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Goals of B physics:

m What is B physics: the productions and decays of hadrons containing a b-quark;

By (ub), By (db), By (sb), B.(cb), Ay (udb),

m Goals of B physics:

- to measure the SM parameters, to precisely test the CKM mechanism of CP violation,
to search for/constrain on NP signals beyond the SM;

— complementary to EWP tests @(LEP, Tevatron) and direct searches @(LHC, ILC)

- to understand strong-interaction physics related with the confinement of quarks and
gluons into hadrons;

— Operator product expansion, effective field theories, and factorization theorems
- to probe the hadronic structure in B hadrons and their decay products;

— important theoretical and phenomenological input for other processes
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Classification of B decays:

m At the quark level: B-meson weak decays

b
are mediated by flavour-changing charged- - >___ < T
current J(‘:‘C coupled to the W-boson; 5
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m Three different classes: depending on the dif- 70 ot
ferent final states, B-meson weak decays can
be divided into three classes: d d
leptonic, semi-leptonic, non-leptonic Simple quark-line diagrams
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Non-leptonic B deca

m A crucial role in testing the CKM mechanism and in quantifying the CP violation:

- a: from time-dep. CP asym. in

B — mm, wp and pp decays; VuaVup, + VeaVe, + ViaViy = 0
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Status of exp. data on hadronic B decays:

m Thanks to BaBar, Belle, Tevatron and LHCb, more and more precise data available now

for many hadronic B decays;
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m To catch up with the precise exp. measurements, we need to improve the theor. calculation!
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Difficulties in non-leptonic B decays:

m Inreality: in the real world, quarks are confined inside hadrons and bound by the exchange
of soft gluons;

—the simplicity of weak interactions is overshadowed by the complexity of strong inter-
actions in these decays!

o
00009000

m B-meson decay is a multi-scale problem with highly hierarchical interaction scales:

EW interaction scale > ext. mom’ain B rest frame > QCD-bound state effects

my ~ 80 GeV

mz ~ 91 GeV mp ~ 5 GeV Agep ~ 1 GeV
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Difficulties in non-leptonic B decays:

m Different faces of strong interactions in B decays:

Different energy scales <« different dynamics <« different methods:

o~ M2 —  “new physics" 777

w? o~ ]\[‘21 ——  standard-model flavour transitions

effective electroweak Hamiltonian including perturbative QCD (QED) corrections

2 2
“,, ~ ——  short-distance dynamics in hadronic matrix elements
oo~ mpA

heavy quark expansion — effective theories HQET /SCET
, A2 long-distance hadronic parameters
A ~

(form factors, decay constants, parton distributions, . . . )

data / non-perturbative methods / approximate symmetries

m Hadronic parameters: Lattice QCD, QCD sum rules, phenomenological models, - - -
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Effective weak Hamiltonion for B decays:

m The starting point H.;: obtained after integrating out the heavy d.o.f. (mw, mz, m; > my),
containing physics above p ~ my; [BBL basis: Buras, Buchalla, Lautenbacher *96;,
CMM basis: Chetyrkin, Misiak, Miinz *98)

Lett ~ GF VCKMX[ S S C (’:j + Z CiO; + z CioO+ Z C,O,]
p=u 1.2 3 6 7 10

ci=t2 8, . 7v.89

charged current ‘ ‘ QCD-penguin ‘ ’ electro- & chromo-mgn ’
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Weak effective Hamiltonian for non-leptonic B deca

m Three steps to obtain Heg o< Z CiQ;i: [BBL basis: Buras, Buchalla, Lautenbacher *96;,

e Calculation of matching coefficients ¢; in fixed-order perturbation theory:

Cilmw) = e + el 4 ‘ — SMI + New Physics? ‘

o Perturbative calculation of anomalous dimensions ~;; of operators in Heg

(0 s
Yij = Vi T e

SA «—— QCD (+QED)

my o

e Use renormalization group to sum large logarithms In :
Ty

(0) .
=5 /20
M] 50 6 ) +

Ci(mw) — Ci(my) = [

as(mw)

m C;: perturbatively calculable for a given model; the NNLO program now complete;

> 2-loop/3-loop matching calculations at the initial scale; [Bobeth, Misiak, Urban 99;
Misiak, Steinhauser 04]

> 3-loop/4-loop anomalous dimension matrices for running; [Gorbahn, Haisch 04; Gorbahn,
Haisch, Misiak 05; Czakon, Haisch, Misiak 06]
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Calculation of the hadronic matrix elements of Q;:

m Dim-6 operators (;: their matrix elements (M;M|Q;|B)
depends on spin and parity of M, »; re-scattering deter-
mines strong phases, thus direct CP asymmetries;

a quite difficult, multi-scale, strong-interaction problem!

000000DOQQ

m Effective theories / Factorization / Approximate symme- / B\
tries: express exclusive matrix elements in terms of (few) \ j
universal hadronic quantities;

m To match the exp. precision, we need to try to improve the calculation of (Q;)!

- Dynamical approaches based on factorization theorems: PQCD, QCDF, SCET, - - -
[Keum, Li, Sanda, Lii, Yang *00;
Beneke, Buchalla, Neubert, Sachrajda, *00;
Bauer, Flemming, Pirjol, Stewart, ’01; Beneke, Chapovsky, Diehl, Feldmann, ’02]

- Exploit symmetries of QCD: flavour SU(3) symmetries (Isospin, U-Spin, V-Spin),
chiral symmetry, heavy-quark symmetry, - - - [ Zeppenfeld, 81;
London, Gronau, Rosner, He, Chiang, Cheng]

m 7o reach precision predictions, we need to combine all these complementary approaches!
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Hadronic matrix elements in QCDF approach:

m In the heavy-quark limit, (M;M>|Q;|B) obeys the factorization formula: [BBNS’99-'04]
(IQIB) = mh P (0) fus [ d T ) G 0) + (1 > 1)
i [ ddvd (0, v,1) 90() 63, (0) 63, )

+ O(1/my)

=
v
=
A,

9w

<z [T R
=R g

+ O(U/my)

o

=

m A systematic framework to all orders in c, but limited accuracy by 1/m; corrections.
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Perturbative calculation of the hard kernels 77

m 77 and T": perturbatively calculable order by order in a;

vertex corrections: 7' = 1 + O(a) + - - -; spectator scattering: T = O(ay) + - - - .

