X(3872) Production at Colliders

Yu-Jie Zhang

nophy0@gmail.com

School of Physics, Beihang University

QCD Study Group 2016 @ SJTU

Based on arXiv: 160X.XXXXX, 1407.3783, 1310.0374

April 2, 2016

Outline

- 2 The frame of Calculation
- 3 Numerical Result of BESIII
- Numerical Result of Hadron Colliders

5 Summary

Introduction

The second-most popular particle in last 10 years: X(3872)

Discovery of X(3872)

In 2003, Belle found very narrow peak X(3872) in $J/\psi\pi^+\pi^$ mass spectrum at 3872 MeV in $B^{\pm} \rightarrow J/\psi\pi^+\pi^-K^{\pm}$ decays as shown in Fig. 1 (hep-ex/0312021).

First XYZ state: X(3872)

The letter "X" was chosen because of its extraordinary properties. In spite of its mass just above the $D\overline{D}$ threshold, the observed decay mode is $J/\psi\pi^+\pi^-$ and there was no obvious assignment to a known charmonium.

Confirmed by all possible detector

Then it was confirmed by Babar, CLEO, CDF, D0, BESIII, CMS, ATLAS, LHCb, and so on.

Discovery of X(3872) **at Belle**

Figure: The distribution of mass difference between $J/\psi \pi^+\pi^-$ and J/ψ in $B^{\pm} \rightarrow J/\psi \pi^+\pi^- K^{\pm}$ decays(hep-ex/0312021).

Confirmed by other groups

Process (mode)	Experiment $(\#\sigma)$		
$B \to K(\pi^+\pi^- J/\psi)$	Belle [85, 86] (12.8), BABAR [87] (8.6)		
$p\bar{p} \to (\pi^+\pi^- J/\psi) + \dots$	CDF $[88-90]$ (np), DØ $[91]$ (5.2)		
$B \to K(\omega J/\psi)$	Belle $[92]$ (4.3), BABAR $[93]$ (4.0)		
$B \to K(D^{*0}\bar{D^0})$	Belle $[94, 95]$ (6.4), BABAR $[96]$ (4.9)		
$B \to K(\gamma J/\psi)$	Belle $[92]$ (4.0), BABAR $[97, 98]$ (3.6)		
$B \to K(\gamma \psi(2S))$	BABAR [98] (3.5), Belle [99] (0.4)		

Figure: ArXiv:1010.5827: X(3872).

Mass and J^{PC} of X(3872)

Mass of *X*(3872) in PDG 2014

$$M(X(3872)) - M(D^0) - M(\bar{D}^{*0}) = 0.11 \pm 0.21 \, MeV$$
 (1)

$J^{PC} = 1^{++}$

A amplitude analysis was performed by LHCb collaboration (arXiv:1302.6269) for $X(3872) \rightarrow J/\psi \pi^+\pi^-$ mode and $J^{PC} = 1^{++}$ has unambiguously assigned.

Mass of $\chi_{c1}(2P)$

 $\begin{array}{lll} M(\chi_{c1}(2P)) &=& 3925 \ {\it MeV}, & hep-ph/0505002 \\ M(\chi_{c1}(2P)) &=& 3901 \ {\it MeV}, & arXiv: 0903.5506 \end{array} \eqref{eq:2} \tag{2}$

Mass, width, J^{PC} , and decay of X(3872)

X(3872)

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass
$$m = 3871.69 \pm 0.17$$
 MeV
 $m_{X(3872)} - m_{J/\psi} = 775 \pm 4$ MeV
 $m_{X(3872)} - m_{\psi(25)}$
Full width $\Gamma < 1.2$ MeV, CL = 90%

X(3872) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\pi^+\pi^- J/\psi(1S)$	> 2.6 %	6 50	
$\omega J/\psi(1S)$	v(1S) > 1.9%		
$D^0 \overline{D}{}^0 \pi^0$	>32 %	117	
$\overline{D}^{*0} D^0$	>24 %	ţ	
$\gamma J/\psi$	$> 6 \times 10^{-3}$	697	
$\gamma \psi(2S)$	[xxaa] > 3.0 %	181	
$\tau^+ \pi^- \eta_c(1S)$ not seen		746	
p p	not seen		

Figure: PDG2014: Mass, width, J^{PC} , decay of X(3872).

X(3872): Molecule or tetraquark?

Figure: X(3872): Molecule or tetraquark?

