 5.39 \times 10^{-6}$
$Br(B^+ \rightarrow \pi$	$(\pi^{+}\pi^{0}) = 3.88$	×10 ⁻⁶	$Br(B^+ \rightarrow \pi$	$(\pi^{+}\pi^{0}) = 4.45 \times 10^{-6}$
$Br(B^0 \to \pi^0 \pi^0) = 0.62 \times 10^{-6}$			$Br(B^0 \to \pi^0 \pi^0) = 0.61 \times 10^{-6}$	
$Br(B^0 \rightarrow \rho$	$(^{0}\rho^{0}) = 1.07 \times$	× 10 ⁻⁶	$Br(B^0 \rightarrow \rho$	$^{0}\rho^{0}) = 0.89 \times 10^{-6}$
Modes	Data [1, 2]	Ν	ILO	NLOG
$B^0 \to \pi^+\pi^-$	5.10 ± 0.19	$6.19^{+2.09}_{-1.48}$	$(\omega_B)^{+0.38}_{-0.34}(a_2^{\pi})$	$5.39^{+1.86}_{-1.31}(\omega_B)^{+0.28}_{-0.25}(a_2^{\pi}$
$B^+ \to \pi^+ \pi^0$	$5.48^{+0.35}_{-0.34}$	$3.35^{+1.08}_{-0.77}$	$(\omega_B)^{+0.23}_{-0.22}(a_2^{\pi})$	$4.45^{+1.38}_{-0.99}(\omega_B)^{+0.39}_{-0.36}(a_2^{\pi}$
$B^0 \to \pi^0 \pi^0$	0.90 ± 0.16	$0.29^{+0.11}_{-0.07}$	$(\omega_B)^{+0.03}_{-0.02}(a_2^{\pi})$	$0.61^{+0.16}_{-0.12}(\omega_B)^{+0.14}_{-0.12}(a_2^{\pi}$
$B^0 o ho^0 ho^0$	0.97 ± 0.24	$1.06^{+0.29}_{-0.21}$	$(\omega_B)^{+0.19}_{-0.16}(a_2^{ ho})$	$0.89^{+0.26}_{-0.18}(\omega_B)^{+0.13}_{-0.10}(a_2^{\rho}$

Phys.Rev.D 91, 114019(2015), Liu, Li, and Xiao

ℜ The results obtained with second set of parameters show the preferred pattern: $B^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow \rho^0\rho^0$ BRs decrease 13% and 16%, respectively, while $B^+ \rightarrow \pi^+\pi^0$ and $B^0 \rightarrow \pi^0\pi^0$ ones increase by 33% and a factor of 2.1, respectively.

% The agreement between the theoretical predictions and the data for all the $B \rightarrow \pi\pi$ and $B^0 \rightarrow \rho^0 \rho^0$ BRs is improved simultaneously.

% The ratio of enhancement factor of $B^0 \rightarrow \pi^0 \pi^0$ over reduction factor of $B^0 \rightarrow \rho^0 \rho^0$ is about 2.5, close to 3 observed in Phys.Rev.D 90, 074018 (2014). % To clarify the glauber effect, the results(in units of 10⁻² GeV³) of the nonfactorizable spectator amplitudes from operator O₂ without and with glauber phase are

$$\mathcal{A}_{a,b}(B^0 \to \pi^0 \pi^0) = \begin{cases} 11.86 - i9.04, \\ 10.80 - i7.25, \end{cases} \begin{vmatrix} -7.13 + i6.18, \\ 7.67 - i3.42, \end{vmatrix}$$
(NLO), (NLOG),

$$5.53e^{-i0.54} \longrightarrow 21.33e^{-i0.52}$$

$$\mathcal{A}_{a,b}(B^0 \to \rho^0 \rho^0) = \begin{cases} (-42.44 + i24.42, \\ -5.78 + i4.32, \end{cases} \begin{vmatrix} 28.88 - i18.07, \\ -3.61 - i3.23, \end{vmatrix}$$
(NLO), (NLOG),

It is possible to resolve the $B \rightarrow \pi \pi$ puzzle!

> CP-averaged branching ratios of $B \rightarrow K\pi$ decays,

Modes	Data [13,14]	NLO	NLOG
$B^0 o K^{\pm} \pi^{\mp}$	1.96 ± 0.05	$2.33^{+0.74}_{-0.52}(\omega_B)^{+0.12}_{-0.11}(a^K)^{+0.21}_{-0.20}(a^{\pi})$	$2.17^{+0.71}_{-0.49}(\omega_B)^{+0.11}_{-0.10}(a^K)^{+0.17}_{-0.16}(a^\pi)$
$B^{\pm} ightarrow K^{\pm} \pi^0$	1.29 ± 0.05	$1.53^{+0.50}_{-0.35}(\omega_B)^{+0.08}_{-0.07}(a^K)^{+0.12}_{-0.12}(a^\pi)$	$1.40^{+0.46}_{-0.33}(\omega_B)^{+0.06}_{-0.06}(a^K)^{+0.10}_{-0.10}(a^\pi)$
$B^{\pm} o \pi^{\pm} K^0$	2.37 ± 0.08	$2.72^{+0.88}_{-0.61}(\omega_B)^{+0.15}_{-0.13}(a^K)^{+0.25}_{-0.24}(a^\pi)$	$2.41^{+0.80}_{-0.56}(\omega_B)^{+0.11}_{-0.11}(a^K)^{+0.17}_{-0.17}(a^\pi)$
$B^0 \to K^0 \pi^0$	0.99 ± 0.05	$1.02^{+0.32}_{-0.22}(\omega_B)^{+0.05}_{-0.05}(a^K)^{+0.11}_{-0.10}(a^\pi)$	$0.93^{+0.30}_{-0.21}(\omega_B)^{+0.06}_{-0.05}(a^K)^{+0.08}_{-0.07}(a^\pi)$