- up to NLO in «, the relevant Feynman i i
diagrams include:
o (a)
- hard and IR contributions are separated éé\/ g@/

properly, thus validating the soft-collinear
factorization at 1-loop level;

- strong phases from final-state interactions
~ O(ay), O(1/mp);

- annihilation topologies and higher Fock % >@ %
states give power-suppressed contributions;
m Main result: in the heavy-quark limit, all “non-factorizable” diagrams are dominated by

hard gluons/quarks and can be calculated as expansion in «,(mp); Soft gluons are sup-
pressed as Aqcp/mp; < “colour transparency argument” [Bjorken, °89]
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Factorization formulae from the SCET point of vie

m Soft-collinear effective theory (SCET): an EFT designed to describe processes involving
energetic hadrons/jets; [Bauer, Flemming, Pirjol, Stewart, *01; Beneke, Chapovsky, Diehl, Feldmann, *02;
[Becher, Broggio, Ferroglia *14]

m SCET: field-theoretical basis for QCDEF, theoretical basis of Feynman diagrammatic QCD
factorization; <  SCET factorization is exactly the same as QCDF; [Beneke *15]

m For the form-factor term 7”: the matching procedure from QCD onto SCET is simpler;

QCD — SCETi(hc,c,s)

ol
ol
o
&

m For the spectator-scattering kernel 7: the two-step matching from QCD onto SCET is
needed due to fupc;
QCD — SCETi(hc,c,s) — SCETu(c, s)
h h h
S c S C S c

h ) K i i =y

he — H; he — H,®J
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m Analyses of complete sets of final states:

B — PP, PV: [Beneke, Neubert,
hep-ph/0308039; Cheng, Chua, 0909.5229,
0910.5237;]

B — VV: [Beneke, Rohrer, Yang,
hep-ph/0612290; Cheng, Yang, 0805.0329;
Cheng, Chua, 0909.5229, 0910.5237;]

B — AP, AV, AA:
0709.0137, 0805.0329;]

[Cheng, Yang,

B — SP,SV: [Cheng, Chua, Yang,
hep-ph/0508104, 0705.3079; Cheng, Chua,
Yang, Zhang, 1303.4403;]

B — TP, TV: [Cheng, Yang, 1010.3309;]

QCDF/SCET analyses of B — MM, at NLO:

m Successes of QCDF/SCET:

- Colour-allowed tree-dominated and
penguin-dominated Brs are usually
quantitatively OK;

- Dynamical explanation of intricate
patterns of penguin interference
seen in PP, PV, VP and VV modes:

PP
PP ~ a4 +ryas, PV ~ay~ —
VP ~ a4 — ryag ~ —PV

VV ~ a4 ~ PV
- Qualitative explanation of polariza-

tion puzzle in B — VV decays, due
to the large weak annihilation;

- Strong phases start at O(c«;), dy-

m Well-established successes based on the
NLO hard-scattering functions!

namical explanation of smallness of
direct CP asymmetries;
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Some issues in QCDF/SCET:

m Some issues in QCDF/SCET:

- factorization of power corrections is generally broken, due to the appearance of end-
point divergence;

- could not account for some data, such as the large Br(B — 7’7"), the unmatched CP
asymmetries in B — 7K decays, - - - ;

- how important is the higher-order perturbative corrections? Factorization theorem is
still established?

- what is the correct theory for power corrections? Can never exclude large sizeable
power corrections theoretically!

m Motivation for nontrivial NNLO calculation:
- conceptual aspect: check if factorization theorem still held at the NNLO?

- phenomenologically: strong phases start at O(c;), NNLO is only the NLO to them;
quite relevant for precise direct CP prediction;

- exp. data driven: a, seems to be too small, and the Acp(7K) puzzle; Does NNLO
short-distance prediction tend toward the right direction?
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Status of perturbative calculation of the hard kernels 77

m To ascertain the short-distance contribution: need to have a reliable O () hard-scattering
kernels, at least their imaginary parts;
Two hard-scattering kernels for each operator insertion

(MiMp| Q| B) ~ FBM Tl @ oy, + T/'@ g @ dm, @ b

and two classes of topological amplitudes

[taken from G. Bell talk at 610TH WE HERAEUS - SEMINAR — BAD HONNEF, '16]]

Status 2-loop vertex corrections (T/) 1-loop spectator scattering (/)

. - [Beneke, Jager 05]
GB 07, 09]

Trees m t % [Kivel 06]

(e}

[Beneke, Huber, Li 09] [Pilipp 07]
Penguins §: [GB, Beneke, Huber,

Li 15+ in progress]

[Beneke, Jager 06]
[Jain, Rothstein, Stewart 07]

m For the spectator-scattering kernel 7!: already completed, both for the tree and penguin
amplitudes; [Beneke, Jiger *05; Kivel 06; Pilipp *07; Jain, Rothstein, Stewart *07)

m For the form-factor term 7;: known for the tree amplitudes, now only for the penguin
amplitudes with Qq 25 [Bell *07-°09; Beneke, Huber, Li *09; Bell, Beneke, Huber, Li *15 and work in progress|
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One-loop spectator scattering 7'

m Final results for the hard kernel 77 T/ (w,v,u) = fol dz Hi(z,u) J(w,v,2)