Tetraquark: ccuu and ccdd

Mixing between $c\bar{c}u\bar{u}$ and $c\bar{c}d\bar{d}$

A mass splitting of the two mixing stests between $c\bar{c}u\bar{u}$ and $c\bar{c}d\bar{d}$ was (7 ± 2) MeV (hep-ph/0412098).

How to measure?

The difference is expected to appear as the difference in the X masses separately measured in $B^{\pm} \rightarrow XK^{\pm}$ and $B^{0} \rightarrow XK^{0}$.

Disfavored by Belle!

The Belle result of this difference in $J/\psi\pi^+\pi^-$ mode is found to be (-0.71 ± 0.96 ± 0.19) MeV/ c^2 (arXiv:1107.0163). It strongly disfavored the tetraquark interpretation. Belle also finds no signature for the charged partner state $c\bar{c}u\bar{d}$ in $J/\psi\pi^{\pm}\pi^0$ mode.

Molecule: $D^0 \overline{D}^{*0}$

Size of $D^0 \overline{D}^{*0}$

The binding energy 0.11 \pm 0.21 MeV would give an estimation of the molecule's size, the distance between D^0 and \bar{D}^{*0} mesons to be 10 fm. And the size of $\psi(2S)$ is about 1fm.

Problem of production due to large size

The cross section of $\psi(2S)$ prompt production in the high energy $p\bar{p}$ collisions will be about a factor of 1000 larger then X(3872).

X(3872) production at the Tevatron (hep-ex/0612053)

$$\frac{\sigma_{prompt}(pp \to X(3872) + all) \times Br(J/\psi\pi\pi)}{\sigma_{prompt}(pp \to \psi(2S) + all)} \sim 5\%$$
(3)

A mixture state of molecular state and $\chi_{c1}(2P)$

Disfavors the interpretation of X(3872) as pure $\chi_{c1}(2P)$

Mass of $\chi_{c1}(2P)$ is about 3900 3925 MeV. And NLO prediction of X(3872) production in hadron colliders disfavors the interpretation of X(3872) as pure $\chi_{c1}(2P)$ (arXiv:1303.6524).

A mixture state (hep-ph/0506222)

X(3872) might be a mixture state with the $\chi_{c1}(2P)$ and the $D^0 \bar{D}^{*0}$ components was proposed by Meng and Chao in (hep-ph/0506222). This idea is also favored the data of some other measurements and predictions (hep-ph/0508258,...).

A mixture state: production (arXiv:1304.6710)

The NLO prediction in α_s is consistent with the CMS (arXiv:1302.3968) and the CDF data (hep-ex/0312021).

Lattice: mixture state (arXiv:1503.03257)

Mixture state of $c\bar{c}$ and $D\bar{D}$

A lattice candidate for X(3872) with I = 0 is observed very close to the experimental state only if both $c\bar{c}$ and $D\bar{D}$ interpolators are included.

cc is necessary

The candidate is not found if diquark-antidiquark and $D\overline{D}$ are used in the absence of $c\overline{c}$.

No other neutral or charged X(3872)

No candidate for neutral or charged X(3872), or any other exotic candidates are found in the I = 1 channel.

$e^+e^- ightarrow X(3872) + \gamma$ at BESIII

Recently, BesIII reports the cross sections of $e^+e^- \rightarrow \gamma X(3872)$ (arXiv: 1310.0280, 1310.4101)

 $\sigma \times Br[J/\psi\pi\pi] < 0.13pb$ at 90% CL.
 $\sqrt{s} = 4.009 \text{GeV}$
 $\sigma \times Br[J/\psi\pi\pi] = 0.32 \pm 0.15 \pm 0.02pb$ $\sqrt{s} = 4.230 \text{GeV}$
 $\sigma \times Br[J/\psi\pi\pi] = 0.35 \pm 0.12 \pm 0.02pb$ $\sqrt{s} = 4.260 \text{GeV}$
 $\sigma \times Br[J/\psi\pi\pi] < 0.39pb$ at 90% CL.
 $\sqrt{s} = 4.360 \text{GeV}$

Where $Br[J/\psi\pi\pi]$ means $Br[X(3872) \rightarrow J/\psi\pi\pi]$.

NLO QCD prediction (1310.8597) is 0.12 \pm 0.04 pb for $\sqrt{s} = 4.04 - 5$ GeV.