Glauber-gluon effects modify the branching ratios moderately with around 10% reduction;

Dominance of the penguin contributions make the values be insensitive to amplitude C. Phys.Rev.D 93, 014024(2016), Liu, Li, and Xiao

 \succ Direct CP asymmetries of $B \rightarrow K\pi$ decays,

Modes	Data [13,14]	NLO	NLOG
$B^0 o K^{\pm} \pi^{\mp}$	-0.082 ± 0.006	$-0.076^{+0.008}_{-0.009}(\omega_B)^{+0.013}_{-0.013}(a^K)^{+0.007}_{-0.007}(a^\pi)$	$-0.081^{+0.009}_{-0.009}(\omega_B)^{+0.011}_{-0.011}(a^K)^{+0.010}_{-0.009}(a^\pi)$
$B^{\pm} ightarrow K^{\pm} \pi^0$	$+0.037 \pm 0.021$	$-0.008^{+0.008}_{-0.009}(\omega_B)^{+0.009}_{-0.009}(a^K)^{+0.006}_{-0.006}(a^\pi)$	$+0.021^{+0.008}_{-0.008}(\omega_B)^{+0.003}_{-0.004}(a^K)^{+0.014}_{-0.013}(a^\pi)$
$B^{\pm} ightarrow \pi^{\pm} K^0_S$	-0.017 ± 0.016	$+0.003^{+0.001}_{-0.000}(\omega_B)^{+0.001}_{-0.001}(a^K)^{+0.000}_{-0.000}(a^\pi)$	$+0.004^{+0.000}_{-0.001}(\omega_B)^{+0.001}_{-0.002}(a^K)^{+0.000}_{-0.000}(a^\pi)$
$B^0 \to K^0_S \pi^0$	0.00 ± 0.13	$-0.056^{+0.001}_{-0.001}(\omega_B)^{+0.004}_{-0.004}(a^K)^{+0.000}_{-0.001}(a^\pi)$	$-0.089^{+0.001}_{-0.000}(\omega_B)^{+0.013}_{-0.009}(a^K)^{+0.005}_{-0.005}(a^\pi)$

Glauber-gluon effects modified the DCP of $B^+ \rightarrow K^+ \pi$ mode significantly with sign flipping attributed to its sensitivity to amplitude *C* 19

> CP-averaged branching ratios of $B \rightarrow K\underline{K}$ decays,

Modes	Data [13,14,23]	NLO	NLOG
$egin{array}{lll} B^{\pm} & ightarrow K^{\pm} ar{K}^0 \ B^0 & ightarrow K^0 ar{K}^0 \end{array}$	$1.52 \pm 0.22^{\mathrm{a}}$ 1.21 ± 0.16	$2.45^{+0.83}_{-0.58}(\omega_B)^{+0.17}_{-0.17}(a^K) \ 2.19^{+0.77}_{-0.54}(\omega_B)^{+0.09}_{-0.09}(a^K)$	$2.27^{+0.79}_{-0.54}(\omega_B)^{+0.17}_{-0.14}(a^K) \ 2.02^{+0.72}_{-0.50}(\omega_B)^{+0.08}_{-0.08}(a^K)$

^aThis is the very recent measurement reported by the LHCb Collaboration [23], which is comparable with 1.64 ± 0.45 by the *BABAR* Collaboration [24] and a bit larger than 1.11 ± 0.20 by the Belle Collaboration [25].

Phys.Rev.D 93, 014024(2016), Liu, Li, and Xiao

> Direct CP asymmetries of $B \rightarrow K\underline{K}$ decays,

Modes	Data [13,14,23]	NLO	NLOG
$egin{array}{lll} B^{\pm} & ightarrow K^{\pm} ar{K}^0_S \ B^0 & ightarrow K^0_S ar{K}^0_S \end{array}$	-0.21 ± 0.14 0.0 ± 0.4	$\begin{array}{l}-0.03^{+0.01}_{-0.01}(\omega_B)^{+0.02}_{-0.02}(a^K)\\-0.09^{+0.00}_{-0.00}(\omega_B)^{+0.01}_{-0.01}(a^K)\end{array}$	$\begin{array}{c} -0.03^{+0.01}_{-0.01}(\omega_B)^{+0.02}_{-0.02}(a^K) \\ -0.09^{+0.00}_{-0.00}(\omega_B)^{+0.00}_{-0.00}(a^K) \end{array}$

No amplitude C; only the spectator amplitudes induced by penguin operators;

Glauber-gluon effects decrease the branching ratios by only a few percent; the DCP remains unchanged.