- The one-loop calculation of H using both the diagrammatical approach and the SCET formulation:
QCD — SCETj at pj, ~ mp; [Pilipp 07; Beneke, Jiiger 05; Kivel 06]

B e 0y

TV Ly R e SN S B R S 3
MMM & 1L T XNV A

MMMMMYNY T O T e
NAAAV] . ¥ L
VASAVAY

- The one-loop calculation of the Jet function J: SCET; — SCETy at ppe ~ +/mpAqcp; [Beneke, Yang 05;
Becher, Hill, Lee, Neubert 04]

m Factorization theorem does hold at ,.; perturbative theory is well-behaved!
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Typical topological amplitudes for B — M{M5:

m For non-leptonic B decays, three topological amplitudes are mostly relevant:

d u d
b u b L d b u
colour-allowed tree a4 colour-suppressed tree as QCD penguins a4

m Due to CKM unitarity, the amplitude for a B — f decay can always be written as:
AB—=7) =P T+.. 1+2P P +..]
- A£D> part: b — uuD transition, dominated by tree amplitudes T = ;o (M M>);
- /\L(.D ) part: b — Dqqg transition, dominated by penguin amplitudes P, = oy (M M)
m For a specific decay mode, if both 7' and P, involved, then direct CP asymmetry:

- Tree amplitude:

- Penguin amplitude:
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Tree-dominated decay modes:

m Two-loop vertex corrections:

G. Bell, “NNLO vertex corrections in charmless hadronic B decays: Imaginary part,”
Nucl. Phys. B 795 (2008) 1 [arXiv:0705.3127 [hep-phl]].

G. Bell, “NNLO vertex corrections in charmless hadronic B decays: Real part,” Nucl.
Phys. B 822 (2009) 172 [arXiv:0902.1915 [hep-ph]].

G. Bell and V. Pilipp, “B — 7~ 7°/p~ p° to NNLO in QCD factorization,” Phys. Rev. D
80 (2009) 054024 [arXiv:0907.1016 [hep-ph]].

M. Beneke, T. Huber and X. Q. Li, “NNLO vertex corrections to non-leptonic B decays:
Tree amplitudes,” Nucl. Phys. B 832 (2010) 109 [arXiv:0911.3655 [hep-ph]].
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The operator basis in QCD and SCET:

m CMM operator basis in full QCD:
Q) = py"PT'b Dy, PLT'p,
05 = py"“Prb Dv.Pyrp,
0s = DY"PLb 3, 4V
0y = DY"PLT'D 3, gy, T'q,
05 = DYy PLb 32, Vi pds

Qs = DYy v PLT D 5, Gvuve T 0,

-8 = ”
O = ﬁ my Doy (14 v5)GHY b.

0

0,

0;

m Nonlocal SCET operator basis for RI:

= e ord (e, Pun]

=[x ’/T_Pwivfx] (€4 Pvgrvah],

I S =
=[x TPanfﬂﬁx] 13 hhw?ﬁvéwéhv] .

Nonlocal SCET operator basis for WI:

(€75 Pux] [XPrYa ]
= [ExSvET Pix] [RPLYE vy v ] S
= [EvSY AT AL Pex] [RPRYE Y Ye v vs ] -

m § evanescent operators in QCD: although
vanish in 4-dim., but needed to complete
the operator basis under renormalization!
[ Gorbahn, Haisch 04; Gorbahn, Haisch, Misiak 05]




Matching calculation from QCD onto SCETj: 1

m To extract the hard kernels from matching, construct the factorized QCD operator:

- s
Oqp = g 7(1 — 5)q] [@7+(1 — v5)b] = Crr Cgy O
Cg4 and Cpr: matching coefficients for QCD currents to SCET currents; [Beneke, Huber, Li, 0810.0987]

= (Oqcp) is the product of a light-meson LCDA and the full QCD heavy-to-light transition form factor.

m For “right insertion”: m For “wrong insertion”:

(Qi) = T; (Oqcp) + ZHia<0a> (01) = T; (Oqcp)+Hi (01 —01)+Z Hia(Ou)
a>1 a>1

(0 = {49 + 2 [0 420 A0 + 20AY]
m On the QCD side, T

2
we have: b (2) A2+ 204D + 2040 420 4D 422 A
s

+20 7PAD + 2040 + (<) on® 4] + 0@ | 0)®

(02 = {6+ 22 [MD + 7D 5+ 7] + (2 2 Ti® 4y
) = 142 T g ab ext’ Oab ab A ab ac Mep

m On the SCET side,
we have: +72 4+ yO M +vP s, + v v 4+ Z((:)M(f;)] + 0(%3)} (04)

ext




Matching calculation from QCD to SCETj: 11

m Final result for RI at 1- and 2-loop level (for Qs ¢ insertion, more terms on the RHS):

1 1) ,nf 1) 4 (0
A
Ti(Z) — Ai(lz)y"f +Z,-,(-1)A-(l) +Z§2)A(0) +Zf(x])A,-(11)'nf + (=i) 5I§ll)Al{l(1),nf
1 1 1 1 1
+Ti( )[_CIEF) _Y1+Z£XI)} ZHi(b)Yb(l)'

b>1

m Final result for WI at 1- and 2-loop level (for Qs ¢ insertion, more terms on the RHS):
T = AW ZDAD A A - B - I