X(3872) production at hadron colliders

X(3872) production at the CDF (hep-ex/0612053)

$$\sigma_{prompt}(p\bar{p} \rightarrow X(3872) + all) \times Br(J/\psi\pi\pi) = 3.1 \pm 0.7 nb$$
 (4)

Molecule model give 0.085 nb (arXiv: 0906.0882)

X(3872) production at the CMS (arXiv:1302.3968)

$$\sigma_{prompt}(pp \rightarrow X(3872) + all) \times Br(J/\psi\pi\pi) = 1.6 \pm 0.19nb$$
 (5)

X(3872) production at the LHCb (arXiv:1302.6269)

$$\sigma_{prompt}(pp \rightarrow X(3872) + all) \times Br(J/\psi\pi\pi) = 5.4 \pm 1.5 nb$$
 (6)

Prediction of *X*(3872) **production at hadron colliders**

X(3872) as pure $\chi_{c1}(2P)$ (arXiv:1303.6524)

NLO prediction in both v^2 and α_s disfavour pure $\chi_{c1}(2P)$ state

X(3872) as mixture states of $\chi_{c1}(2P)$ and $D\bar{D}^*$ (arXiv:1304.6710)

NLO prediction consistent with CDF, CMS, and B meson decay data, but not LHCb.

The frame of Calculation

Cross sections

Hadron and Parton level cross sections

$$d\sigma(p+p \rightarrow \chi_{c1}(2P) + X) = \sum_{a,b,d} \int dx_1 dx_2 f_{a/p}(x_1) f_{b/p}(x_2) \\ d\hat{\sigma}(a+b \rightarrow \chi_{c1}(2P) + d).$$

Parton level cross section

$$d\hat{\sigma}(a+b\rightarrow\chi_{c1}(2P)+f) = \sum_{n} rac{F_{n}(ab)}{m_{c}^{d_{n}-4}} \langle 0|\mathcal{O}_{n}^{\chi_{c1}(2P)}|0
angle.$$

Matrix elements

Fock states of $\chi_{c1}(2P)$

$$\begin{aligned} |\chi_{c1}(2P)\rangle &= \mathcal{O}(1)|c\bar{c}(^{3}P_{1}^{[1]})\rangle + \mathcal{O}(v)|c\bar{c}(^{3}S_{1}^{[8]})g\rangle \\ &+ \mathcal{O}(v)|c\bar{c}(^{3}D_{J'}^{8})g\rangle + \mathcal{O}(v^{2})|c\bar{c}(^{3}P_{J}^{[1,8]})gg\rangle \\ &+ \mathcal{O}(v^{2})|c\bar{c}(^{1}P_{1}^{[1,8]})g\rangle + \mathcal{O}(v^{3})|c\bar{c}(^{1}S_{0}^{[8]})gg\rangle \\ &+ \dots \end{aligned}$$

Contribution to NLO in v^2

$$\begin{array}{ll} \mathcal{O}(v^5) & \langle \mathcal{O}(^3 \mathcal{P}_1^{[1]}) \rangle, \, \langle \mathcal{O}(^3 \mathcal{S}_1^{[8]}) \rangle \\ \mathcal{O}(v^7) & \langle \mathcal{P}(^3 \mathcal{P}_1^{[1]}) \rangle, \, \langle \mathcal{P}(^3 \mathcal{S}_1^{[8]}) \rangle, \, \langle \mathcal{O}(^3 \mathcal{S}_1^{[8]}, ^3 D_1^{[8]}) \rangle \end{array}$$

The amplitudes

In the NRQCD factorization framework, the amplitude in the rest frame of H as

$$\mathcal{M}(a(k_1)b(k_2) \to H_{c\bar{c}}(^{2S+1}L_J)(2p_1) + f)$$

$$= \sum_{L_z S_z} \sum_{s_1 s_2} \sum_{jk} \int d^3 \vec{q} \Phi_{c\bar{c}}(\vec{q}) \langle s_1; s_2 \mid SS_z \rangle \langle 3j; \bar{3}k \mid 1 \rangle$$

$$\times \mathcal{M} \left[ab \to c_j^{s_1}(p_1 + q) + \bar{c}_k^{s_2}(p_1 - q) + f \right], \quad (7)$$

where $\langle 3j; \bar{3}k \mid 1 \rangle = \delta_{jk} / \sqrt{N_c}$, $\langle s_1; s_2 \mid SS_z \rangle$ is the color CG coefficient for $c\bar{c}$ pairs projecting out appropriate bound states, and $\langle s_1; s_2 \mid SS_z \rangle$ is the spin CGp coefficient. $\mathcal{M}\left[ab \rightarrow c_j^{s_1}(p_1 + q) + \bar{c}_k^{s_2}(p_1 - q) + f\right]$ is the quark level scattering amplitude.