 \succ for pion emission from the weak vertex with operator O₂,

$$\begin{aligned} \mathcal{A}_{a,b}(B^{\pm} \to \pi^0 K^{\pm}) \\ &= \begin{cases} -16.71 + i13.71, & 10.85 - i9.96, & (\text{NLO}), \\ -12.57 + i10.80, & -9.96 + i5.85, & (\text{NLOG}), \end{cases} \end{aligned}$$

 \succ for kaon emission from the weak vertex with operator O₁,

$$\mathcal{A}_{a,b}(B^{\pm} \to K^{\pm} \pi^{0}) = \begin{cases} 4.55 - i3.98, & -3.37 + i2.25, & (\text{NLO}), \\ 3.59 - i3.23, & 3.14 - i0.90, & (\text{NLOG}) \end{cases}$$

$$6.96e^{i2.57} \quad (2.09e^{-i0.97}) \times 10^{-2} \text{ GeV}^{3}$$

$$28.01e^{i2.51} \quad (7.90e^{-i0.55}) \times 10^{-2} \text{ GeV}^{3}$$

➤ to examine the similarity between pion and kaon from Glauber gluons

$$R_{\pi} \equiv \frac{|\mathcal{A}_{a}(\pi^{0}K^{\pm}) + \mathcal{A}_{b}(\pi^{0}K^{\pm})|_{\text{NLOG}-S_{e^{2}}}}{|\mathcal{A}_{a}(\pi^{0}K^{\pm}) + \mathcal{A}_{b}(\pi^{0}K^{\pm})|_{\text{NLO}}} \approx 4.69,$$

$$R_{K} \equiv \frac{|\mathcal{A}_{a}(K^{\pm}\pi^{0}) + \mathcal{A}_{b}(K^{\pm}\pi^{0})|_{\text{NLOG}-S_{e2}}}{|\mathcal{A}_{a}(K^{\pm}\pi^{0}) + \mathcal{A}_{b}(K^{\pm}\pi^{0})|_{\text{NLO}}} \approx 3.90,$$

➢ both pion and kaon are pseudo-NGBs, but the latter one with non-negligible SU(3) symmetry breaking effect, which resulting in the weaker Glauber-gluon effects than the pion through the convolution with the TMD WF. % A plausible explanation to the dynamical origin of glauber phase:

the overlap between the $k_{\rm T}$ distributions of the leading Fock state in a meson and the glauber gluons in a decay process

 \Re It is stressed that the $B \rightarrow \pi\pi$, $K\pi$ puzzles must be resolved by resorting to a mechanism and that the glauber gluons should be one of the most crucial mechanisms.

Conclusions and Summary

% The model estimate of the glauber effect has been performed and the convoluted factorization formulas have been obtained.

 \Re A weak falloff in $k_{\rm T}$ of pion WF is consistent with the dual role of the pion as a massless NGB and as a qq bound state.

 \Re The universal glauber factors make distinct impacts on the $B^0 \rightarrow \pi^0 \pi^0$ and $B^0 \rightarrow \rho^0 \rho^0$ BRs through convolution with TMD WF and reasonable parameterization of glauber phase.

% The more significant glauber effect from pion was observed and the consistency between th. and ex. for all the modes was improved simultaneously.

 \Re The glauber gluons should be one of the most crucial mechanisms to resolve the long-standing $B \rightarrow \pi\pi$, $K\pi$ puzzles.

BACKUP SLIDES

Contributing to glauber phase S₂

Phys. Rev. D 90, 074018 (2014), Li and Mishima

Contributing to glauber phase S₁

boson [30]: the valence quark and antiquark of the pion are separated by a short distance, like those of the ρ meson, in order to reduce the confinement potential energy. The multiparton states of the pion spread over a huge spacetime in order to meet the role of a massless NG boson, which result in a strong Glauber effect.

Nambu-Goldstone boson

- Pion as a qq bound state and as a massless
 Nambu-Goldstone boson?
- Massless boson => huge spacetime => large separation between qq => high mass under confinement => contradiction!
- Reconciliation: leading qq state is tight, higher Fock state gives soft cloud (Lepage, Brodsky 79; Nussinov, Shrock 08; Duraisamy, Kagan 08)
 Pion is unique.
- Glauber factor for pion corresponds to this soft cloud: 3 partons in k_T space

 $\int_0^{\Lambda} d^2 l_T \exp(-i\mathbf{l}_T \cdot \mathbf{b})/(l_T^2 + m_q^2)$

Loop momentum cutoff: $\Lambda \sim 0.5$ GeV, collecting soft contributions, roughly yielding the period *p* of the oscillatory parameterization;

Gluon mass: m_g , together with the coefficient in the associated loop corrections such as strong coupling, controlling the magnitude r of the oscillation;

 $b \rightarrow 0$ limit, corresponding to the integration over the transverse momentum in the collinear factorization theorem;