FO o IO L Z0AD 4 ZOFO 4 2 O
T (=) 51511)A'(]) nf +Z(1)[ A +Z(1) (0)]
T + 7] - AT
b>1
+[Z.(2>’f _A<2),fx_(0)] + (=i)sM [X‘{l(l),f _A/(l),fg‘_(]o)]
+@Z0 + 2V +E(l))[~i(ll)‘f 7A(l>‘fZ’.(]°)]

(1) 5(0) r (1) (1) 72 (2)77(0)
—Cpr Ajy [Yll =Yy ]— [Yn =1y ]Ail

m For Qs ¢ insertion: evanescent operator contributions are already non-zero at tree-level;




Two-loop Feynman diagrams for tree amplitudes:

m The two-loop non-factorizable diagrams:

[Beneke,Buchalla,Neubert,Sachrajda 00] g\/ E , :%\/
8a 9a 10a
b c d b b © d

g&a&ms@aﬁ%m
VAR VAN,
BN NA M R i erw

BV AN Fav e .8
F v z 0 & % i

- totally 62 “non-factorizable” diagrams; BV AN &L jﬁ ﬁﬁ
b c d

- vacuum polarization insertions in gluon propagators; %L,M T%ﬁ

B

- the one-loop counter-term insertions; } /
18a 19a

m For the tree amplitudes «; and o, now complete &N B NV

and have been cross-checked; [G.Bell 07, 09; M.
Beneke, T. Huber, X. Q. Li 09]

Li (CCNU) QCD Factorization in B decays &



Multi-loop calculations in a nutshell: I

m Adopt the DR scheme with D = 4 — 2e, to regulate both the UV and IR div.; at two-loop
order, UV and IR poles appear up to 1/¢* and 1/¢*, respectively.

m Basis strategy and procedure:

- perform the general tensor reduction via Passarino-Veltman ansatz,
—>thousands of scalar integrals, [Passarino, Veltman *79]

- reduce them to Master Integrals via Laporta algorithm based on IBP identities
—>totally 42 MIs, [Tkachov '81; Chetyrkin, Tkachov 81; Laporta ’01; Anastasiou,Lazopoulos *04]

- calculate these MIs, very challenging as we need analytical results.

m Techniques used to calculate MIs (developed very rapidly in recent years):

- standard Feynman/Schwinger parameterisation, only for very simpler MIs;

- method of differential equations; [Kotikov *91; Remiddi *97; Henn '13]
- Mellin-Barnes techniques; [Smirnov *99; Tausk *99]
- method of sector decomposition, for numerical check! [Binoth, Heinrich 00]
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Multi-loop calculations in a nutshell:

m General precedure of the multi-loop calculations: [R.N. Lee talk at ACAT 2013]

[Loop diagram calculation

s ~\
|Result |
. vy
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List of the resulted Master Integrals:

M 5

D

7Y

KL e K
KO K ¢
7Y P

The double lines are massive, while the single lines massless;

The dot on lines denotes the squared propagator;

LHS MIs have been cross-checked in inclusive B — X, [v calculations;
[Bell "08; Bonciani, Ferroglia *08; Asatrian, Greub, Pecjak '08; Beneke, Huber, Li ’08]

m RHS MIs are needed for charmless hadronic B decays and have also been cross-checked;
[Bell 07, '09, Beneke, Huber, Li ’09]
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Illustration of the calculation techniques: 1

m [BP IDs: for the two-loop case, there are eight IDs per scalar integral;

J&k [l 2 bk, Lp)] =05 @ =K', 1" b* =k, I, pl'
m Solve systems of these equations via Laporta algorithm;

—a scalar integral can be expressed as a linear combination of some MIs:

(8= 3D)(7uD — 8D — 24u + 28)
N 3(D —4)2 mi u?
2u(D — 4) + (16D — 56)(1 — u)]
B 3(D —4)?2m2 u? %

m Differential equations: [Kotikov *91; Remiddi *97; Henn *13]
FeMIi(u) = £ (u, €), M) + 35, (1, €) ML (w)
- needs results from Laporta reduction. - MI;(«) are known simpler MIs.

- should fix the boundary condition by some other methods.

- choose “optimal” basis of MIs to get simple iterated integrations in each order in e-expansion.
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Illustration of the calculation techniques: II

m Mellin-Barnes representation: makes Feynman parameter integrals simpler;  [Smirnov *99;

Tausk *99)
1 _ %ﬁ AT AT F(_Z) F(CM—FZ)
(A +Ay)>  Jomi "2 I(a)
g ©,
- has been partially automated;
T(a+2)

- can be used as a numerical cross-
check of our analytic calculation; I(-2)
[ Czakon 05; Gluza, Kajda, Riemann "07)

m Special functions frequently used:

- HPL up to weight 4 with argument u or 1 — u;

u_.

- Generalized polylogarithms Li», Li3, Lis with argument u, 1 — u, =2

- Hypergeometric function pFq, needs perform e-expansion; [Maitre, Huber 05,07]
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Numerical results for oy and o, at NNLO:

m Numerical results for colour-allowed «; and colour-suppress s at NNLO:  [Beneke, Huber,
Li, arXiv:0911.3655 [hep-ph]; Bell, arXiv:0902.1915 [hep-ph]; Bell and Pilipp, arXiv:0907.1016 [hep-ph]]

ai(mr) = 1.009 + [0.023 + 0.0104] , + [0.026 + 0.028 i3 0

i ‘
_ [0'445] {[0.014]LOSp +[0.034 + 0.027i ]y 0, + [o.oos]m}

= 1.00070 06 + (0.01170020)i

ar(mm) = 0.220 — [0.179 + 0.077 il o — [0.031 + 0.050 i1

Tp .
+ [ o 45] {[0.114]L0sp +[0.049 + 0.051i]y 0, + [0.067]tw3}

= 0.2407570 + (—0.0777 7 33)i
m individual NNLO corrections significant, but cancelled between vertex and spectator;