The expand of quark-level amplitudes

$$\mathcal{M}[(c\bar{c})({}^{3}S_{1}^{[8]})] = \epsilon_{\rho}(s_{z})\mathcal{M}_{t}^{\rho}\Big|_{q=0} + \epsilon_{\rho}(s_{z})\frac{1}{2}q^{\alpha}q^{\beta}\frac{\partial^{2}(\sqrt{\frac{m_{c}}{E_{q}}}\mathcal{M}_{t}^{\rho})}{\partial q^{\alpha}\partial q^{\beta}}\Big|_{q=0}$$

The expand of quark-level amplitudes

$$\mathcal{M}[(c\bar{c})({}^{3}S_{1}^{[8]})] = \epsilon_{\rho}(s_{z})\mathcal{M}_{t}^{\rho}\Big|_{q=0} + \epsilon_{\rho}(s_{z})\frac{1}{2}q^{\alpha}q^{\beta}\frac{\partial^{2}(\sqrt{\frac{m_{c}}{E_{q}}}\mathcal{M}_{t}^{\rho})}{\partial q^{\alpha}\partial q^{\beta}}\Big|_{q=0}$$

$$\mathcal{M}[(c\bar{c})({}^{3}\mathcal{P}_{J}^{[1]})] = \epsilon_{\rho}(s_{z})q_{\sigma}(L_{z})\left(\frac{\partial\mathcal{M}_{t}^{\rho}}{\partial q^{\sigma}}\Big|_{q=0}\right)$$
$$+\frac{1}{6}q^{\alpha}q^{\beta}\frac{\partial^{3}(\sqrt{\frac{m_{c}}{E_{q}}}\mathcal{M}_{t}^{\rho})}{\partial q^{\alpha}\partial q^{\beta}\partial q^{\sigma}}\Big|_{q=0}\right) + \mathcal{O}(q^{5}).$$

X(3872) as a mixture state

In the sight of the mixture state of $\chi_{c1}(2P)$ and $D^0 \overline{D}^{*0}$ molecule, the cross sections of X(3872) at hadron collides can be expressed as (hep-ph/0506222, arXiv: 1304.6710)

$$d\sigma[X(3872) \rightarrow J/\psi\pi^+\pi^-] = d\sigma[\chi_{c1}(2P)] \times k, \qquad (8)$$

where $k = Z_{c\bar{c}}^{X(3872)} \times Br[X(3872) \rightarrow J/\psi\pi^+\pi^-]$. $Br[X(3872) \rightarrow J/\psi\pi^+\pi^-]$ is the branching fraction for X(3872)decay to $J/\psi\pi^+\pi^-$. $Z_{c\bar{c}}^{X(3872)}$ is the possibility of the $\chi_{c1}(2P)$ component in X(3872).

$D\bar{D}$ component contributions in the molecule model

The parton level amplitudes may be compared with the hadron level amplitudes

$$\mathcal{M}\left[m{a} + m{b}
ightarrow m{c}m{ar{c}} + m{f}
ight] \ \sim \quad \mathcal{M}\left[m{a} + m{b}
ightarrow m{D}m{ar{D}} + m{f}
ight] \Big|_{M_{Dar{D}}} \sim M_{car{c}}$$
(9)

$D\overline{D}$ component contributions in the molecule model

The parton level amplitudes may be compared with the hadron level amplitudes

$$\mathcal{M}\left[m{a} + m{b}
ightarrow m{c}m{ar{c}} + m{f}
ight] \ \sim \quad \mathcal{M}\left[m{a} + m{b}
ightarrow m{D}m{ar{D}} + m{f}
ight] \Big|_{M_{Dar{D}}} \sim M_{car{c}}$$
(9)

Sut the $R_{c\bar{c}}^{l}(0) \sim v^{2l} R_{c\bar{c}}^{S}(0) \gg R_{D\bar{D}}(0)$ with the *S* wave l = 0 and *P* wave l = 1.