YT

m precise prediction for 1, but larger hadronic uncertainties for o from ry, = m;
i

m The NNLO contributions have only a marginal effect on tree-dominated B decays.
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Dependence of o ; on the hard scale 1y,

1.08 0.20
106} 015
= = 010 .
o 5 - dotted line:
& 2 005
Lo = LO result
02 0.00}
1003 4 6 3 10 005, 4 6 3 10
MGV Heel dashed line:
006 NLO result
005 000
0.04 ~0.05
= 003 = L
Z o Z -olo — - solid line:
0oL - - 015 NNLO result
0005 - - -
001, 4 6 3 10 —0203 4 6 3 10
1[GeV] 1IGeV]

m The real parts on the scale dependence substantially reduced!
m The imaginary parts less pronounced, since it is just a first-order effect!

m Sizeable correction to imaginary part (phases), but cancellation between vertex and spectator-
scattering!
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Summary for tree-dominated B decays:

m NNLO corrections individually sizeable, but ultimately not large due to cancellation between vertex and spectator;
B Colour-allowed modes well described by factorization, less the purely colour-suppressed ones;
B NNLO corrections are end of the road at leading power; No indication of further large radiative corrections;

B Size of the spectator-scattering contributions in QCDF determined by )\B_l (w)=[ %"d}g(w; W)

- the current B — 77 and 7p data prefers smaller Az ~ 200 MeV, compared to QCD sum rule estimate
Ag(1 GeV) ~ 350 — 500 MeV; [Braun, Ivanov, Korchemsky 03]

- g can be measured in B — ~y{v decays: I'(B — vlv) o 1/)\2, NLO+1/mj, corrections; [Beneke,
Rohrwild ’11; Braun, Khodjamirian ’12]

- weak constraint from BaBar *09 data: Az > 115 MeV; Belle 15 data: Az > 217 MeV [Belle, 1504.05831]

- much progress in our theoretical understanding of ¢ (w; p); [Bell, Feldmann, Wang, Yip, ’13; Braun,
Manashov ’14; Feldmann, Lange, Wang, ’]4]
B Other attempts for enhanced colour-suppressed tree amplitude:
- 1/my, power correction as a “nuisance parameter’™ a, — as (1 + p(.ei‘j") ; [Cheng, Chua, "09]

- introduce the Glauber gluon effects in spectator amplitudes; [Li, Mishima, arXiv:1407.7647 [hep-ph]]

- the renormalization scale for spectator interactions is much lower after applying the principle of maximum
conformality, ’]1 ~ 0.75 — 0.90 GeV; [Qiao, Zhu, Wu, Brodsky, arXiv:1408.1158 [hep-ph]]




Penguin-dominated decay modes:

m Two-loop vertex corrections:

G. Bell, M. Beneke, T. Huber and X. Q. Li, “Tio-loop current - current operator con-
tribution to the non-leptonic QCD penguin amplitude,” Phys. Lett. B 750 (2015) 348
[arXiv:1507.03700 [hep-ph]].

C. S. Kim and Y. W. Yoon, “Order o magnetic penguin correction for B decay to light
mesons,” JHEP 1111 (2011) 003 [arXiv:1107.1601 [hep-ph]].

Xin-Qiang Li (CCNU) QCD Factorization in B decays and QCD Corrections



Motivation for NNLO corrections to penguin amplitudes:

m Many decay channels are penguin-dominated, very sensitive to penguin amplitudes o;

¢ I cE I com
AR—Hﬂ—kU _ /\f_‘)[l’f _ ;PS.LW] 4 /\,(,")[Pu _ ;Pl(’.Lw]
\/iAK*A)ﬁUK* _ /\(‘:)[P(Jr},m L2 PC LW]+A’(’:)[T7(,+P“ +P’L" 4 P‘ LW]
Ago oy = Ap[P"* : CI'W] +>\(‘)[T+P + PC ru]
V2Ag_, jogo = M =P+ P + P””] AL >[< — P+ P+ PC )

Mode Br [1079] Acp Scp
Bt - atk® | 2379707 —0.015 £ 0.019
BT — n°kt | 1294707 0.040 + 0.021
B — m KT | 1957703 —0.082 £ 0.006
B’ — n'k° 9.93704% —0.01£0.10  0.57£0.17

m Due to CKM unitarity, the amplitude for a B — f decay can always be written as:

AB—H =AP[T+.. ]+ PP +..]

m 7o predict direct CP asymmetries, need calculate both 7" and P. to a high precision level;

g Li (CCNU) D Factorization in B decays and QC



The dominant contribution to af: I

m The leading penguin amplitudes including the O (a?) spectator terms: [Beneke, Jiger "06]

ag(mm) = —0.029 — [0.002 + 0.001i]y + [0.003 — 0.013i]p + [??-+??i|xnLo

sp g y
+ [0.485] {[0.001]Lo + [0.001 + 0.001i]1y — [0.000 + 0.001i]p + [0.001}[w3}

ag(mm) = —0.029 — [0.002 + 0.001i]y — [0.001 4 0.007i]p + [??7+7?i]nnLo

I'sp . . .
n [0'48 5] {[0.001]Lo + [0.001 + 0.0014]y + [0.000 — 0.000i]up + [o.ooum}

m Although O(af) spectator effect on v » significant, but small on &, due to numerical can-
cellation = how about the 2-loop vertex corrections to d,? significant or marginal?

m For the penguin topology, need to consider two distinct ways of contraction:

—left : (Qus), gln =z G(s) J
—right : (Q1-s), 2 (ln % + 1) —G(s)

Xin-Qiang Li (CCNU)
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The dominant contribution to a’j: 11

m The NNLO correction to aﬁ comes mainly from Q; and Q> insertions:

fol G @ @ Cs Ce G G"
LL  —0.53 1.028 —0.006 —0.073 0.0005 0.001 —0.319 —0.151
NLL  —0.320 1.009 —0.005 —0.088 0.0004 0.001 —0.312 —0.171
NNLL  —0.285 1.010 —0.006 —0.087 0.0004 0.001 —0.302 —0.164

m The penguin contractions of QY - give the largest contribution at any given loop order;

a4(TK) o = (—0.0087 = 0.0172i),, | + (0.0042 + 0.0041) ,,  +0.0083),,
a5(7K)jy0 = (—0.0131 = 0.01020), | + (0.0042 + 0.00414),,  +0.0083),,

m while cancellations exist for the real part, the imaginary part from @ , is clearly dominant;

m at NLO, the SD direct CP asymmetries mainly determined by the O}  insertion;

U,

m reasonable to assume that the Q); insertion at two loops also captures the bulk of the yet
unknown NNLO form-factor-term contribution to ay*.
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Matching from QCD to SCETy:

m The CMM operator basis in full QCD:

O = (puy"T'br) Dy T'pr), @4 = (Py"br) (Divupr),
+ QCD penguin operators and evanescent operators

m The nonlocal operator basis in SCET:

0, = )2’/{7_(1 - 75)X §¢+(1 - 75)hV7

13N %) Hon—2

0, = g'yi'h_ YD T X X (L4 5) Y La Y Lugu— 2 VLbiza—s - - - YLy P,
01 — 01/2 is another evanescent operator

m The master formulae at LO, NLO, and NNLO read, respectively,

7O — O

Q. TV =AD" +Z0AD + ...,
7O AP+ 20 A + 2D A + ZO TP + (<) O TP

+Z0) A"+ ZV AD) - TV [CR + 7] + ..
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NNLO penguin amplitudes with Qf , insertion: I

m On the QCD side, relevant Feynman diagrams with O - insertion (~ 70 diagrams):

Zo o oL o e
N N = NS
N = T NN
g el o ok ol
Sy S B NI S SE N
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NNLO penguin amplitudes with Qf , insertion: II

m The quark in the fermion loop can either be massless (for p = u) or massive (for p = ¢);
m In the massive case, a genuine two-loop, two-scale problem involved; also s. = mf / mi;
m Procedure to perform the calculation in QCD:

- regularize UV and IR divergences dimensionally, with D = 4 — 2¢; poles up to 1/ €;

- perform the Passarino-Veltman decomposition of the tensor integrals;

- perform the Laporta reduction of the scalar Feynman integrals to the MIs;

- use modern multi-loop analytic calculation technique to calculate the obtained MIs;
m Procedure to perform the matching calculation:
- calculate SCET matrix elements, match QCD to SCET, and then extract the matching coefficients;

- check factorization theorem; compute convolution in « with the light meson LCDAs;

m For the massive charm-type insertions, 29 new MIs found and computed based on the DE
approach in a canonical basis; [Bell, Huber *14; Henn ’13]
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Calculate the MIs in a

B Choose an “optimal” basis of MIs, so that
the DEs decouple order-by-order in € ex-
pansion, and the total weight of each MI is
zero to all orders in e:  [Henn, 1304.1806]

¢
D

Li(x, zf) Is(zy)

o

2 M (€, x2) =€An(x,) M (e, x,)
Oxn

Io(x, z7) Tio(x, 2¢)

B The above simplified form of DEs is trivial

:jéL}

to solve in terms of iterated integrals;[ Henn
’13; Bell, Huber '14]

ha(r,27) hs(z,27)

-

B Together with boundary conditions, analytic

(e, 7 In(a, zf)

results of the MIs are most compactly writ-
ten in terms of generalised HPLs (or Gon-
charov polylogarithms); [Maitre, 0703052]

¢
-

Iny(z, 2¢) Ing(x, 27)

B The analytic results make it much easier to

handel the threshold at @m} = 4m? and

-
-

ion i . Ino(w, z1) Iso(, 2¢)
the convolution integral over the product of

the kernels and the meson LCDAs; [Bell,
Beneke, Huber, Li ’]5]

&

(. 2)
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Numerical result for &/, with Qf , insertion: I

m For Qf , insertion: fully analytic;

di(7K) /1072 = —2.87 — [0.09 + 0.09i]y, + [0.49 — 1.32i]p,—[0.32 + 0.71ils,

Fsp ; . . ;
+ [0.434] {10.13]10 + [0.14 +0.12iJuv — [0.01 — 0.05i]ue +[0.07)u }

= (—246103;) + (—1.9410%0)
~ 15% correction to real part, ~ 40% to imaginary part for a§(7K)

m For Qf , insertion: semi-analytic results;

a5(rK) /1072 = —2.87 — [0.09 4 0.09i]y, + [0.05 — 0.62i]p, —[0.77 + 0.50i]s,

n [02';4] {[0.13]Lo +[0.14 + 0.12i]y + [0.01 + 0.03i]up + [0.07]IW3}

= (=3.34107) + (-1.055555)i

~ 25% correction to real part, ~ 50% to imaginary part for a$(7K)
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Numerical result for &/, with Qf , insertion: II

m Graphical representations of d; (7K):