DD component contributions in the molecule model

The parton level amplitudes may be compared with the hadron level amplitudes

$$\mathcal{M} [\mathbf{a} + \mathbf{b} \to \mathbf{c}\bar{\mathbf{c}} + \mathbf{f}] \\ \sim \mathcal{M} [\mathbf{a} + \mathbf{b} \to \mathbf{D}\bar{\mathbf{D}} + \mathbf{f}] \Big|_{\mathbf{M}_{D\bar{D}} \sim \mathbf{M}_{c\bar{c}}}$$
(9)

- 2 But the $R_{c\bar{c}}^{l}(0) \sim v^{2l} R_{c\bar{c}}^{S}(0) \gg R_{D\bar{D}}(0)$ with the *S* wave l = 0 and *P* wave l = 1.
- For the binding energy of cc̄ and DD̄ are several hundreds MeV and several MeV respectively.

DD component contributions in the molecule model

The parton level amplitudes may be compared with the hadron level amplitudes

$$\mathcal{M} [\mathbf{a} + \mathbf{b} \to \mathbf{c}\bar{\mathbf{c}} + \mathbf{f}] \\ \sim \mathcal{M} [\mathbf{a} + \mathbf{b} \to \mathbf{D}\bar{\mathbf{D}} + \mathbf{f}] \Big|_{\mathbf{M}_{D\bar{D}} \sim \mathbf{M}_{c\bar{c}}}$$
(9)

- 2 But the $R_{c\bar{c}}^{l}(0) \sim v^{2l} R_{c\bar{c}}^{S}(0) \gg R_{D\bar{D}}(0)$ with the *S* wave l = 0 and *P* wave l = 1.
- For the binding energy of cc̄ and DD̄ are several hundreds MeV and several MeV respectively.
- If $Z_{c\bar{c}}^H \sim Z_{D\bar{D}}^H$, we can consider the $c\bar{c}$ contributions only.

Numerical Result of BESIII

X(3872) production at BESIII

Resonance contributions

The resonance contributions for X(3872) can be estimated as:

$$\sigma_{Res}[s] = \frac{12\pi\Gamma[Res \to e^+e^-]\Gamma[Res \to \gamma X]}{(s - M^2)^2 + (M\Gamma_{tot}[Res])^2}.$$
 (10)

The most contributions are from $\psi(4040)$ and $\psi(4160)$, the mixing of $\psi(3S)$ and $\psi(2D)$ (arXiv:1201.4155,hep-ph/0505002).

Numerical result of resonance contributions

With the parameters from (arXiv:1201.4155,hep-ph/0505002)

$$(\sigma_{\psi(4040)}[4.23] + \sigma_{\psi(4160)}[4.23]) \times k = (62 \pm 14) fb, (\sigma_{\psi(4040)}[4.26] + \sigma_{\psi(4160)}[4.26]) \times k = (37 \pm 8) fb.$$

Cross section at BESIII

$$\sigma^{Lx}$$
[4.23] = (0.29 ± 0.09)*pb*,
 σ^{Th} [4.23] = (0.28 ± 0.11)*pb*,

$$\sigma^{Ex}$$
[4.26] = (0.33 ± 0.12)*pb*,
 σ^{Th} [4.26] = (0.23 ± 0.09)*pb*,

$$\sigma^{Ex}[4.36] = (0.11 \pm 0.09)pb,$$

 $\sigma^{Th}[4.36] = (0.10 \pm 0.04)pb,$

X(3872) production at BESIII

Figure: $e^+e^- \rightarrow X(3872) + \gamma$ at BESIII

Numerical Result of Hadron Colliders

Relativistic corrections of short distance coefficients

Figure:

The behavior at large p_T

$$\begin{aligned} R({}^{3}S_{1}^{[8]})\Big|_{\rho_{T}\gg M} &= \frac{G({}^{3}S_{1}^{[8]})}{F({}^{3}S_{1}^{[8]})}\Big|_{\rho_{T}\gg M} &\sim -\frac{11}{6}, \\ R({}^{3}P_{0}^{[1]})\Big|_{\rho_{T}\gg M} &= \frac{G({}^{3}P_{0}^{[1]})}{F({}^{3}P_{0}^{[1]})}\Big|_{\rho_{T}\gg M} &\sim -\frac{13}{10}, \\ R({}^{3}P_{1}^{[1]})\Big|_{\rho_{T}\gg M} &= \frac{G({}^{3}P_{1}^{[1]})}{F({}^{3}P_{1}^{[1]})}\Big|_{\rho_{T}\gg M} &\sim -\frac{11}{10}, \\ R({}^{3}P_{2}^{[1]})\Big|_{\rho_{T}\gg M} &= \frac{G({}^{3}P_{2}^{[1]})}{F({}^{3}P_{2}^{[1]})}\Big|_{\rho_{T}\gg M} &\sim -\frac{7}{10}. \end{aligned}$$