0.000] o) ]
~0.005| ]
¢ NLO
o
£ -0010 aglnK] ]
0015 - ble ]
ay[7K]
~0.020] ]
_004  -003  -002  -o0o0l 0.00
Re

m The larger uncertainty of Im(a5(mK)) is due to the sensitivity to the charm-quark.
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Numerical result for &), with QF , insertion: III

m With the NNLO corrections included, the scale dependence of a; and a4 reduced:

—0.015[" . ‘ —
-0.020 L
s - s
g -0025 3
) ['4
-0.030}
-0.035E ‘ ‘ ‘ ]
2 ¢ 6 8 10
ulGev]
0.000
~0.005F
£ —o.0100 .
kol [
E _oosf /'/_7,/,,,#, g
_0020,,//
-0.025t,

HIGev]

form-factor term only!

red-dashed: LO;

—~0.015f ‘ I
—~0.020F ]
~0.025} 1
—0.030 /»/_»__,,/—7'/"'//,
70.0357;’_’/_/—
—~0.040L, ‘ ‘ E

2 6 8 10

ulGev]

0.000 ]
—~0.005] ]
~0010] ]
—0.015} ]

2 6 8 10
ulGev]

red-line: NLO; qquad blue-line: NNLO



The full QCD penguin amplitude in QCDF:

= In QCDEF, the full QCD penguin amplitude is defined as: [Beneke, Neubert 03]
& (M M) = diy(MiMy) + ri*ag(MiMy) + 55 (M1 M>)

- dj: the only leading-power contribution, with its real part being of order —0.03;
= ,Bg : 1/my,-suppressed annihilation contribution; can only be estimated based on a two-parameter model,

Ji & = X4 = (1+04€®4)In 22, with Ay, = 500 MeV;

x

= r[;[za‘;(Mle): the power-suppressed scalar penguin amplitude; very small when M, = V, but larger than

aZ (M M>) for M, = P due to the “chiral enhancement” factor ri;
- the interference between aZ(M 1M>) and ag(Mle) is constructive for PP, but destructive for VP;
m The impact of a correction to &} is always diluted by the other power-suppressed terms;

m When M, = V, the computation of aﬁ ascertains the SD contribution, and hence the direct
CP asymmetry, but there is an uncertain annihilation contribution of similar size;

m When M, = P, there is another NNLO SD contribution from a‘g, difficult though not
impossible to calculate, since it is power-suppressed;
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The penguin-to-tree ratio in QCDF: I

m The magnitude of the penguin-to-tree ratio can be extracted from data, and provides a
crucial test of the QCDF approach:

[ Beneke, Neubert *03]

_GK) ||V |fe [ Do |
ai(nm) + ax(rm) | |V | fic |20 -0

m The relative strong phase of the ratio can be probed by considering: [Beneke, Neubert *03]

IR 1 Valfs  Toixe .
_ ImR _ L fx r Aco(ntK
SNV ReR Y = 25y ReR | Vo | fit /AT ol ot el i)

. . 7K)+ak (K
- 1) the phase of the amplitude ratio; -R = %

m For 7K, mK*, normalized to the 77 final state, thus free of ff‘” uncertainty;
m For pK, pr K}, normalized to the prp;, final state, thus free of Aj "* uncertainty;

m Together with the exp. data, these two equations provide useful information on the ratio;
Xin-Qiang Li (CCNU)
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The penguin-to-tree ratio in QCDF: II

015 &[rK] ] 0150 ELo

] + aglnn]

aylnn] + azln

\

WAL

~00sk
~010 b 4 ; 1 ~010F

~0.15f Z —0.s}

015 010 005 000 005 010 o ~015 -010 -005 000 005 010 015
Re Re

m Despite sizable NNLO correction to aj, difference between NNLO and NLO is small due
to “dilution” and partial cancellation in the amplitude ratio;

m Two solutions for the wedge, but the one that does not match the theoretical prediction is
excluded by I' .+ x— /T'.— g0 < 1 and similarly for PV, VP modes;

m Only the 7K CP asymmetry now requires a value larger than g4 = 1 for a perfect fit;
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The penguin-to-tree ratio in QCDF: III

015 - KT~ T 015 aglp K|
ai[pp] + azlpp] ] LT aalppl +aalpol
010 s ] 010 ]
; PR
i - - .
0.05 0.05 ; - AN
{ /
E om0 0.00—+ .
] N )
1 i \ ;
-005 1 005 /!
~010}” i -010
~0.15 T - e ~015 e T
-015 -010 -005 000 005 010 015 Z015 -010 -005 000 005 010 015
Re Re

m The different magnitude of the PP penguin amplitude vs. PV, VP and VV is clearly re-
flected in the data as predicted;

® An annihilation contribution of 0.02 to 0.03 seems to be required, except for the longitudi-
nal VV final states;

m The red square Sj: theoretical prediction with g4 = 1 and the phase ¢4 = —55° (PP),
¢4 = —45° (PV), ¢a = —50° (VP); < the favoured parameter set;

ng Li (CCNU)
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Conclusion and outlook

m NNLO calculation for hadronic B decays at leading power in QCDF (almostly) complete:
- two-loop vertex corrections to tree amplitudes c; » now complete;
- two-loop corrections with O , insertion to oy now complete;

- two-loop corrections from Q3 4 5,6 and Og, operators in progress;

m The NNLO calculation provides a sizable correction to the SD part of direct CP asymmetry,
but its effect tempered by power-suppressed af and 3} terms;

m The NNLO correction does not help resolving the 7K CP asymmetry puzzle, nor does it
render the poorly known annihilation terms redundant;

m The NNLO SD corrections to the power-suppressed a4 possible but more complicated (for
spectator term, Beneke, Jaeger, Wang, in progress; for form-factor term, our next project!);

m Given the known NNLO SD contribution and the amount of data, imperative to better
determine the annihilation amplitude, presumably through fits to data (to do next!).
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Thank you for your attention !
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Factorization test with the semi-leptonic data:

(B~ — m °)

R, = — - = 3772 |V,,,,1|2 |t (7r7r) + 042(7r7r)|2
dU(B® — m+I=v) [dg?| ,_,
m From exclusive semi-leptonic data (HFAG LSpm
2014):
= 14} S
[lai(nm) + co(nm)|],, = 1.27£0.04 & N
¥ 13 R e
m Prediction with Az = 0.35 GeV: g
£ 12]
|ai () + ao(7m)| = 1.24J_r8:}g
11h

01 02 03 04 05 06

m Good agreements observed, supporting Ae[GEV]
B

QCD factorization!
Figure from BHL2009 with obsolete data (yellow band)

[|ai(m7) + ap(nm)|],, = 1.29 £0.11

exp

m The main uncertainties: Ag, o5 and power
corrections.

m Colour-suppressed tree amplitude v, can be large only if it also has a large relative phase!

m It is interesting to extend to the other final state, R, = l.75f8';z (2.08f8jig);
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Branching ratios for tree-dominated decays:

Theory I Theory II Experiment
B~ = x 54300004 (x) 5.2 F00T 14T () 5597040
Bonte  wBRHE o) eRBHE G 56
BY — n0x0 0.33 0 1L F042 0.63 T 1200 1.55 +£0.19

BELLE CKM 14: 0.90 % 0.16

AL B CO B b it s GO T E
B~ — ='p— 218 ) 12,3 F08 153 (5 10.9714
B — xtp~ 13.76 TO4 LT (%) 157 £ 1.8
B = = pT SRR ) 73412
B o at,F +0.20+ 1) 23.0 423
B — %" 1.49 jg;gjtm 20405
B= = prpp BTG o0 1906505505 (o)
BY — pifpp 2598080429 (4) 20.66T0-05 1299 (5x)
Y LosTh BT

Theory I: /47 (0) = 0.25 + 0.05, 457 (0) = 0.30 % 0.05, Ag(1 GeV) = 0.35 £ 0.15GeV
Theory II: fﬁ" 0) = +0.05

23 £0.03,A57(0) = 0.28 £ 0.03, A4 (1 GeV) = 0.2075 %0 Gev

m First error from « and V.; V., uncertainty not included;

m Second error from hadronic inputs; form-factor uncertainty not included for marked modes;

m Theory II: small A\g and form-factor hypothesis;




Direct CP asymmetries in B — 7K*) | p

m Besides the direct CP asymmetries themselves, consider the following two observables:

- the CP asymmetry difference (the so-called “mK” puzzle):

8(nK) = Acp(7°K™) — Acp(n K ™)

- the CP asymmetry “sum rule’: [Gronau "05]
= B [N = 2T ox— _. 2T oz =
A(rK) = Acp(n K7 )+ ="K Acp(n™ K*) — 575 Acp(n°K ™) — 2K Acp(n'K”)
ntK— F7r+K* K=

m A(7K): expected to be small, since the leading CP-violating interference of QCD penguin
and tree amplitudes cancels out in the sum;

m For different modes, direct CP asymmetry arises from interference between different terms:
Ap— _n—k0 =Azg CAYZ )
V2 Ay pog = A S 01 + 6] + Axe [0 02 + G 305 5]
Apo ik = Ark [5/»4 al + di] ,

V2 Ago_, nozo = Ark [ = aﬁ] + Agr [5pu a2 + Gpe %CM?,Ew}
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Direct CP asymmetries in B — 7K decays:

f NLO NNLO NNLO + LD Exp
T K 07115 RS 077N 01Rghy  —17+16
K"~ 9.t it 108N 5T —117RBIRE  40+21
K~ 7250558 808N TE 323G THN 82106
K% 421500 —43RREE 14 EES 1+10

5(mK) 2070 Tem 210003 % 207N E 122422
A(rK)  —LISTERH0E  —0.88F00H03  —04800 TN —14+11

m “NLO” and “NNLO”: only perturbatively calculable SD contribution included;

m “NNLO+LD”: power-suppressed spectator and annihilation terms included back;

m For LD effect, mainly from (3% since penguin-dominated; adopt the S} scenario;

m For 7K, the NNLO change is minor, since aj only part of the SD penguin amplitude;

m NNLO correction does not help resolving the observed 7K CP asymmetry puzzle;

Xin-Qiang Li (CCNU) QCD Factorization in B decays and QCD Corrections



Direct CP asymmetries in B — 7K*

f NLO NNLO NNLO + LD Exp
- L3605 LRI 027REHG  -38£42
KT B8N 1816135705 SIS81NETRY 624
KT ILIBTETOE 19703 F TS 2307 TG 2346
TGS (vt N Byt SN2 [ o SRS CE SR
S(rK*)  2.68%3BHM _1satPETN 726HUTRE 17425
A(rKY)  —TA8TIRHEN 345TSNS —L02TGRTIE 5445
oK 0.38 F007 4016 QAR 030%506 0%  —12£17
PKT 19315 ETRE ATRgies aniehgs s+
ptK™ S13ERSECE 1S0MREAY 2503 HREE 20411
PR 86351 5H N 899NN HE -0 NEIRR 6420
S(pK)  —141TEERAN —seTRYRTSN 17.80figtel 1716
A(pK)  —875TIGHl 10845 T —243708 Tl 3737

m For 7K™ ag is small; for pK cancellation between aj and ag; — large modification for
m’K*~, 7 K*~, p°K~, pT K~ due to Im(&5 /a1 ); Less pronounced for the others;

Xin-Qiang Li (CCNU)
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