K factor of Tevatron

Ratio of short distance coefficients between ${}^{3}P_{J=1,2}^{[1]}$ and ${}^{3}S_{1}^{[8]}$

$$R_{\chi_c} = \frac{5}{3} \frac{r + m_c^2 d\hat{\sigma} [{}^3P_2^{[1]}] / d\hat{\sigma} [{}^3S_1^{[8]}]}{r + m_c^2 d\hat{\sigma} [{}^3P_1^{[1]}] / d\hat{\sigma} [{}^3S_1^{[8]}]} + \mathcal{O}(v^2).$$

Fit the long distance matrix elements

The ration of long distance matrix elements at NLO α_{s}

$$r = m_c^2 rac{\langle 0 | \mathcal{O}^{\chi_{cJ}}({}^3S_1^8) | 0
angle}{\langle 0 | \mathcal{O}^{\chi_{cJ}}({}^3P_J^1) | 0
angle} = 0.045 \pm 0.010 \sim \mathcal{O}(v^2)/(2N_c).$$

The ration of long distance matrix elements at NLO α_{s} , v²

$$r_{(\alpha_s)}|_{p_T >> M} = r_{(\alpha_s, v^2)} \{ 1 + v^2 d\hat{\sigma}_{rc} [{}^3S_1^{[8]}] / d\hat{\sigma}_{NLO(\alpha_s)} [{}^3S_1^{[8]}] \}.$$

Fit the long distance matrix elements ration r

Fit the long distance matrix elements ration r, where in unit of 10^{-2} .

<i>v</i> ²	CDF, $\chi^2/2$	CMS, $\chi^2/5$	LHCb, $\chi^2/6$	All, $\chi^2/15$
0	$\textbf{4.0} \pm \textbf{0.2,1.85}$	$4.0\pm0.1,\!1.59$	$5.3\pm0.4,\!0.80$	$\textbf{4.1} \pm \textbf{0.1,1.82}$
0.12	$\textbf{4.8} \pm \textbf{0.2,1.93}$	$\textbf{5.1} \pm \textbf{0.1,1.85}$	$\textbf{6.7} \pm \textbf{0.5, 0.84}$	$5.1\pm0.1,\!2.21$

Table:

Cross sections with fitted v^2 and r

Figure:

Cross sections with fitted v^2 and r

The relativistic correction of χ_{cJ} will suppress the cross sections of J/ψ at low p_T .

Production of X(3872) **at CDF, CMS, and LHCb**

Experimental data of X(3872)

$$\sigma^{CDF}[X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}] = 3.1 \pm 0.7 \text{ nb},$$

 $\sigma^{LHCb}[X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}] = 5.4 \pm 1.5 \text{ nb}.$

Table: *X*(3872) is considered as the mixture of $\chi_{c1}(2P)$ and $D^0 \bar{D}^{*0}$. *r* and *k* is fitted through CMS data at $p_T > 10 \text{ GeV } X(3872)$ with different v^2 .

V^2	r	k	$\sigma_{CDF}^{th}(nb)$	$\sigma_{LHCb}^{th}(nb)$
0	0.044 ± 0.004	0.010	2.51 ± 0.12	9.14 ± 0.46
0.20	0.056 ± 0.004	0.015	$\textbf{2.70} \pm \textbf{0.14}$	$\textbf{7.88} \pm \textbf{0.46}$
0.30	0.067 ± 0.005	0.022	3.07 ± 0.18	6.37 ± 0.45
0.33	0.071 ± 0.005	0.027	3.32 ± 0.20	5.51 ± 0.46

X(3872) production in CMS

Figure: X(3872) production in CMS

X(3872) production in LHCb

Figure: X(3872) production in LHCb

X(3872) production at 14 TeV LHCb

Figure: X(3872) production in CMS at 14 TeV

Summary

X(3872) as a mixture states of $\chi_{c1}(2P)$ and $D\bar{D}^*$

Support by production at B decay, decay, and Lattice QCD.

X(3872) production in BESIII

 $O(\alpha_s v^2)$ corrections of *X*(3872) production in BESIII is consistent with experimental data

X(3872) production in hadron colliders

 $\mathcal{O}(\alpha_s, v^2)$ corrections of *X*(3872) production is consistent with experimental data of CDF, CMS, and LHCb.